
HAL Id: hal-01161219
https://hal.science/hal-01161219v1

Submitted on 28 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Musical Constraint Satisfaction Problems Solved with
Adaptive Search

Charlotte Truchet, Philippe Codognet

To cite this version:
Charlotte Truchet, Philippe Codognet. Musical Constraint Satisfaction Problems Solved with Adap-
tive Search. Soft Computing, 2004, 8 (9), pp.633-640. �hal-01161219�

https://hal.science/hal-01161219v1
https://hal.archives-ouvertes.fr


Abstract

Constraint Programming (CP) allows to modelize and solve combina-
tory problems by specifying some partial information on variables, un-
knowns of the problem. In this thesis, we have studied musical constraint
problems, either stated by contemporary composers, or of musical analy-
sis, or instrumentation, in collaboration with IRCAM (french Institute for
Research and Coordination Acoustics / Music). Fourteen such problems
have been modelized and solved, which allowed to give a detailed typol-
ogy. This has been used to conceive and implement OMClouds, a library
in the Computer Assisted Composition environment OpenMusic. It is
based on a local search algorithm called adaptive search. Its architecture
allows in particular to define a constraint problem visually, to solve it,
and eventually to edit partial or approached results during the resolution
process.

1 Introduction

Computer Assisted Composition (CAC) deals with a symbolic representation
of music, mainly at the score level (or before), as opposed to sound synthesis,
accoustic, etc. It is now a well-established research area see [3] for a general
presentation. CAC provides the composer with computing tools, for him to
handle with formal representations of music, and make calculation on these
representations. One of the recent CAC softwares is OpenMusic [2], a full
visual programming language based on CommonLisp / CLOS, developped at
IRCAM. OpenMusic is a functional, object, visual programming language. A
set of provided classes and libraries make it a very convenient environment for
music composition. OpenMusic is developped jointly by computer scientists and
composers, which gives the opportunity to consult musician-users about the use
they could do of new computer techniques.

On the other hand, Constraint Programming (CP) is also a well established
research area. It is an artificial intelligence technique which has been attracting
a growing interest for the last decades, both in the academic and industrial areas.
CP allows to represent a problem by specifying some partial information on it.
It offers a powerful and intuitive way of describing and solving combinatorial
probems. A CP problem is structured as a Constraint Satisfaction Problem,
with a set of variables (such as unknows in mathematics), domains of possible
values for those variables, and constraints which are predicates stated on the
variables. The goal is to find an affectation of values to the variables such that
the constraints are satisfied. Many techniques have been developped to solve
CSPs. Some of them are called complete, they rely on an exhaustive search of all
the possible combinations of values. In order to handle with the combinatorial
explosion, high level notions have been introduced to try and reduce the size of
the search space, mainly Arc-Consistency, which forbids incompatibilities for the
values of the domains. These inconsistent values (values which, once combined
to any other one, would lead to a failure) combined can be removed from the
domains. Several algorithms have been developped since AC-1-3 [13].

1



On the other hand, incomplete methods have been used for the last decades
in Combinatorial Optimization in order to find optimal or near-optimal solu-
tions. They find their origin in the pioneering work of Lin on the Traveling
Salesman Problem [12], see for instance in [1] [10]. The so-called local search
techniques encompass a large class of complex methods, the best-known in-
stances being simulated annealing, Tabu search and genetic algorithms, usually
referred to as “meta-heuristics”. They work by iterative improvement over an
initial state. Consider an optimization problem with cost function which makes
it possible to evaluate the quality of a given configuration (assignment of vari-
ables to current values) and a transition function that defines a set of ”neigh-
bors” for each configuration. The basic algorithm consists in starting from a
random configuration, explore the neighborhood, select an adequate neighbor
and then move to the best candidate. This process will go on until some sat-
isfactory solution is found. To avoid being trapped in local optima, adequate
mechanisms should be introduced, such as the adaptive memory of Tabu search,
the cooling schedule of simulated annealing or similar stochastic mechanisms.
Very good results have been achieved by dedicated and finely tuned local search
methods for many problems such as the Traveling Salesman Problem, schedul-
ing, vehicle routing, cutting stock, etc. Recently, these techniques have also
been mixed either one with the other, or with complete methods, or with oper-
ationnal research, giving some very promising results.

