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ABSTRACT date peaks considered for partial tracking in additive analysis. A

A novel approach to classification of peaks of audio spectra is IC)rer_eliable classification of noise peaks would reduce the number of

sented. In extending previous work on detecting transient spectré!?crf’srirggrtacglmngﬂggs‘tﬁg%% pJ%?%?gfgg;p?&%%CPjsF[g] dltetvg?::{ill(?n
peaks we here investigate into the classification of sinusoidal ang’ y P :

noise peaks. The classification is based on descriptors derived froﬁ#gomhms the impact of noise components could be reduced.

properties related to time-frequency distributions: mean time, dus. .. ~nother domain of application is the voiced/unvoiced segmen-

ration, instantaneous frequency and normalized bandwidth. In corfaion in speech processing. For this case, however, the classifica-
n of spectral peaks is not sufficient and needs to be extended to

trast to existing methods, the descriptors are designed to proper g : ; . .
deal with non-stationary sinusoids, which considerably increase f:ﬁ:ancmgrgi; L(?r\{i(zllgescrlptors. This, however, is beyond the topic
the range of applications. The experimental investigation show: : o i

: e . The paper is organized as follows. In sectbwe define the
superior classification results compared to the standard Correlatloﬁéscriptc?rspthat Will%e used for classification of spectral peaks and

based approach. discuss the properties of the descriptors if applied to different types
of spectral peaks. In the following secti@we describe the struc-
1. INTRODUCTION ture of the decision tree and derive the thresholds to be used for

The decomposition of audio spectra in sinusoids, transients ar@jassmcatlon. We present an experlment_al result of our classifica-

noise is often used to improve the results of parameter estimatio#on procedure and demonstrate its superior performance compared
and/or signal manipulation applications. In the following paper wet0 the correlation based peak classification. We conclude the paper
are going to investigate into the possibility to classify individual with a discussion of the achievements and required further develop-

spectral peaks. As has been shown for the case of transient detéBenNts.

tion [1] the classification of spectral peaks is a beneficial approach

to identify signal components. Such a classification scheme that 2. SPECTRAL PEAK DESCRIPTORS

makes optimal use of the information provided by spectral peakszyom the many descriptors of spectral peaks that we have studied

can then be used to achieve a robust segmentation into higher levgh have selected four that achieved the best discrimination perfor-
signal components, e.g. partials or unvoiced region. Complementnance.
ing the transient peak classification method the present paper wil
deal with classification into noise and sinusoidal peaks. 2.1 Descriptor definitions

There exist few approaches for the classification of spectr. . . . .
peaks. Among them we cite the widely used correlation based meg1€ frequency reassignment operator has been derived in [5] to im-
sure of sinusoidality [2] and another proposal that is based on therOVe signal localization in the time-frequency plane. For constant
reassigned spectrogram [3]. The former takes the maximum of theMPlitude chirp signals it exactly points onto the frequency trajec-
complex correlation between the DFT of the analysis window andoY of the chirp at the position of the center of gravity of the win-
each peak of the STFT of the signal. If the value is equal to 140wed signal. The frequency offs), between the frequency at the

the peak belongs to a noiseless steady-state sinusoid, otherwisié/?tnter of an DFT bin and the reassigned frequency in rad is given

indicates the presence of noise or time-variable components. T KX (K
letter proposes the classification of the STFT peaks in sinusoids, Ap(K) = imagM. (1)
unresolved sinusoids, transients and noise. Various statistics are IX(k)|2

calculated for each side of the peak separately and the traditionglere k specifies the bin index of the DFX(K) is the DFT of the

pattern classification method with a likelihood ratio test is appliedsignal windowed with the analysis window aXg(k) is the DFT of

to perform the classification. . . the signal windowed with the time derivative of the same window.
The shortcoming of both approaches is the underlying assumprhe operatoX* denotes complex conjugation. To characterize the

tion of quasi-stationary signals. As shown in the experimental seGrequency coherence of a spectral peak we select as descriptor the
tion the performance of the correlation based method SeVerely d%|n|mum value 0f|Aw‘ for all k belonging to this peak and nor-

grades for non-stationary sinusoids that are present in real worlgh,jllize by 2T whereN is the size of the DFT. The normalization
X o = :

€hsures that the frequency coherence descrip@D is invariant
Swith respect the analysis parameters.

