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Abstract:

In this paper we define data structures which describe general concepts of composition and sound
synthesis, and establish a client-server architecture. The combination of these two elements should allow
preexisting and new applications to work together and share information.

1 Introduction

The work presented in this paper is part of a larger project that focuses on the control of sound synthesis.
Already in 1963 Max Mathews reported the first experiments with digital sound synthesis (using the
MusicV environment) and computer aided composition [Mathew 1963]. In the same article he also stated
the need of a better understanding of psychoacoustic phenomena and more precise tools for the control of
sound synthesis. Since then many applications for synthesis and CAC have reached computer screens:
CSound [Vercoe 1986], CMix [Garton 1995], Max [Puckette 1991], Kyma [Scaletti 1989], and Modalys
[Morisson et Adrien 1993] are more sound oriented; Formes [Rodet et Cointe 1984], PatchWork [Assayag
et Rueda 1993], and DMIX [Oppenheim 1996] are more composition oriented; and Common Lisp Music
[Taube 1991] and Foo [Eckel et Gonzales-Arroyo 1994] handle both. In the field psychoacoustics progress
has also been made [MacAdams 1994]. In particular the concept of timbre is now better understood
[McAdams, Winsberg, Donnadieu, De Soete & Krimphoff 1995]. There have been projects that targeted
the control of sound synthesis [Mathews, Moore, Risset 1974, Wessel 1979, Wessel 1992, Miranda 1993,
Rolland et Pachet 1995], however, few tools have really survived to the world of computer music. Our
goal is to develop new tools which help the composer to create the sound he desires. We have started with
examining some of the available environments for sound synthesis and composition, and tried to establish
an environment for our experimentation.

As mentioned above, there already exist a wide variety of environments which have proven their
usefulness, and which have their particular characteristics and user groups. We want to continue using
these environments. Considering the implementation of a new environment for CAC or synthesis is
beyond the scope of this project.

Every environment has some good tool or some feature that is not found in any other. Yet, there is rarely a
way to make the two environments work together and benefit from both. For example, one environment
can be gifted with a well designed breakpoint function editor. But it might be impossible to use the editor
when working in a other environment. Making these environments communicate will extend the
possibilities found in either of them.

One might wonder how control of sound synthesis is related to composition. The answer is closely. The
composer Marco Stroppa, in one of our conversations, said that the control of sound synthesis is an act of
composition, because a sound has a meaning only if it is imagined within a composition. Since control of
sound synthesis is closely related to the use of timbre as a musical element in the composition [Lerdahl
1987], so should tools for the control of sound synthesis be intimately realted with CAC environments; to



the extend that they cooperate closely, but not completely depend upon each other. PatchWork, for
example, includes a library to prepare data for CSound. But the data structures used by PatchWork are
conceived uniquely for CSound. Converting this library to use with an other synthesis kernel takes more
then a hard day's work. It would require re-designing the library.

A last argument concerns all large, monolithic applications in general. Extending the application or
replacing an existing functionality is, in most cases, impossible for the user. This means no replacement of
the breakpoint function editor with a better one. No adding a new signal processing function to the
synthesis kernel. The user is forced to work with the application as it was designed by the author, even if
is desirable to add new features.

So what can we conclude from these observations? First, that we need to come up with a strategy allowing
our tools to be used from within the available environments. We then take advantage of existing software
and guarantee our tools a greater usability. Second, the architecture of our solution should be modular, and
its interfaces public. Users/programmers should be able to add new tools or replace some of the existing
modules of the environment. Last, we attempt to make the environment independent of the computer
platform. This will urge us to design a clean architecture independent of platform specific features,
therefore running less risk of our work becoming obsolete.

We have developed a framework, with the project name JavaMusic, that tries to fulfill these requirements.
This framework can be viewed as a crossroads where different applications/modules meet and share data,
and whose architecture allows the dynamic addition and removal of synthesis kernels, CAC environments
and other tools.

We hope to achieve this goal with the introduction of several elements:

data structures which describe general concepts of composition and synthesis,
translators to convert data structures of a specific environment to the proposed data structures and
vice versa,
a client-server architecture to connect the different environments.

