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Using Factor Oracles for Machine Improvisation
Gérard Assayag, Ircam, assayag@ircam.fr

Shlomo Dubnov, UCSD, sdubnov@ucsd.edu

Abstract : we describe variable markov models we have used for statistical learning of musical sequences, then
we present the factor oracle, a data structure proposed by Crochemore & al for string matching. We show the
relation between this structure and the previous models and indicate how it can be adapted for learning musical
sequences and generating improvisations in a real-time context.

Modeling musical sequences

Statistical modeling of musical sequences has been experimented since the very beginnings of
musical informatics (see [Con03] for a review and criticism of most existing models, and
[Zic87] for one of the first available real-time interactive system). The idea behind context
models, which we are mostly interested in here, is that events in a musical piece can be
predicted from the sequence of preceding events. The operational property of such models is
to provide the conditional probability distribution over an alphabet given a sequence. For
example, if w is musical sequence, σ a symbol belonging to the musical alphabet Σ, P(σ|w) is
the probability that σ will follow w, i.e. the probability of wσ given w.  This distribution P
will be used for generating new sequences or for computing the probability of a given one.
First experiments in context based modeling made intensive use of Markov chains.
[Ron&al96] explain that this idea dates back to Shannon : complex sequences do not have
obvious underlying source, however, they exhibit a property called short memory property by
the authors; there exists a certain memory lengh L such that the conditional probability
distribution on the next symbol σ does not change significantly if we condition it on suffixes
of w longer than L. In the case of Markov chains, L is the order. However, the size of Markov
chains is O(|Σ|L), so only low order models have been actually experimented.
To cope with the model order problem, in earlier works [Dub98,Dub02,Dub03,Ass99] we
have proposed a method for building musical style analyzers and generators based on several
algorithms for prediction of discrete sequences using Variable Markov Models (VMM). The
class of these algorithms is large and we focused mainly on two variants of predictors -
universal prediction based on Incremental Parsing (IP) and prediction based on Probabilistic
Suffix Trees (PST).
The IP method is derived from Information Theory. J. Ziv and A. Lempel [Ziv78] first
suggested the core of this method called Incremental Parsing in the context of lossless
compression research. IP builds a dictionary of distinct motifs by making a single left to right
traversal of a sequence, sequentially adding to a dictionary every new phrase that differs by a
single last character from the longest match that already exists in the dictionary. Using a tree
representation for the dictionary, every node is associated with a string, whose characters
appear as labels on the arcs that lead from the root to that node. Each time the parsing
algorithm reaches a longest-match node it means that the node’s string has already occurred in



the sequence. Then IP grows a child node, with an arc labeled by the next character in the
sequence. The new node denotes a new phrase that differs by one last character from its
parent. [Fed03] has proved that an universal predictor outperforms asymptotically (when the
sequence length grows to infinity) any Markov predictor of a finite order L. Furthermore, at a
given stage, the dictionary representation stores nodes that are associated with strings of
length from 1 to L, where L is the depth of the IP Tree. These nodes have the same meaning
as Markov states; only their number is dramatically smaller than the number of states that
would be needed by a regular L-order Markov model.
[Ron&al96] suggested a different VMM structure called Prediction Suffix Tree (PST), named
after the data structure used to represent the learned statistical model. PST represents a
dictionary of distinct motifs, much like the one generated by the IP algorithm. However, in
contrast to the lossless coding scheme underlying the IP parsing, the PST algorithm builds a
restricted dictionary of only those motifs that both appear a significant number of times
throughout the complete source sequence, and are meaningful for predicting the immediate
future. The framework underlying the approach is that of efficient lossy compression.
One may note that both IP and PST build tree structures in the learning stage, where finding
the best suffix consists of walking the tree from the root to the node bearing that suffix. The
main difference between the methods is that IP operates in the context of lossless
compression, cleverly and efficiently sampling the string statistics in a manner that allows a
compressed representation and exact reconstruction of the original string. PST, which was
originally designed for classification purposes, has the advantage of better gathering  of
statistical information from shorter strings, with a tradeoff of deliberately throwing away
some of the original sub-strings during the analysis process to maintain a compact
representation (thus being a “lossy” compression method), as well as allowing for a small
probability production for all possible continuations for any given suffix.
We have carried extensive experiments on using  IP for music classification and music
generation. We have also implemented a version of PST’s adapted to music and compared the
results with IP. These experiments are described in [Dub03]. From these experiences we can
draw a series of prescriptions for a music learning and generating method. In the following,
we consider a learning algorithm, that builds the statistical model from musical samples, and a
generation algorithm, that walks the model and generates a musical stream by predicting at
each step the next musical unit from the already generated sequence. Depending on the
specific application, learning and generating can be off-line or on-line, consecutive or
threaded, real-time or non real-time. Of course the real-time application is the more
demanding, so we will specify the following prescriptions for a real time improvisation
system:

1. Learning  must be incremental and fast in order to be compatible with  real-time
interaction, and switch instantly to generation (real-time alternation of learning and
generating can be seen as  « machine improvisation » where the machine « reacts » to
other  musician playing).

