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Abstract
This article is concerned with the estimation of fundamental
frequencies in polyphonic signals for the case when the num-
ber of sources is known. We propose a new method for joint
evaluation of multipleF0 hypotheses based on three phys-
ical principles: harmonicity, spectral smoothness and syn-
chronous amplitude evolution within a single source, which
are closely related to source segregation in auditory scene
analysis. Given the observed spectrum a set of hypothetic
partial sequences is derived and an optimal assignment of
the observed peaks to the hypothetic sources and noise is per-
formed. Hypothetic partial sequences are then evaluated by a
new score function which formulates the guiding principles
in a mathematical manner. The algorithm has been tested
on a large collection of artificially mixed polyphonic sam-
ples and the encouraging results demonstrate the competitive
performance of the proposed method.

1. Introduction

The estimation of the fundamental frequency, orF0, of a
sound source from a given signal is an essential step for
many signal processing applications. For the monophonic
case there exist many approaches that achieve satisfying per-
formance. Despite increasing research activities with respect
to polyphonic signals the estimation of multipleF0s remains
a challenging problem. In the following article, we propose a
new method for multipleF0 estimation under the assumption
that the number ofF0s is known in advance.

There exist several approaches for multipleF0 estima-
tion. A probabilistic signal modeling approach proposed
in [3] applies specific prior distributions on the model pa-
rameters. This approach is computationally expensive and
limited results are reported. In [16], a robust multipitch
estimation is achieved by means of selecting reliable fre-
quency channels as well as reliable peaks in the normal-
ized correlograms. The technique has been reported to work
for two-voice speech and the authors conclude that the pro-
posed algorithm could be extended to more than two pitches.
Klapuri’s iterative multipleF0 estimation algorithm handles
most of the difficulties like estimating the number ofF0s and
treating the overlaps of coincident partials. Promising results
are reported by evaluating a variety of polyphonic musical
signals[10]. An iterative estimation and cancellation model

has been proposed by de Cheveigné earlier in [4]. He com-
pared an iterative approach and a full search approach which
performs a joint evaluation. In this early study and later work
in [5], he reported that a joint cancellation performs better
than an iterative cancellation.

In fact, a joint evaluation strategy provides more flexibil-
ity in F0 estimation for polyphonic signals. For a set of mul-
tiple F0 hypotheses, spectral components in the interleaved
spectrum could be reasonably allocated to eachF0 hypoth-
esis and disturbed information provided by overlapped par-
tials could be identified and taken care of in a more accu-
rate way. Therefore, we propose a new method for jointly
evaluating multipleF0 hypotheses. Based on a generative
spectral model, hypothetic partial sequences are constructed
and evaluated using three general principles: harmonicity,
smoothness of spectral envelopes and synchronous evolution
of sinusoidal amplitudes. These physical principles are for-
mulated as four criteria to construct the final score function
which is used to rank the sets ofF0 hypotheses. The contri-
bution of the following article consists, first, in a new propo-
sition to make use of the hypotheticF0s to determine reliable
information in the observed spectrum, and second, in a new
mathematical interpretation of the guiding principles.

This paper is organized as follows. In section2 the gen-
erative spectral model is described and three principles for
quasiharmonic sounds are established. In section3, we intro-
duce a frame-basedF0 estimation method using the proposed
score function. In section4, experimental results are dis-
cussed which prove the competitive performance of the pro-
posed method. Finally, further improvements are discussed
and conclusions are drawn.

2. Generative quasiharmonic model

The proposed algorithm is based on a polyphonic quasihar-
monic signal model of the following form

y[n] =
{ M∑

m=1

Hm∑
hm=1

am,hm [n] cos
(
(1 + δm,hm)hmωmn

+ φm[n]
)}

+ v[n], (1)

where n is the discrete time index,M is the number of
sources,Hm is the number of partials for them-th source,
ωm represents theF0 of sourcem and φm[n] denotes the



phase. In the current context these parameters are either fixed
or of minor interest. The score function will make use of
am,h[n] andδm,h, which are the time varying amplitude and
the constant frequency detuning of theh-th partial, and also
v[n] which is the residual noise component. Generally it is
supposed that the noise is sufficiently small such that a con-
siderable part of the individual sinusoidal components can be
identified.

Similar to [6] we understand the observed spectrum as
generated by sinusoidal components and noise. Each spec-
tral peak is characterized by its amplitude and frequency. A
sinusoidal peak is assigned to one or more of theM sources
in eq.(1), all unassigned peaks contribute to the noise com-
ponentv[n]. The model supposes quasi-stationary frequency
and, therefore, the sinusoidality of an observed peak is used
to rate the requirement to include it into the quasiharmonic
parts of the source model. Based on this model and given the
observed spectrum andM , the most plausibleF0 hypotheses
are going to be inferred.

To construct and evaluate hypothetic sources, we use
three physical principles for quasiharmonic sounds stated in
the following.