The group delaygy(k) is defined to be the derivative of the
ase spectrum with respect to frequency. For a single bin of the

approach to derive classification thresholds. As long as a probabili
tic description of the signal composition is available this will result
in optimal performance. This, however, is rarely the case becau
the probability of noise peaks changes with the size of the analyn e ghecrym it equals the mean time according to [6] and spec-
sis window. The larger the window, the more noise peaks will b&ges the contribution of this frequency to the center of gravity of
observed in contrast to the number of sinusoidal peaks which is ag

‘matel tant. Due to th tual probl ith th b he signal related to the spectral peak. The mean time is the main
proximately constant. Dué (o the conceptual problem with tn€ probga o4 re to detect transient peaks [1]. In the current investigation we
abilistic approach, we derive our classification criterion by means o

declaring a worst case situation. This situation is characterized by ound that due to the influence of neighboring peaks the mean time

defined deviation f the stati co.f . id &erived from the spectral peak as a whole is not sufficiently robust.
efined deviation from the stationary noise-free sinusoid. Therefore we use a modified version given by

There exist a number of audio signal processing applications
where the classification of spectral peaks could be used. It can be 0d (kmax)| Ao (Kmase) | + 9d (Kmase) [Aew (Kmax) |
applied as a pre-processing stage to reduce the number of candi- €= = 1B (kmave)| - [ B (Kma)| > (2




which characterizes the energy location by means of investigatingave been considered to be noise. During the initial experiments we
the peak center only. The indickgax andkmae correspond to the found that the noise distributions of the descriptors would change
largest and second largest samples in the peak. The weighting lyith the SNR. Further investigation revealed that this effect was due
means of the frequency reassignment operator results in the fact thiatthe presence of sinusoidal sidelobes in the noise region. Because
constant amplitude chirp signals will always have a mean time vergidelobes should not be confounded with sinusoids or noise it was
close to zero even if their frequency trajectory does not exactly passecessary to introduce a further class for sinusoid sidelobes.
through a center frequency of a bin. To prevent a dependency of The descriptor distributions for the peak classes that have been
classification results on the analysis parameters we normadize obtained for the test signal are shown in fig. 1. For the sinusoidal
by the length of the analysis window to obtain the energy locatiordistributions the descriptors were applied only to the largest peak
descriptorELD. Note that the group delay can be calculated effi-in the spectrum for a total of 1100 time frames. The noise distri-

ciently by butions were obtained by analyzing all the peaks in the DFT of a
K — IXt(k)X*(k) white noise signal. To derive the sidelobe distributions we analyzed
9a(k) = —rea TIX(KE () all the sidelobe peaks of a stationary noise-free sinusoid. For ease

of comparison all distributions are displayed normalized such that
whereX; (k) is the DFT of the signal using a time weighted analysistheir maximum value is equal to one. As the threshold levels we are
window [5]. going to determine aim to preserve fractions of the distributions,
The time duration of a signal as defined in [6] is the standarcthis normalization does not affect the results.
deviation of the time with respect to the mean time interpreting sig-  After having defined our descriptors we will now shortly dis-
nal energy as distribution. For discrete spectra it can be obtained yuss the behavior of the descriptors when applied to the different

means of peak classes. The relations between the descriptor values and the
signal characteristics are very complicated and can be theoretically

k(A (K)2+ (ga (k) —1)2)[X (k)| explained only for the simple case of a constant amplitude chirp

T= X(K)]2 ) (4) signal. For signal peaks related to noise or complex modulated

sinusoids the behavior of the descriptors will be derived from the

. ., distributions obtained experimentally.
where the sum is performed over the spectral peak under consider- Becausd),, is the frequency location (in bins) of the center of

ation. t is the mean time of the signal related to the peak Alfk) ravity of the band limited signal related to birof a DFT spec-
is the frequency derivative of the continuous magnitude spectrun{qrum its minimum, which is thé&CD, will always be below 0.5.
It can be shown that'(k) is the imaginary counterpart of the group o, the distribution of the=CD of sinusoidal peaks depicted in