2. The generation of each musical unit must bounded in time for compatibility with a real
time scheduler

3. In order to cope with the variety of musical sources, it is interesting to be able to
maintain several models (e.g. IP, PST, others) and switch between them at generation
time.

4. In order to cope with the parametric complexity of music (multi-dimensionality and
multi-scale structures) multi-attribute models must be searched for.

As for point 1., IP is fine, but PST does not conform [Dub03].



In order to comment on point 2, some precision on the generation process must be given.
Whatever model is chosen, a generation step is as follows :

let w be the sequence generated so far, let w = vu where u is the best suffix of w, that is
the longest string that can be find associated to a node in the model. u=e and u=w are
possible situations. There is a conditional probability distribution P associated to the
node, which, for every symbol σ  in Σ  gives the probability P(σ|u) that σ follows u.
Let σ’ be a stochastic choice drawn from Σ with respect to P. The sequence w is now
grown as wσ’.

As IP and PST build tree structures in the learning stage, finding the best suffix involves
walking the tree from the root to the node bearing that suffix. The depth of this walk  is
bounded by the maximum memory length L, but there are cases, in open learning-generating
cycles for example, where one does not want to limit L a-priori. Furthermore this involves
maintaining a particular data structure for w, in order to build the candidate suffixes in an
efficient way.
A solution might be to use suffix automata instead of trees. In such machines, the current state
models automatically the best suffix, so there is no cost in searching it. [Ron96] for instance
have proposed Probabilistic Suffix Automata, for which there exists an equivalence theorem
with a subclass of PST’s. Unfortunately, these are much harder to learn, so they rather
propose to learn a PST and transform it afterwards into a PSA. Using this strategy however
would invalidate prescription 1.
The best structure we have found so far in order to validate prescriptions 1-4 is the Factor
Oracle (FO) proposed by M. Crochemore & al [All99]. In the following, we are going to

Figure 1. From left to right, the standard suffix tree, the IP tree and a possible PST learned
from the sample sequence w = ABABABABAABB. Probability distributions at each node are

not indicated for IP and PST.

explain how FO fits in the same family than IP and PST, how we use it in learning and
generating music, how it conforms to the prescriptions. In the last section, we shall address
the question of multi-attribute streams and parallel FO’s.



A suffix tree family

Figure 1 shows three models learned from the sample sequence w = ABABABABAABB. The
suffix tree is the one that carries most information. The implicit memory length can be as big
as the sequence itself. The IP model has identified the patterns {A,B,AB,ABA,BA,ABB}, in
this order. Although there is a loss of information, due to the shortness of the sample, it has
identified that B is often followed by A.  The PST has even less information : the leftmost
leaves have been removed because ABA has not a significantly better prediction power than
BA, and ABB is a singularity.
Obviously, the classical suffix tree (ST) structure serves as a reference structure for the IP and
PST representations (the tree representation of an IP or a PST is a subtree of the suffix tree).
ST is complete, which means every possible pattern in the sample sequence can be found, and
it provides maximum memory length (|w|-1). However, suffix trees are hard to grow
incrementally and they are space consuming as they incorporate a lot of redundant
information. IP and PST try on the contrary to compute and store the minimal relevant
information efficiently. They are actually compression schemes.
We shall be interested now by any learning mechanism which builds incrementally a structure
equivalent to a subset of the reference suffix tree,  which captures a sufficient amount of
statistical information, and is suitable for a real-time generation scheme.
The Factor Oracle has these properties, as we shall show it now.