Applying Constraint Programming to classical music is a very natural idea,
because of its harmonization rules which are constraint-like stated. The text-
books give rules like ”no parallel fifth”, ”opposite motion between two voices”,
and so on. They are so to say written in a declarative way. The first applications
of CP to music aimed at solving automatically the harmonization exercises, for
four voices. The first solver was proposed by Ebcioglu [9], followed by Tsang and
Aitken [22]. Philippe Ballesta wrote a solver based on Ilog Solver [5]. Pachet
and Roy used the particular structures of the tonal music to build a system with
BackTalk [16]. All these systems apply on a very specific problem, automatic
harmonization in the choral style, and stand on a specific music theory, tonal
music.

Two solvers have been developed for contemporary music, PWConstraints
[11] and Situation [19]. Both are based on the forward checking algorithm. They
are useful for certain types of problems, but still lack the efficiency, the genericity
(for PWConstraints) and the ease of use that are crucial to real production
situations.

Some applications of Constraint Programming to other fields of Computer
Music are to be found in [15], where constraints are used as high level tools
to control spatialization, [20] for a model of timed concurrent constraints as
”concurrent” musicians in an orchestra, [17] for musical mosacing, a way of
recreating pieces of music from a sample database, and [6] where constraints
specify hierarchical temporal relations between some boxes, which can contain
sound files for instance.

The applications of CP to music thus cover a very wide range of musical
structures and ideas. This is to be linked with the great variety of musical

2



Figure 1: A solution of problem 1, with exactly two common notes on the whole
sequence.

applications of computer science to music. In any way, it can hardly be asserted
that constraints are used as a specific tool in music : most of the time, the
applications are mainly guided by musical requirements and CP seems to have
been chosen as a tool among others.

2 Musical CSPs

This section details some musical constraint satisfaction problems. The first 9
problems are pure CAC problems, which means they have been proposed by
composers or musical assistants, except for problems 3 and 9 which are classical
musical problems. Problems 10, 11 and 12 come from musical analysis, from
works by Marc Chemillier. Problem 13 is a CAC problem, but cannot be easily
compared to the other ones. Problem 14 is an instrumental problem, which deals
with physiological constraints. We have chosen to classify the CSPs according
to their musical nature.

2.1 Harmony

There are three problems dealing with harmonical structures. Problem 1 has
been stated by Fabien Levy, composer. It concerns n aspectral chords, which are
modelized by three parameters : a virtual fundamental, the interval between two
frequencies, and a number of notes. The goal is to find some of these chords such
that two successive chords have a fixed number of common notes (optionnally,
with the a number of common notes comprised between fixed minimum and
maximum / with the same common notes on the whole sequence ). In addition,
there are optional constraints ruling the behaviour of the sequence (increasing
or decreasing intervals, increasing or decreasing fundamentals). Figure 1 gives
an example with exactly two common notes, figure ?? an example with an
increasing fundamentals and decreasing intervals, and figure ?? an example
with the same common note for the whole sequence.

Problem 2 is rather complex. It has been stated by the composer Georges
Bloch. Given a particular rhythmical structure of 6 or 12 voices, the goal is to
find a harmony which minimizes a musical distance, the so-called Estrada dis-
tance, between two successive chords. Estrada distance measures the differences
in the intervals between two chords. A second constraint consist in minimizing a

3



distance (corresponding to the cycle of fifths) between the virtual fundamental
of two successive chords. A third constraint is better expressed as a preference,
and states that the melodies formed on each voice have to be near to a fixed
melodic profile. Finally, a constraint is added in order to avoid trivial solutions
(same note everywhere). This problem is overconstrained.