delay in eq. (3) fig. 1 we observe that the distribution remains limited below 0.5
N even for the amplitude and frequency modulated signal used in the
% (K)X* (k) (5) Worstcase scenario. For the noise peaks the distribution is centered
X(K)2 - around 0 with nearly linear falloff up to 0.5 while the distribution
for sidelobe peaks is nearly uniform over a large frequency range
Similar to the mean time for classification we normalize the time(not completely displayed). According to the observed distribution
durationT by means of the window size to obtain the duration de-we expect that thECD achieves a good sidelobe detection but only
scriptorDD. _ limited performance for distinction between sinusoids and noise.
As with mean time and time duration, the mean frequescy The ELD is similar to the mean time and will be close to zero
and the bandwidttB give a rough idea of the concentration of the for constant amplitude chirp signals. For amplitude modulation the
spectral density along the frequency grid. Considetirig be the  ELD may increase. However, due to the normalization, its magni-
number of samples in the spectral peak then the normalized bangide is always below 0.5. The signals corresponding to isolated
width descriptoNBD can be defined as: sidelobes are not limited to the duration of the analysis window
but are confined to the region of the zero-padded analysis window.

A (k) = —imag

_ KX (K)|? Therefore, the mean time extends over larger range (not displayed).
SkKX(K)| im Jarger ! OL S|
o = Wv (6) Due to the strong variations of tHeLD distribution for sinusoidal
k ) ) peaks with the modulation parameters, it is hard to expect a good
NBD - B Zk(k=0) X (K| (7  Performance for discrimination between sinusoids and noise. Nev-
L Lyk[X(k)2] ertheless, we expect that this descriptor achieves a good detection

of sidelobe peaks.
As for the duration the summation is done over all the bins in the  Considering théD we know that for constant amplitude chirp

spectral peak. signals it will always be close to the duration of the analysis win-
dow itself. For amplitude modulation tHeD distribution of the
2.2 Descriptor properties sinusoidal peaks will spread and move its center thus covering a

For deriving the classification thresholds for the descriptors we rel%%onSIderabIe part of thBD distribution of the noise peaks. As ex-

A ; .~ Plained in the discussion of tHeLD sidelobe related signals ex-
iosnaf g?ngleec lﬁ{vla lt:'f\)/ln_soigﬁsvg%r?:‘ cnzi)siseeszzés’r\llz;rlg.o'l(;ge) \r,aI}aetreedbtgtsr: fsr'g_ ﬁd outside the analysis wind_ow and th_erefo_re have systematically
quency and amplitude change in a sinusoidal fashion. To resemt;%larger value of DD than noise and sinusoids. Accordingly the

natural vibrato signals, the period of the frequency modulation i hEa) \\;vvglrszicch;?s\{aes?gxg{yaggggrgItsocrngclnr\]/\?tflgirr]IyOLcs)lc()jolelgiifi?{c ti\évr:“ﬁ-
two times the period of the amplitude modulation. The characteris: ; . - . .
tics of the test signal are: tween sinusoids and noise the modulation dependency of the dis

. . o tribution center does not allow very strict placement of the classifi-
e for amplitude modulation: modulation index 0.5, cation thresholds such that tBe achieves approximately similar
o for frequency modulation: 200 Hz of frequency deviation. discrimination between sinusoids and noise a=G®.

The analysis window is a 50ms Hanning window and the fre-  The NBD descriptor can be viewed as a measure of the noise
guency modulation period is 100ms. For calculating the DFT weenergy in the neighborhood of a sinusoidal spectral peak. Its per-
use 4096-point FFT with the sample rate being 44100Hz. This scdermance can be explained in terms of the relation between the peak
nario roughly reproduces the analysis conditions for the tenth habandwidth and the total peak regibnThe theoretical investigation
monic of a 333Hz pitch tone under half tone vibrato extent. of theNBD is very complicated even for the relatively simple case

In the initial investigation only the two classes, noise and sinu-of constant amplitude chirps. The experimental investigation of the
soids, have been taken into account and all but the sinusoid peakBD distributions for modulated noise free sinusoidal peaks and
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Figure 1: Distributions for peak descriptors used.