Factor Oracles

Initially introduced by Crochemore & al in their seminal paper [All99], FO’s were initally
conceived for optimal string matching, and were extended easily for computing repeated
factors in a word and for data compression [Lef00]. Basically, FO is a compact structure
which represents at least all the factors in a word w. It is an acyclic automaton with an optimal
(m+1) number of states and is linear in the number of transitions (at most 2m-1 transitions),
where m = |w|.  The construction algorithm proposed by the authors is incremental and is
O(m) in time and space. Here is a brief description of the algorithm  :

 w = σ1 σ2  ...  σ m is the sample word to be learned. m+1 states, labeled by numbers from 0 to
m will be created. The transition function δ(i,σj)=k specifies a link from state i to state k>i
with label σj .  These links run from left to right, if the states are ordered along the sequence
w. In any FO, the relation ∀i, 0<=i<m, δ(i,σi+1)=i+1 holds.
There is another set of links S(i) = j, called Suffix Links, running backward.  These links will
be discussed further.
w is read from left to right, and for each symbol  σi  the following incremental processing is
performed :

Create a new state labeled i
Assign a new transition δ(i-1,σi)=i
Iterate on Suffix Links, starting at k=S(i-1), then k=S(k), while k≠⊥
and δ(k,σi)=⊥

do Assign a new transition δ(k,σi)=i
EndIterate
if k≠⊥ then S(i) = δ(k,σi) else S(i)=0

At initialisation, the leftmost state (state 0) is created. Its suffix link is by convention S(0)=⊥.
Figure 2 shows  the output of the algorithm for w = ABABABABAABB.



Figure 2. The Factor Oracle for w = ABABABABAABB. Black arrows are factor transitions
gray arrows are suffix links.

Turning ST into FO

We want to show that there is a strong connection between suffix trees and factor oracles. We
propose a non-optimal algorithm that turns ST(w) into FO(w) for any word w = σ1 σ2  ...  σ m .

Consider the longest path from the root to a leaf in the Suffix Tree. This path bears the
string w itself. Number the nodes in this path from 0 to m. A connection from node i to
node i+1, 0<=i<=m-1, is labeled by symbol σ i+1 . Descend the path starting at root.
When there is a bifurcation to another subtree at node i, the longest path starting at this
bifurcation and leading to a leaf has to be a suffix  σj  ...  σ m of w for some j.
Delete the subtree starting at this bifurcation, and add a connection between node i and
node j.
When the transformation is completed, the suffix tree has been « collapsed » along its
longest path, and is exactly the factor oracle.

Figure 3 shows the transformation step by step for w = ABABABABAABB. Of course, there is
loss of information in the process : the fact that whole subtrees are collapsed to a single link
between node i and j  may introduce some patterns not present in w , and nonetheless
recognized by the model. This accouns for the fact that the language recognized by FO
(considering all the states are terminal) includes all the factors of w but is not equal to set of
factors. This language has not been characterized yet.

Using Suffix Links for generation

Compared to IP and PST, FO is even closer to the reference suffix tree. Its efficiency is close
to IP (linear, incremental). It is an automaton, rather than a tree, so it should be easier to
handle maximum suffixes in the generation process. In order to show this, some more
information on FO must given.

[All99] demonstrates that the suffix link S(i) points to a state j which recognizes the longest
suffix  in Prefixi (w) that has at least 2 occurrences in  Prefixi (w). The suffix chain Sn(i) thus
connects states where maximal length redundant factors are recognized. To the left of these
states, suffixes of these factors will be found (see figure 4).
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Figure 3. Turning the Sufix Tree into a Factor Oracle (read left-right,top-bottom).

Figure 4. Suffix links and repeated factors
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Furthermore [Lef00] give a linear method for computing the length lrs(i) of the maximal
repeated suffix in Prefixi (w). This gives us the required tool for generating efficiently the next
symbol. We suppose the FO has been learned from the sample w = σ1 σ2  ...  σm. At each
generation step, there is a current  sequence generated so far v = σ'1 σ'2  ...  σ'n and an active
state i in FO such that all the transitions pointing at i are labeled by σ'n.

Incremental generation step :

if S(i)=⊥ then q := 1 else q = p 
Choose stochastically between 2 options,

1. with probability q :
i := i+1
v := vσi

2. with probability 1-q :
Choose at random a symbol σ in  {σj ∈  Σ | δ(S(i),σj)≠⊥}
i := δ(S(i),σ)
v := vσ

The first option means that we are moving  linearly forward  in the FO thus duplicating a
substring of the sample w. The second option means we are jumping back along a suffix link.
By definition we arrive in a state where a maximal suffix of v is recognized.  From there, a
choice is made among outgoing transitions. These transitions indicate which symbols can
possibly follow a suffix of v.
The probability variable p controls how close we want to be to the original sample w.  If it is
close to 1, large sections of w will be simply duplicated in the generation of v. If it is close to
0, the suffix links will be mostly used, resulting in a bigger rate of bifurcations with regard to
w.
An interesting  option is to consider not only the suffix link starting at i, but the whole suffix
chain Sn(i), then choose some element in this chain with regard to some criterion. For
example, the suffix length lrs can be used : choosing a smaller lrs will result again in more
variety, with smaller  factors duplicated from w. A probability distribution on the possibles lrs
might even be used in order to fine tune the variety rate.
A remark should be made on the random choice performed in option 2. of the algorithm : as a
difference with IP and PST, there is no probability model in FO, thus there is no probability
distribution over Σ attached to each state. Even without a probability model, when we
generate long sequences, we should get asymptotically closed to the empirical distribution
observed in w. However, it should be interesting as a future improvement to add a probability
model to FO’s.