Problem 3 consists in sorting a sequence of chords, such that two successive
chords have the maximal number of common notes. As a CSP, this is exactly
a Travelling Salesman Problem. Take the cities as the chords, and the distance
between two cities as the number of common notes.

It is worth noticing that these three problems have quite similar contraints
: minimize a distance-like function between two successive chords. From this
point of view, these problems are very similar. But we see here the main chal-
lenge of applying constraint techniques to musical representation : although
these three problems are stated on similar structures (sequence of chords), their
representations are very different : sets of frequencies, a very complicated struc-
ture inherited from some rhythmical properties, and a set of integers.

2.2 Rhythms

Four problems concern rhythmical structures. Problem 4 has been stated by
the composer Mauro Lanza. The goal is to find n rhythmical patterns of fixed
lengths, each pattern played on one voice, such that two different voices never
play an onset simultaneously for a fixed duration. We can use the Chinese
Remainder Theorem to reduce this problem to an array of integer equations,
which gives a caracterization of the number of solutions : there is no solution
unless the greatest common divisor between the lengths of any two voices is
greater than the duration.

Problem 5 has been stated by the composer Geoffroy Drouin. It relies on
the famous Fibonnacci series defined as u0 = 0, u1 = 1, un = un−1 +un−2. The
goal is to find durations which are values of this series, two successive durations
being next to each other in the series, and the sum of all the durations being
fixed. There are two modelizations for this problem, either taking the variables
as the durations, or the variables ranging over {−1, 1}, representing the back or
forward move in the indexes of the series.

Problem 6 has been stated by the composer Peter Klanac. He wanted to
write a smooth accelerando, but still playable by the interpret, who usually
reads the new tempo on the score as a ratio with the current tempo (such as :
quarternote = eigthnote). Variables are tempi t1...tn, ranging over the integer
set from 40 to 250. Constraints rule the ratios between ti and t ti+1, ti+2,
ti+3, and ti+4. The ratios have to be as near as possible of fixed values (0, 9,
0, 8, 0, 75 and 0, 666). This problem would be seen as a geometrical series by a
mathematician, but it is not, because we have to stay in the integer set. This
problem has then no solution, and the goal is to find approximate solutions.
Concerning the optimization options, Peter Klanac decided to optimize, in the
first place, the number of exact ratios on ti and ti+3 (count the number of
times when ti/ti+1 = 0.75, and then to minimize the gap between minimum

4



and maximum of ti+1/ti and 0.9. It is important to notice that the constraints
are written exactly in the same way, but the notion of approximate solutions
are not the same for the composer.

Problem 7 has been proposed by Gilbert Nouno, for a piece with Steve
Coleman. It has not been used because of real time requirements. The data are
a set of integer durations, which come from a rhythm played on congas by a
percussionnist. This durations correspond to a symbolic rhythm, but they may
differ from the exact durations. The goal is to find the symbolic rhytm which
fits the played duration best.

The observation of these four problems does not allow much deduction : all
of them deal with rhythms, but they have very little in common. The musical
structures are definitely not the same : patterns, tempi, played durations. We
can notice that the question of representing rhythms in CAC is usually a difficult
problem. Rhythm is a notion shared by all musicians, but this notion is very
contextual, and thus their representations depends on the musical context.

2.3 Melodies

Two problems concern melodies, in the sense of horizontal sequences of notes.
Problem 8 has been submitted by Gilbert Nouno, musical assistant of Michael
Jarrel. It is about musical gestures, a gesture being either an interval or a
short series of intervals (the domains are closed under the opposite sign). A
first note is fixed, to which the gestures are added in order to form a melody.
The goal is to find a series of these gestures, such that the resulting notes
are in a fixed set. There are two possible modelisations, with the variables as
gestures and constraints on notes or with variables as notes and constraints on
gestures. The first one is better because of the musical purpose, which is to find
gestures, and because we will search for approximate solutions. There are three
other constraints. Firstly, in order to avoid trivial solution, we impose that two
successive gestures are neither the same nor opposite. Secondly, the percentages
of some particular values for gestures may be fixed. Finally, the whole sequence
has to correspond to melodic profile, given as a curve, but this can be passed
as a domain reduction.