for noise peaks has shown that these distributions do not overlahbreshold we require as second condition thatDiielies below a
at all making them a very good candidate for sinusoidal and noistéhreshold such that no sidelobe peak is classified as sinusoid. The
classification. With increasing noise level in the sinusoidal signakelected thresholds are listed in table (1). For our worst case signal
the tail of the sinusoidal|BD distribution is moving right and over- we achieve less than 1% misclassification of sinusoidal peaks. Be-
laps slightly with theNBD noise distribution. To characterize the cause sidelobe and sinusoi@D distribution do hardly overlap the
robustness of the descriptor with respect to noise we also have iBD threshold need not be adapted to the signal at hand. The adapt-
vestigated into the dependency between classification errors for stable parameter for the first level of the decision tree isNBD
tionary sinusoids in noise as a function of the SNR. We used théhreshold. This threshold can be simply determined as a function
maximum value of the sinusoid&IBD descriptor as classification of the noise classification error. Because the noise distribution does
threshold (0% classification errors for the sinusoidal peaks) and didot change with the spectral envelop of the noise it can be rapidly
allow 5% classifications errors for the noise peaks. The error ratesreated for a given window size and type and KiBD threshold
are achieved for an SNR that keeps the noise floor -15dB below thean be automatically selected according to the noise classification
sinusoidal peak. Due to amplitude and frequency modulation in therror requested by a user. The thresholds shown in table (1) for the
worst case scenario studied here the overlap is slightly larger becond level of the classification scheme have been selected accord-
remains small compared to the overlap obtained for all the other deng to fig. 1 such that each threshold achieves approximately similar
scriptors. For sidelobe classification tR8D will only achieve low  classification error when distinguishing between noise and sidelobe
performance. peaks. The thresholds depend only weakly on the signal and can be
kept constant for most applications.

3. EXPERIMENTAL RESULTS _The selected thresholds have been used to classify a number of
' artificial and real audio signals. Due to space constraints, we will

To evaluate the performance of the proposed descriptors a prelimiresent only one result of the algorithm applied to a real audio sig-
nary binary decision tree for the peak classification has been estapal- The signal is a flute signal with vibrato taken from the lowa
lished as follows: in the first level a sinusoidal and non-sinusoidaMniversity Database. We use this example to compare the proposed
classification is performed. Then in the second level the nonclassification method to the correlation method mentioned in the in-
sinusoidal peaks are classified into sidelobes and noise. The thregfeduction. In order to make the comparison meaningful, we have
olds for both levels of classification have been obtained by means @fdjusted the thresholds for the correlation method such that for the
analyzing the distributions shown in fig. 1. Because we have beeWOrst case scenario signal it achieves the same percentage of sinu-
interested to achieve nearly perfect sinusoidal detection we haw&idal peaks correctly classified.
set theNBD for the threshold classification such that 10% of noise  In the top part of fig. 2 the spectrogram of the original signal is
peaks are misclassified. To exclude the sidelobes belowBi2  shown. Below it the classified spectrograms for both methods are
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Figure 2: Flute vibrato signal: spectrogram (top), peaks classi-
fied by correlation (center), peaks classified by new descriptors
(bottom). In the classified spectra the bins of all peaks are col-
ored indicating the classification results as follows: white=sinusoid,
black=noise, gray/orange=sidelobe.

sinusoid/non-sinusoid:

sidelobe/noise:

NBD<0.17 & DD<0.18
DD>0.28|FCD>0.35||ELD>0.25

Table 1: thresholds for sinusoid/nonsinusoid detection in level 1
and for sidelobe/noise classification in level 2 of the binary decision
tree.

drawn. The advantage of our approach (bottom) is evident. The bad
performance of the correlation method can be explained by means
of the distribution of the correlation descriptor for sinusoidal and

noise peaks. To reliably detect peaks related to non stationary si-
nusoids the threshold for the correlation based descriptor has to be
extended that much that nearly all noise peaks are considered sinu-
soids. Refined investigation showed that the results of the proposed
method are always superior or equal to the correlation-based ap-
proach.

4. CONCLUSIONS

In this paper we have presented new descriptors for the classifica-
tion of spectral peaks and have described preliminary results com-
paring the new classification method with a correlation-based ap-
proach. We have shown that the proposed descriptors achieve sig-
nificantly better classification than the correlation-based descriptor
if the signal contains only non-stationary sinusoids. The thresholds
can be automatically adapted as a function of the desired noise clas-
sification error. Further investigation will be concerned with the
use of the descriptors to obtain higher level features as for example
voiced/unvoiced time frequency sections and partial tracks.
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