For the development of JavaMusic we have chosen the programming language Java. Java has the
advantages of being a high level, dynamic language which is freely available, and widely used. The main
reason for choosing Java, however, is its portability. Indeed, Java is an interpreted language and its
specifications are independent of the local CPU. Furthermore, Java provides the classes which abstract
machine dependent system components such as the file system, graphics, and networking.

In the next section we discuss the data structures, then, in section 3, we will describe the client-server
architecture.

2 Data structures

In this section we define the data structures that form the basis of our framework using the Java
programming language. The data structures are grouped into three sections: Parameters, VirtualInstrument,
and Composition.

2.1 Parameters

We will consider three types of Parameters: Numbers, Nuplets, and ControlSignals. We do not define the
internal structure of the Parameters. Instead, we define the interface to the Parameters, i.e. how to access
their data.

A Number represents a numerical value. Its interface defines two methods, one of which returns its value
as an integer, the other as a floating point number.



 public interface Number

{  public int    intValue();

   public float  floatValue();

}

A Nuplet is an abstraction of an array of Numbers. Its interface is defined as follows:

 public interface Nuplet

{  public float  value(int i);

   public int    dimension();

}

The method dimension returns the length of the array. The method value returns the element with index i
of the array. This structure can be used, for example, to stock the wave form of an oscillator.

A ControlSignal implements two methods:

 public interface ControlSignal

{  public Nuplet  value(float time);

   public int     dimension();

}

ControlSignals are data structures which have a time dimension. They will provide the necessary input
values during the synthesis. The value of a ControlSignals, at any given time, is a Nuplet. Because the
Nuplet has a fixed dimension larger or equal to zero, we can use ControlSignals as a multi-dimensional
control structure; the Nuplet groups the value of every dimension into one object. Some examples of
ControlSignals are the ConstantSignal and the BreakPointFunction.

2.2 VirtualInstrument

In this section we discuss a number of data structures which help us describe a synthesis technique. The
definition of Module, Connection, and Patch will lead us to the discussion of VirtualInstrument.

2.2.1 Definitions

A Module is an object that has a type, a number of typed inputs, a number of typed outputs, and a value.

 public class Module

{  String mValue;



   byte   mModuleType;

   byte   mInputType[];

   byte   mOutputType[];

}

A Module abstracts a function which takes a number of inputs, performs some calculation and outputs a
number of results.

Connections will be used to link Modules and are directed from an output to an input.

 public class Connection

{  Module mInModule;

   int    mInputNum;

   Module mOutModule;

   int    mOutputNum;

}

A Patch consists of a set of Modules and a set of Connections:

 public class Patch

{  Vector mModules;

   Vector mConnections;

}

2.2.2 Discussion

We want to present a formal description of a synthesis technique. We call such a description a
VirtualInstrument [Battier1995]. We assume that synthesis techniques can be established using unit
building blocks [Mathews 1963, Risset 1993]. This leads us to the definition of a VirtualInstrument as a
Patch of Modules and Connections. Connections link Modules together to form a networked instrument.

A VirtualInstrument only describes a synthesis technique. The actual synthesis will be performed by a
synthesis kernel. How the VirtualInstrument and its Modules will be converted to a set of signal
processing functions within the kernel is briefly discussed in section 3.2.3.

We currently accept two basic types of Modules: param-Modules and mod-Modules. The mod-Module
represents a primitive building block of the synthesis technique. When the VirtualInstrument is



implemented by the synthesis kernel, the mod-Module is mapped onto one of the signal processing
functions of the kernel. The value of the mod-Module indicates the name of this function.

The param-Module is used to hand over data to the synthesis kernel, both for the initialization and for the
control of the synthesis. Its value is an index in an array of Parameters (see section 2.3.2).

A couple of remarks. First, a VirtualInstrument must satisfy a number of constraints. For example, some
synthesis environments only manage acyclic structures or tree structures. We will thus need additional
functions to test these conditions.

Second, she current definition of VirtualInstrument is well suited to describe synthesis techniques that
model the analoge studio (signal models) [Di Poli 1993]. It can also represent physical models that use a
waveguide description. Physical models that use a modal description, however, are not well represented in
this formalism. Indeed, in these models a two-way interaction between the Modules is necessary and the
connections are expressed in terms of accesses at at certain location on the Module. The description for
this interaction between Modules is not possible without complicating the current one and we will leave
the issue as is for now.