Problem 9 is a well known problem, the all-intervals series. The goal is to
find a musical series (permutation of the 12 notes of the chromatic scale, but
it can be generalized to a permutation of the n first integers), such that the
intervals heard when the series is played are all different. There is a trivial
solution 1 12 2 11 3, and of course we want non-trivial solutions.

These two problems are very interesting, representing the two extremes of
musical CSPs : one is academic, well defined, difficult, and the existence of
solutions is known. The other one is and looks ”real”, the modelisation is not
obvious, it has many optional constraints, and the number of solutions varies
from many to zero. Still, they share the same property to have two possible
modelizations, one with notes and one with intervals, modelisations equivalent
if we search for exact solutions, but not for approximate solutions.

5



Figure 2: The rhythmical imparuty property.

2.4 Musical analysis

There are three problems, from works with Marc Chemillier, dealing with musi-
cal analysis issues. Problem 10 concerns a musical skeleton found by Chemillier
in a piece of Ligeti, Melodien (and also in Continuum). A long part of Melodien
shows some agregates which are moving slightly. The analysis found an har-
monical structure with some properties, from which the agregate sequence can
be extracted. Here, the variables are the notes of the underlying harmony, and
constraints are used to restrict the melodic motions of these notes. Some of
these notes are really played in the score, but not all of them.

Problem 11 concerns a very particular property found by Simha Arom in
Aka pygmies music in Central Africa, and studied by Chemillier. This is called
”rhytmical imparity”, and caracterized rhythmical series of groups of 2 and 3
time units, played repetitively. Such a sequence is rhythmically impair iff it is
impossible to cut it into two equal pieces, see figure 2. This is easy to model
as a CSP, though enumerating the solutions is not obvious if not by running a
CSP program.

Problem 12 is a model given by Chemillier of some musical structures in
Nzakara music, in Central Africa. Nzakara people play some vocal pieces ac-
compagnied by a traditional harp, who repeats a canon-like sequence in an
obstinato. This canon respects some rules : they have two voices, never play
the same chords twice in a row, last a fixed duration, and the lower voice is
transposed from the upper one, apart from a few notes. Chemillier showed

6



that the number of errors was determined by the duration and the gap of the
canon. Here the variables are again the chords, and constraints are the same as
mentionned.

The idea of modelling a musical analysis, provided it is expressed in a
mathematical-like language, as constraints, can seem straightforward. A musi-
cal analysis consists in giving a posteriori some rules that the piece respects.
Here, there is an interesting parallel between constraint programming and such
musical modelling. We could argue that the number of solutions to the CSPs
is in some way representative of the accuracy of the analysis : if the CSPs has
no solution, the analysis is false, if it has many, then the analysis can apply to
many other pieces than the target one, and is not very specific to a particular
score, then not very accurate. If the CSPs has one or a few solutions, then we
can argue the analysis is quite specific to the score (see the analysis of Riotte
and Mesnage [14], [18]). To go a little further, we can add that the number of
constraints gives an indication of the analysis’ interest. The limit case would
be to modellize a score by simply enumerating its content (constraints such as
”first note is this”, etc). The less constraints there are, the more high level is
the analysis, in some way. it was not our goal to work on musical analysis, by
lack of competences, and we do not pretend to have found a universal way of
doing analysis, which is a work far too subtle to be represented in such a way.
Those remarks are about a particular work, where the parallelism between both
representations (CSPs and analysis) applies well.