Multiple channel models

In the case of music there is not only one channel of information as in the text examples seen
so far. Rather, several musical attributes must be considered. These attributes describe data or
metadata. Data describe the actual musical material and its attribute are: pitch, duration,
timbre, intensity, position in bar, etc. Metadata are comments over data that can help the
analysis or the generation process. For example, harmonic labels attached to musical data are
abstractions, not to be played but to be used as complementary information. Data and
metadata can be treated exactly in the same way, so we won’t distinguish them anymore.
There are many different ways to arrange musical attributes values: they can flow in parallel
information channels, or they may be grouped in a single stream of elements taken in a cross-



alphabet. A cross-alphabet is the cross product of several attribute alphabets (e.g. pitch
alphabet, duration alphabet, etc). Different combination of these two solutions may be
experimented. It is possible to imagine, for example, a stream of information which elements
are drawn from the cross-alphabet built upon harmonic labels and durations. This would make
sense in an application where it is considered that a couple (label, duration) is a significant
unit of musical information, better to be kept together. Then this stream could be combined
with a stream of pitches, resulting actually in a 2-channels information structure.
However, each solution has its drawbacks. Cross-alphabets are simple and compatible with all
the models seen so far, but they are more demanding on memory. Multi-channel structures
allow different memory lengthes for different attributes, thus optimizing memory, but known
models are hard to learn and badly suited to real-time.
Two interesting multi-channel models have been proposed. [Con95] described a Multiple
Viewpoint System, where a viewpoint is a model based on a cross-alphabet upon a subset of
available attributes (e.g. pitch x duration). In order to predict the next event, independent
predictions with respect to each viewpoint (i.e. channel) are combined using a weighted linear
combination.
[Tri01] describes a structure called MPSG (Multiattribute Prediction Suffix Graph), which is
an extension of PST’s where the nodes are labeled not by words in Σ *  but by tuples in
(Σ1

*xΣ2
* x…  x Σn

*) where Σ i is the alphabet for attribute i. One MPSG is build for every
attribute i, using at each node a probability distribution that predicts the next value for
attribute i with respect to every other attribute. In order to generate the next event, each
MPSG is looked for the best multi-suffix and a prediction is for the corresponding attribute,
then the attribute values are aggregated to form the next event. It is not clear however if such
an event « exists », i.e. has been effectively encountered in the training sample.
In a Factor Oracle, we would proceed differently. First, in FO, there is no reduction of the
number of nodes by considering the difference in prediction power between two suffixes
differing by a single symbol. The power of FO is to stay close to the completeness of the
suffix tree while being simple to compute and efficient in memory size. All the attribute
values for a musical event can be kept in a object attached to the corresponding node. The
actual information structure is given by the configuration of arrows (forward transitions and
suffix links). Multi-channel structures with n channels can thus be simulated by providing n
set of typed arrows. A set of arrows for the attribute i will be now characterized by the
transition function δi and the suffix link function Si.  The n sets can be learned in parallel, with
a very simple modification of the learning algorithm.

Let the training sample W = E1 E2  … Em  with Ei ∈ (Σ1 X Σ2 X … X Σn). W is read from left to
right, and for each event Ei  = σi

1σi
2 … σi

n the following incremental processing is performed :

Create a new state labeled i
Attach a copy of Ei to state i
For j from 1 to n

Assign a new transition δj(i-1,σij)=i
Iterate on Suffix Links,starting at k=Sj(i-1),then k=Sj(k),while
k≠⊥ and δj(k,σij)=⊥

do Assign a new transition δj(k,σij)=i
EndIterate
if k≠⊥ then Sj(i) = δj(k,σij)

EndFor



Musical applications

We have now a rich structure that can give rise to many musical applications. As an example,
we propose in this section the description of a possible «real life » machine improviser in a
complex performance situation. The machine improviser « listens » to three synchronized
sources : a metric source that generates a stream of pulses, a harmonic source that sends
harmonic labels, and a melodic source that sends a stream of time-tagged note events. These
sources are processes that synchronise in order to align one harmonic label per beat. The
granularity of the improviser is the beat : it learns one beat at a time and generates one beat at
a time. The three source processes may acquire their data by listening and analysing the signal
produced by actual performers, or they can be algorithmic generators, or combinations of
both, including combinations that change in time. The improviser continuously learns from
the harmonic and melodic source and aligns to the metric source.  Upon a triggering signal
(such as a human solist who stops playing), it starts (or stops) generating either a melodic
part, or a harmonic one, or both.
We give a short specification in the case where it generates both.