Principle 1: Spectral match with low inharmonicity.
For a F0 hypothesis, a hypothetic partial sequenceHPSF0

is constructed by selecting harmonically matched peaks
from the observed spectrum in such a way thatδm,h are
minimized. The set{HPSF0m

}M
m=1 should combinatorially

“explain” the sinusoidal components in the observed spec-
trum. Under the assumption that the noise energy is small
it is reasonable to favorF0 hypotheses that explain more
components of the observed spectrum as long as they are not
contradicted by the following two principles.

Principle 2: Spectral smoothness. For natural quasihar-
monic sounds, the spectral envelopes usually form smooth
contours. While constructingHPSF0 of a source, the partials
should be selected in a way such that{am,h}Hm

h=1 results in a
smooth spectral envelope. For partial sequences fitting well
to Principle 1, those with smoother spectral envelopes are
more probable to be originated from natural sources such as
musical instruments.

Principle 3: Synchronous amplitude evolution within a
single source. Partials belonging to the same source should
have similar time evolution of the amplitudes{am,h}Hm

h=1

collected in aHPS. If the partials of a hypothetic source
match mostly to noisy peaks, they evolve in a random
manner and thus do not have a synchronous amplitude
evolution.

The three principles concerning the physical laws of
quasiharmonic sounds are closely related to source segrega-
tion in auditory scene analysis. As discussed in [1], the hu-
man auditory system seems to segregate harmonically related

spectral components forming a smooth envelope (p.232) and
having a similar temporal evolution (p.575).

3. Multiple F0 estimation

Based on the three principles described above, we design a
multipleF0 estimation system. The main task is to formulate
these principles into four criteria serving as the core compo-
nents in a score function for evaluating the plausibility of one
set ofF0 hypotheses.

3.1. Front end

3.1.1. Extracting hidden partials

Extracting hidden partials is essential to increase the accu-
racy of analyzing polyphonic signals with limited resolu-
tions. As shown in the top plot of Figure 1, a peak of un-
symmetric form might correspond to overlapped partials.

original spectrum
subtracted peak

residue spectrum
subtracted peak

extracted peak  

original peak 

Figure 1:Extracting the hidden partial

To search for these hidden partials, we use a simple sym-
metry test for the shapes of the observed peaks. After select-
ing the peaks of relatively unsymmetric form and estimating
their frequencies and frequency slopes [13], we subtract them
one by one using the least square error criterion to extract the
hidden peaks as the example shown in the bottom plot of Fig-
ure 1. To prevent the addition of simple residual energy as a
new sinusoid, a resolved peak is kept as a successfully ex-
tracted partial only if it is not weaker than the original peak
by 40 dB. Furthermore it should be located further than half
the mainlobe width away from the original peak.

3.1.2. Generating the candidate list

To generate aF0 candidate list, we use a harmonic matching
technique because harmonicity is the primary concern inF0
estimation. The harmonic matching technique matches the
regular spacing between adjacent partials to determine a co-
herentF0 and has been widely used forF0 estimation in the
spectral domain [9].

Given aF0, we construct a vectordF0 evaluating the de-
gree of deviation from a harmonic model to the observed



peaks. A tolerance interval around each harmonic is used
to measure the goodness of harmonic match. For thei-th
observed peak matching theh-th harmonic, the degree of de-
viation is formulated as

dF0(i) =
|fpeak(i) − fmodel(h)|

α · fmodel(h)
(2)

wherefpeak(i) is the frequency of thei-th observed peak,
fmodel(i) is the frequency of thehth harmonic of the model,
andα determines the tolerance interval1 allowing certain in-
harmonicity. If an observed peak situates outside the corre-
sponding tolerance interval, it is regarded as unmatched and
dF0(i) is set to 1. Since inharmonicity exists in most of the
string instruments, it is necessary to dynamically adapt the
frequencies of model harmonics according to the matched
peaks. Thus,fmodel(h) is calculated by means of addingF0
to the previously matched peak frequency. If not a single
peak is matched for the previous partial,fmodel(h− 1)+F0
is used for the current match. The technique of selecting one
single matched peak is described later.

Three vectors are chosen to weightdF0: (i) the complex
correlation between each observed peak and an ideal peak
given by the mainlobe of the Fourier transform of the analysis
window, (ii) the linear amplitudes of the observed peaks, and
(iii) an attenuation vector favoring the first several partials
and attenuating higher ones in proportion toh, as indicated
in the top plot of Figure 2. According to empirical studies,
the third partial is a good starting point for attenuation.
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Figure 2: Harmonic matching: a tenor trombone note at
137Hz

The complex correlation favors peaks of better sinu-
soidality (shape and phase). The linear peak amplitude ad-
justs relative significance by considering peaks of larger en-
ergy more important. Spurious peaks are selected using the
method in [12] and the corresponding weightings are set to
zero, which functions as noise suppression. The third weight-
ing vector attenuates less reliable matches for higher par-
tials because they tend to be inharmonic and less stationary.
Besides, the gradual decay nature of higher partials reduces

1Two times the denominator in eq.(2)

the reliability in the presence of stronger partials from other
sources. Then the weighted deviation vector is summed and
normalized between 0 and 1. The resulting indicator for the
harmonic match is denoted asD. An example is shown in
the bottom plot of Figure 2, the values ofD for F0 hypothe-
ses ranging from 50Hz to 2000Hz are plotted. A lower value
means a better match and thus higher harmonicity. The har-
monic match indicator is applied to polyphonic spectra and
the F0 hypotheses corresponding to local minima ofD are
selected as the candidates for joint evaluation.