2.5 Others

Problem 13 deals with enumerating musical scales in quarter tones. The whole
set of these is far too big to listen to, and some constraints are added here in
order to restrict the enumeration of these scales to the ones of musical interest.
The most interesting constraint we have tried is probably the one which forces
the scale to have a least number of chords ”sounding” in quarter-tones, that is,
in which the inner intervals do not reduce as semitones intervals.

Problem 14 is about fingerings for guitar. There are two CSPs, the first
one to find fingerings for a single chord for the guitar, the second one to find
fingerings for a chord sequence, such that for instance the number of position’s
changes is minimal. This problem is difficult to formalize because of the great
number of parameters, due to the interprets’ features (size of the hand, barr or
not , etc).

2.6 Special features of these musical CSPs

As a preliminary remark, let us stress the fact that most of these CSPs have
been given by composers, or musicians. This confirms the idea that constraint
representations has a role to play in music. Main features of the CSPs are
summarized table 1. As mentionned, these CSPs show a great diversity both
in their constraints and in their musical structures. Every kind of classical
constraints primitives, from equality to capacity, appears. Musical structures

7



Table 1: MAin features of the musical CSPs
CSP Var Dom Cont Nature Solutions Type

1 60 1000 2 / 4 Acc freq Oui Résolution
2 144 24 4 Mélodies Non Résolution
3 50 Perm 2 Accords Non Optimisation
4 25 40 2 Rythmes +/- Résolution
5 ? ∞ 1 Dures +/- Rsolution
6 25 144 3 Tempi Oui Optimisation
7 20 ? 1 Durées Oui Optimisation
8 40 6 4 Mélodies Non Résolution
9 20 Perm 1 Notes Oui Résolution
10 10/500 4 4 Accords Oui Génération
11 30 Perm 1 Rythmes Oui Génération
12 30 5 2 Accords Non Résolution
13 24 3 ? Intervalles Bcp Génération
14 ? 20 ? Doigts Bcp Rs / Opt

ranges over the whole set of object which can be found in a score, from notes to
tempi, and even out of the score for problems 7 and 14. This is of course due
to the fact that every composer thinks with its own musical structures. We can
also notice that the variables are often not exactly taken on the score, but above
it, as some integers which represent a feature of a musical object (typically, a
MIDI value for a note).

During the modellisation process, we often had to add some contraints to
ensure that the solutions would not be degenerated (chords with only one note
for instance). This is why there is an alldifferent constraint in nearly every CSP.

More important, the goal is not always to find a solution, which may seem
unusual to a constraint researcher. Nor is it to answer anything. It is to provide
interesting instanciations to the composer. Firstly because most of the CSPs
are overconstrained, and have no solutions at all. Secondly, it happens that an
approximate solution is musically more interesting than an exact one. We shall

8



never forget the exact place of constraint solving in the compositional process
: it is a mere tool, for the composer. It is used at the rough draft stage of the
composition, not only because it is CAC, but also because beeing a solution
doesn’t guarantee beeing musically good. In particular, the solutions are nearly
always re-written by hand. So the usual CSP paradigm ”problem → solution”
is no longer valid, we’d rather consider it as ”specify some partial information
on musical objects → make suggestions to the composer”.

3 Adaptive search

3.1 Introduction

Heuristic (i.e. non-complete) methods have been used in Combinatorial Opti-
mization for finding optimal or near-optimal solutions for a few decades. They
work by iterative improvement over an initial state. Consider an optimization
problem with cost function which makes it possible to evaluate the quality of a
given configuration (assignment of variables to current values) and a transition
function that defines for each configuration a set of ”neighbors”. The basic
algorithm consists in starting from a random configuration, explore the neigh-
borhood, select an adequate neighbor and then move to the best candidate.
This process will continue until some satisfactory solution is found.