Process PA  sends a stream of regular beat pulses pi, PB  sends synchronously a stream of
harmonic labels hi, PC sends time-tagged asynchronous midi events mj. The learning process F
is equipped with a factor oracle and receives continuously the messages pi, hi, and mj from PA,
PB and PC.  As soon as the next beat starts, F performs a learning step on the previously
acquired beat pi, : it collects the set Mi of midi events falling between pi and pi+1, turns it into a
set of descriptors indicating melodic motion, intervalic content, rhythm structure, and codes it
into some signature di. F creates the next state i in the oracle, associates a copy of Mi to i, and
learns hi and di into two separate types of arrow (δh,Sh) and (δd, Sd).
The generating process F’ shares the oracle data structure with F. When it is asked to begin
generation, it awakes and waits for the completion of the current beat, pj then begins its duty.
The last state learned in the oracle is j. The main loop of F’ is as follows :

Loop
Collect all the states inferred from j by (δd, Sd) into Id
Collect all the states inferred from j by (δh, Sh) into Ih
If Id ∩ Ih ≠ ∅

 j ← best inferred state in Id ∩ Ih
Else

with probability p, j ← best inferred state in Id
with probability 1-p, j ← best inferred state in Ih

Send out Mj and hj
EndLoop

The states inferred by another state are all the states attainable from the latter either by a δ-
arrow or an Sn-arrow.  The best inferred state is the one that shares the longest suffix with the
originating state. The rationale behind F’is : try to generate a combination of harmony and
melody which is a well predicted continuation of the harmony/melody that occured in the
previous beat ; if you can’t, either follow a melodic prediction or a harmonic one, under
control of variable p. In any case, the midi events and the harmonic label sent out as a result
are consistent because they are associated to the same state (i.e. they were learned together).
In the case we do not want to improvise the harmony and the solo, but we would like the
improvised solo to be aligned with the incoming harmony, the algorithm is simple : choose
among the states inferred by (δd, Sd) the ones that have an entering δh-arrow labeled with the



same harmonic label than the one currently provided by process PB (or a compatible label for
some harmonic theory). If there’isnt one, a possibility is to remain silent till the next beat and
try again, or scan the oracle in order to find a better position.

Conclusion and future works

We have shown the musical potentialities of the factor oracle, a clever  data structure that had
been mostly demonstrated on textual and biological pattern detection, and we have described
the extensions necessary to fit with actual musical situations. We have given a generic
architecture for a virtual improviser based on this algorithm in a large class of music,
performance situations.
Implementations of the factor oracle and its extensions have been written in the OpenMusic
environment [Ass99b] and tested for a great variety of musical styles. The musical prediction
power of the oracle has also been compared to human listener prediction capabilities in a set
of auditive tests performed by Emilie Poirson in collaboration with Emmanuel Bigand from
the LEAD lab, Université de Bourgogne [Poir02]. Nicolas Durand has implemented a set of
experiments for pitch/rhythm recombination using parallel oracles [Dur03].
A real time  experiment close to the one described in the previous section has been
implemented using a communication protocol between OpenMusic and Max, the real time
environment invented by Miller Puckette [Puc02]. Marc Chemillier has proposed the real time
interaction scheme in Max as well as the harmonic model.
An interesting improvement would be to learn harmonic intervals instead of absolute
harmonic labels. In this case, the algorithm would find many more inferred state for a given
state, but the midi events in Mi would have to be transposed with regards to the context.
Interesting combination of transposed patterns would emerge and increase the variety of the
improvised material.
As for the oracle itself, experiments have shown that it was fruitful to turn the suffix links into
backward and forward links, by adding reversed arrows, otherwise the model tends
sometimes to get stuck into some region of the automaton.
Finally, a consistent probability model should be proposed for the factor oracle, although it is
not clear yet if it would radically change the generation performance.

Audio and video examples demonstrating this work will be installed at :

http://www.ircam.fr/equipes/repmus/MachineImpro
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