A third remark concerns the multidimensional ControlSignals. This concept is not new [Eckel et
Gonzales-Arroyo 1994], but we would like to underline its usefulness again. Consider that we want to use
a VirtualInstrument which uses additive synthesis. Using the unit generators currently found in most
synthesis kernels, we can construct a VirtualInstrument that synthesizes 1 component using a sine wave
oscillator which is controlled in frequency and in amplitude. If we now want to use additive synthesis
using 2 components, we have to use two sine wave oscillators. With the initial description of the
VirtualInstrument altered, we need a description for an additive synthesis regardless of the number of
components. For this problem we propose the use of multidimensional ControlSignals. If the
ControlSignals input to sine wave oscillator have a dimension larger than one we sum the resulting
signals.

Lastly, the value of a mod-Module now depends on the synthesis kernel that will realize the
VirtualInstrument. Most kernels, however, offer similar kinds of signal processing functions. For example,
modules for adding two sound signals can be found in every kernel. If we can determine the functions
common to most kernels, and associate one value to every group of similar functions we can construct
VirtualInstruments independent of the underlying kernel. This project, which we have not started yet, will
be of importance when we create our tools for the control of sound synthesis.

2.3 Composition

If Parameters and VirtualInstruments stand closer to the synthesis, we now arrive at the definition of the
structures which stand closer to composition.

2.3.1 SoundObject

A SoundObject is composed of a start time, a duration, and a reference to a Process.

 public class SoundObject

{  float   mStart;

   float   mDuration;

   Object  mProcess;

}



A SoundObject is one element of the composition. It can represent a single note as well as a complex
sound that evolves in time - in essence ``a single sound which might last several minutes with an inner life,
and ... [has] the same function in the composition as an individual note once had.'' [Cott 1974].
SoundObjects can be seen as ``cells, with a birth, life and death'' [Grisey 1987].

The Process is a structure that determines the content of the SoundObject. It is the life, evolution, or force
of a SoundObject. The Process can be one of two different kinds: it can be a SoundProcess or a Texture.

2.3.2 SoundProcess

 public class SoundProcess

{  VirtualInstrument mVirtualInstrument;

   Parameter         mParameter[];

}

A SoundProcess is an object which represents a synthesis process, and which contains the recipe and the
ingredients for this synthesis. A SoundProcess is the combination of a VirtualInstrument and an array of
Parameters. The VirtualInstrument describes the synthesis algorithm. The Parameters serve as control
structures for the synthesis, or as initialization values during the creation of the VirtualInstrument.

2.3.3 Texture

 public class Texture

{  SoundObject mSoundObject[];

}

A Texture is a composed Process and contains a number of SoundObjects. The definitions of Textures and
SoundObjects refer to each other: a SoundObject can refer to a Texture that itself can refer to a number of
SoundObjects. However, we do not allow cyclic paths: a Texture cannot contain a SoundObject referring
to the initial Texture. The composition can thus be organized in a tree structure [Rodet et Cointe 1984].

3 Client-server architecture

In this section we come to description of our client-server architecture. What we are looking for is not a
new application but rather a strategy that allows the different kernels to communicate and work together.
To accomplish this we have based the architecture of JavaMusic on the work by Anselm Baird-Smith
[Baird-Smith 1995].

3.1 Distributed personalization of applications

The first part of Baird-Smith's work focuses on the dynamic and distributed personalization of
applications. We will give a simple example as an introduction. Consider an editor which connects itself
from a remote computer to an application whose graphical interface we want to personalize. The focused
application incorporates a communication kernel through which the editor can connect itself. Once the



communication is established the editor can change the appearance of the application (e.g. window color)
and its behavior (e.g. mouse click). This concept of distributed personalization is worked out first by
defining the concept of Resource and second by the definition of a communication protocol between the
application and the editor.

In the following sections, we will call the editor the client and the application the server.

3.1.1 Resource

The Resources of an application are defined as the objects which the application developer has made
accessible and editable such that the end user can personalize the application.