We use a new heuristic method proposed by Philippe Codognet and Daniel
Diaz, called Adaptive Search (AS) for solving CSP. [7] shows some benches
where AS is compared for instance to Localizer, and shown to be very fast. Our
method can be seen as belonging to the GSAT [21], Walksat [4] and Wsat(OIP)
[23] family of local search methods.

3.2 Algorithm

The input of the method is a problem in CSP format. Although we will com-
pletely depart in adaptive search from the classical constraint solving techniques
(i.e. Arc-Consistency and its extensions), we will take advantage of this formu-
lation of a problem as a CSP, in order to analyze the current configuration more
carefully than a global cost function to be optimized. Accurate information
can be collected by inspecting constraints and combining this information on
variables.

Our method is not limited to any specific type of constraint, though we need,
for each constraint, an error function that will give an indication on how much
the constraint is violated. Adaptive search relies on iterative repair, seeking
to reduce the error on the worse variable so far. The basic idea is to compute
the error function of each constraint, then combine for each variable the errors
of all constraints in which it appears, therefore projecting constraint errors on
involved variables. Finally, the variable with the maximal error will be chosen
as a ”culprit” and thus its value will be modified. In this second step we select
the value in this variable’s domain that has the best value, that is, the value for

9



which the total error in the next configuration is minimal.
In order to prevent the algorithm from being trapped in local minima, the

adaptive search method also includes an adaptive memory as in Tabu Search:
each variable leading to a local minimum is marked and cannot be chosen for
the few next iterations.

Repeat, until a solution is found or a maximal number of iterations is
reached

• Compute errors of all constraints and combine errors on each variable by
considering for a given variable only the constraints on which it appears.

• select the variable X (not marked as Tabu) with highest error and evaluate
costs of possible moves from X

• if no improving move exists
then mark X tabu for a given number of iterations else select the best
move (min-conflict) and change the value of X accordingly

3.3 Using AS for musical problems

This method answers well to our specifications for musical constraint system.
First, the variables are always instanciated, and the value of successive instanci-
ations is being continuously improved. So we always have partial results (either
local minima, or the best local minimum found so far, or the current instan-
ciation). This allows to give partial solutions on demand, keeping the CSP
formalism. This idea is used in OMClouds to edit partial results during the
resolution, or to deal with approximate solutions for overconstrained problems.

Furthermore, the representation of constraints with cost-functions gives an
additional flexibility to the program. We can easily give more or less importance
to the constraints, simply by weighing their cost-functions, and eventually by
playing with the end treshhold.

Finally, it deals well with the requirement of CAC to give answers on request.
Computing the first ten solutions of a CSP, a complete solver is likely to give very
similar solutions, with for instance the first variables having the same values.
On the opposite, a incomplete solver will be randomly reset ten times, and give
probably ten very different solutions, thus providing the user with a welcome
diversity.

For all of these reasons, Adaptive Search was particularly well adapted to
the composers needs.

4 OMClouds

This last section presents the OMClouds library, which implements the adaptive
search algorithm in OpenMusic. OMClouds is distributed with OpenMusic since
april, 2003, version 4.6.5 and up.

10



4.1 Technical choices

About the CSP modelisation, the variables are supposed to be homogeneous,
that is, we suppose that the constraints state in the same way on all the variables.
Thus, variables don’t need to be named, and are represented by their indexes, as
if they were placed in a list. Constraints hold on some variables located by the
gap in their indexes. So the constraints are in the form of ”minimize a distance
between variable i and variable i + 1”. There are three kind of CSPs : lists
(variables are placed in a list), cycles (variables are in a list that is supposed
to be repeated cyclically), and permutations (domains are the permutations of
the variables). The interface is visual as in OpenMusic. OMClous has generally
been made in order to respect the main features of OM as far as possible.

To take profit of OM being object oriented, we have chosen to define a CSP
object (three of them actually, one for each kind of CSP), which contains all the
information needed to represent, solve, and edit the CSP : current configuration,
domains, constraints, and also tabu list, errors, global error, and so on. The
main functions about the resolution are thus generic functions, which can be
redefined for new CSPs structures, or in order to modify some heuristic choices
like the neighborhood exploration for instance.

4.2 CSP definition

A problem is defined in an OM box, called for instance the function cree-varliste
in case of a list of variables (the architecture is comparable for the three kinds
of CSPs). This box is an instance of asboxlist, a subclass of the OM class
box-with-patch, which has an attached patch. When opened, the patch of any
asbox shows some predefined icons representing the current variable, the whole
variable list, and an output, plus two buttons to add either variables, or outputs,
see figure 3. This allows to define the constraint visually, in OpenMusic manner,
by using the constraint primitives (see figure 4), and connecting them to the
”state” outputs. In this case, the constraint are translated into cost functions
following tabular 3. A min-conflict like translation has also been implemented.
Finally, it is also possible for the user to write his own cost-functions, just by
connecting them to the state outputs.

4.3 Resolution

The asboxes have two outputs. The first one gives the instance of the corre-
sponding CSP class, and is intended to be directly connected to the resolution
box. In this configuration, the resolution box simply takes the CSP object and
applies adaptive search until the global error is below a certain ϵ, zero by default.
When a solution is found, the values are given in the output of the resolution
box.

The second way of using OMClouds allows to deal with approximate solution,
during the search process. Again, the resolution box is an instance of the box-
resol, subclass of the OpenMusic OMBoxCall class. The evaluation method has

11



Figure 3: Visual definition of the constraints.

Figure 4: The constraint primitives provided with the library.

12



Table 2: The constraints are automatically translated into cost-functions, ac-
cording to the following rules.

Contrainte C Cot fC

x1 =c x2 — x1 - x2 —
x1 equalc x2 0 si x1 equal x2

1 sinon
x1 ¡c x2 max (1, x1 - x2 )
x1 ¡=c x2 max (0, x1 - x2 )
x1 /=c x2 1 si x1 = x2 )

0 sinon
x1 notequalc x2 1 si x1 equal x2

0 sinon
C1 andc C2 max (fC1

, fC2
)

C1 orc C2 min (fC1
, fC2

)
evenc x 0 si x est pair

1 sinon
oddc x 0 si x est impair

1 sinon
minimizec x x
alldiffc x nombre de redondances dans x
cardc i l el n — (nombre d’lments de la l valant el) - n —

13



been redefined for this box-resol boxes, in order to deal with the second output
of a asbox class. This second output is set by the resolution box to the values
of the last local minimum encountered during the search process. This allows
to connect these values to any kind of OM calculus or musical editors. Then,
during the search process, the resolution box re-evaluates its second input each
time a new local minimum is found. This activates the evaluation of everything
that is connected to it, from the second output of the asbox. What is important
here is the fact that the local minimum can be shown during the search process,
and processed or edited by any kind of OM calculation. According to the notes
on the musical CSPs, OMClouds does not simply give the intermediate values,
but also leaves the possibility to process them so that they can be edited in a
score like editor.

The main classes used in OMClouds are shown on figure ??.
We have measured some performances in OMClouds on the all-intervals se-

ries, n-queens, and asynchronous rhythms problems. The results are far slower
than the one presented in [8], with an implementation in C of the same algo-
rithm. Several factors explain this, among others, we have chosen to generate
the cost-functions and pass them as parameters, which forbids optimization
on these, although they are often calculated in a single step of the program.
Anyway, the results are sufficient for our application.

5 Conclusion (english)

We have presented a catalogue of fourteen musical Constraint Satisfaction Prob-
lems, and a set of requirement for using so a formalism in Computer Assisted
Composition. A local search method has mainly been used to solve these prob-
lems, and implemented as a library of the software OpenMusic. Music offers to
Constraint Programming original problems, and an application where the use
of a solver must be seen in a very flexible way.