A Resource has a name, a value, and an identification number. This identification number is unique such
that at any given time there exists a bijection between the set of identification numbers and the set of
Resources.

The Resources are structured hierarchically into a tree structure: a Resource can have any number of
children, and one parent.

3.1.2 Communication protocol

If we want to establish a communication between the client and the server a communication protocol must
be defined. The primitives currently found in the protocol include setting and retrieving the value,
requesting the statistics, and obtaining the list of children of a resource. The protocol also includes a
notification mechanism which informs the clients of the operations performed on a Resource. To the
operations defined by Baird-Smith, we have added the creation and deletion of Resources.

3.2 Services, Providers and Requests

In JavaMusic every instance of SoundProcess, Texture, VirtualInstrument, or Parameter is stored as a
Resource and can be created and manipulated by clients that connect themselves to JavaMusic. The
functionality offered by JavaMusic has become minimal. The application reduces to a server, concerned
only with the management of the Resources and notifying the clients of any change. Examples of clients
that will connect to the server are CAC environments and synthesis kernels. The question we will concern
ourself with next is how a CAC environment can call a synthesis kernel and ask to synthesize a
SoundObject. How does a CAC environment even know what clients are connected, and what services
they provide?

We have adopted the following solution. Clients can create a Resource which includes a reference to
themselves. This Resource can have children describing the services the client assumes. We have defined a
class Service for this description. This class holds the name of the service as well as the type of arguments
needed and the type of result returned by the service.

We will call a client that settles itself as a Resource and publishes a number of Services a Provider. A
client can now inspect the available Resources and search for the appropriate Provider and Service. To
make use of a service, the client sends the Provider a Request. A Request is an object containing the name
and arguments for the service. On completion the Provider returns the Request, including the result of the
service, to the client.

This modular architecture provides the means of communication between different parts of an application
without the need of knowing each other's interface before hand. New Providers and new Services can be
added easily using the dynamic instantiating Java offers. What Providers are inserted into the
environment, and what Services they implement is open to the user. The environment becomes a
collection of specialized Providers, each dealing with one specific aspect of composition [Oppenheim



1996].

Providers which we need in particular are editors for Textures, SoundProcesses, and VirtualInstruments,
CAC environments, and synthesis kernels. Some of these, such as the editor for Textures, we will need to
create ourself. Others, such as the synthesis kernels, can be based on preexisting software. In the next
paragraphs we comment on some of the currently existing Providers.

3.2.1 CommonLispKernel

We have made a wrapper class that abstract the Common Lisp environment. This environment attains its
importance because of the CAC environments such as PatchWork, OpenMusic [Assayag 1996] and
Common Music, which are written in the Common Lisp language.

Communication between JavaMusic and Common Lisp is established over a TCP/IP connection, and
enabled in both directions. Services in the JavaMusic environment can be called from within the Common
Lisp environment, and clients, in their turn, can request the evaluation of a lisp expression.

3.2.2 Synthesis kernels

Most synthesis kernel were developed in the ANSI C language on Unix machines and have a command
line interface. We compile these libraries as shared libraries. Java has the facility to declare methods as
native. This specifier determines that the method is written in C and is implemented in a shared library.
Using this facility we create a wrapper class which calls the main function of the synthesis kernel. We are
currently using CSound [Vercoe 1986].

3.2.3 Player

The Player is a Provider which offers to synthesize a SoundObject. It does this with the help of the
available synthesis kernels and a Scheduler for every kernel. The Scheduler converts the VirtualInstrument
and the Parameters to a description understood by the kernel before asking the kernel to synthesize the
SoundObject. If a user want to provide a new synthesis kernel, he also has to provide the associated
Scheduler.

4 Conclusion

We have defined a set of classes which reflect general concepts of composition and sound synthesis.
Together with the client-server architecture they form a framework within which a complete environment
for composition and sound synthesis can be built. This framework allows preexisting environments to
cooperate, and provides a common ground for new tools of composition and synthesis. Its modular design
allows the addition or replacement of software tools with a minimum of effort. The architecture has the
additional advantage that it can be distributed over a network, and that, for example, the synthesis kernel
can be run on one computer and shared between several users.
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