We have contributed (from far) to eight creations. Generally, constraint
programming has confirmed to apply well to contemporary music. The instru-
mental application to guitar fingerings seems promising and could be extended
to other instruments (but in order to to it, a musical expert is needed). Further-
more, local search, where a ’best instanciation computed so far” can be stored,
could be used in anytime applications.

References

[1] E. H. L. Aarts and J. K. Lenstra. Local search in combinatorial optimiza-
tion. John Wiley and Sons, 1997.

[2] Carlos Agon. An environment for computer assisted composition. Thèse de
doctorat, IRCAM-Universit de Paris VI, 1998.

14



[3] Gérard Assayag. Applications on contemporary music creation, esthetic
and technical aspects. 1st Symposium on Music and Computers, 1998.

[4] H. Kautz B. Selman and B. Cohen. Noise strategies for improving local
search. Proc. AAAI’94, 1994.

[5] Philippe Ballesta. Contraintes et objets, clefs de voûte d’un outil d’aide à
la composition. Editions Hermès, 1998.

[6] Anthony Beurivé and Myriam Desainte-Catherine. Representing musical
hierarchies with constraints. Proceedings of MusiCons workshop at CP’01,
2001.

[7] Philippe Codognet, Daniel Diaz, and Charlotte Truchet. The adaptive
search method for constraint solving and its application to musical csps.
Proceedings of the First International Workshop on Heuristics, 2002.

[8] Daniel Diaz and Philippe Codognet. Design and implementation of the gnu
prolog system. Journal of Functional and Logic Programming, 6, 2001.

[9] Kemal Ebcioglu. An expert system for harmonizing chorals in the style of
J.-C. Bach. AAAI Press, 1987.

[10] Jin-Kao Hao, Philippe Galinier, and Michel Habib. Métaheuristiques pour
l’optimisation combinatoire et l’affectation sous contraintes. Journal of
Heuristics, 1998.

[11] Mikaël Laurson. Patchwork : a visual programming language and some
musical applications. Sibelius Academy, 1996.

[12] S. Lin. Computer solutions of the traveling salesman problem. Bell System
Technical Journal, 44:2245–2269, 1965.

[13] A.K. Mackworth and E.C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems [ac1-3].
Artificial Intelligence, 25:65–74, 1985.

[14] Marcel Mesnage. Sur la modélisation des partitions musicales. Analyse
Musicale, 1991.

[15] François Pachet, Olivier Delerue, and Peter Hanappe. Dynamic audio mix-
ing. Proceedings of ICMC, 2000.

[16] François Pachet and Pierre Roy. Integrating constraint satisfaction tech-
niques with complex object structures. 15th Annual Conference of the
British Computer Society Specialist Group on Expert Systems, pages 11–
22, Décembre 1995.

[17] François Pachet and Aymeric Zils. Musical mosaicing. Proceedings of
DAFX’01, 2001.

15



[18] André Riotte and Marcel Mesnage. Analyse musicale et systèmes formels :
un modèle informatique de la 1ère pièce pour quatuor à cordes de stravin-
sky. Analyse Musicale, 1988.

[19] Camilo Rueda, Mikael Laurson, Georges Bloch, and Gérard Assayag. Inte-
grating constraint programming in visual musical composition languages.
Proceedings of ECAI’98, 1998.

[20] Camilo Rueda and Franck Valencia. Formalizing timed musical processes
with a temporal concurrent constraint programming calculus. Proceedings
of MusiCons Workshop at CP’01, 2001.

[21] Bart Selman, Hector Levesque, and David Mitchell. A new method for
solving hard satisfiability problems. AAAI’92, pages 440–446, 1992.

[22] C. P. Tsang and M. Aitken. Harmonizing music as a discipline of constraint
logic programming. ICMC, pages 61–64, 1991.

[23] Joachim P. Walser. Integer Optimization by Local Search : a Domain-
independant Approach. Springer Verlag, 1999.

16