Assume there areP F0 candidates andM targetF0s to
be estimated from the observed spectrum, which results in
the need to evaluateCP

M hypothetic combinations ofF0 hy-
potheses.

3.1.3. Generating Hypothetic Partial Sequences

ConstructingHPSs of F0 hypotheses in the candidate list is
realized by the partial selection technique. AF0 hypothesis
may have differentHPSs in different hypothetic sets. Both
Parsons [11] and Duifhuis [7] have proposed selecting the
nearest peak around a harmonic. However, this technique
might fail if a partial is surrounded by spurious peaks and
partials of other sources. Therefore, we try to increase the
robustness by means of utilizingPrinciple 2 and the knowl-
edge of spectral locations where partial overlaps may occur
according to the set ofF0 hypotheses under investigation.
The goal is to ensure thatHPSs contain credible information
for further evaluation.

To construct aHPSwe start with the first partial by sim-
ply assigning it to the closest peak observed. For the fol-
lowing partials we consider two candidate peaks: the closest
one and the one of which the mainlobe contains the corre-
sponding harmonic position. Compared to the formerly se-
lected partials, the peak candidate forming a smoother enve-
lope search path is sequentially allocated to theHPS.

The case of overlapped partials requires special consid-
eration. The treatment for this case is based on the idea that
an overlapped partial still carries important information for
at least theHPSthat locally has the strongest energy. There-
fore, the algorithm aims to select thisHPSto assign the par-
tial. Partials having potential collision are determined from
the hypothetic set ofF0s and the local energy strength of the
envelope is obtained by means of interpolation of the neigh-
boring partials that are not collided. For the rest of theHPSs
the overlapped partial is labeled as existing but without a
specified partial amplitude. The score criteria explained in
the following are designed to gracefully deal with this kind
of incompleteHPSs.

3.2. The score function

Having constructed the most reasonableHPSs for each set of
F0 hypotheses, we design a score function to rank these hy-
pothetic sets. The score function formulates the three prin-
ciples into four criteria: harmonicityHAR, mean bandwidth



MBWand durationDURof HPSs, and the standard deviation
of mean timeDEV.

Criterion 1 HAR is an indication of harmonicity and
totally “explained” energy. It is formulated as

HAR=
I∑

i=1

Corr(i) · Spec(i) · dM (i)∑
i[Corr(i) · Spec(i)]

(3)

whereI is the number of peaks,Corr is the complex cor-
relation weighting vector,Spec is the linear peak amplitude
vector anddM (i) is obtained by combining{dF0m

(i)}M
m=1

at thei-th peak in the following way:

dM (i) = min
(
{dF0m(i)}M

m=1

)
(4)

That is, each observed peak is matched with the closest par-
tial among those of{HPSF0m

}M
m=1 and thus each combina-

tion under evaluation could perform its optimal match. The
function ofHAR is to prevent superharmonic errors.

Criterion 2 To evaluate the smoothness of aHPS, we
use the mean bandwidth as a criterion. EachHPS is assem-
bled with its “mirror sequence” to construct a new sequence
SF0m for further evaluation. An example ofSF0m is shown
in the middle plot of Figure 3.

Applying K-point fast Fourier transform toSF0m
to ob-

tain the linear spectrumXF0m
, we can calculate the mean

bandwidthMBWF0m
as

MBWF0m
=

√√√√2 ·
∑K/2

k=1 k[XF0m
(k)]2∑K/2

k=1[XF0m
(k)]2

(5)

This indicates the degree of energy concentration in low fre-
quency region and thusSF0m

with less variation results in a
smaller value ofMBWF0m .

The function ofMBWis to discriminate correctF0s from
subharmonics. As the example shown in Figure 3 the spec-
tral envelopes of a clarinet note. Although the nature of the
clarinet does not form a smooth spectral envelope due to the
absence of even partials, theHPSof its subharmonicF0/2
contains even more variations.

Criterion 3 For a quasiharmonic sound, the spectral
centroid tends to lie around lower partials because higher
partials often decay gradually. From this general princi-
ple related toPrinciple 2, we could similarly evaluate the
energy spread of aHPS, that is, the durationDURF0m

of
HPSF0m

. Instead of removing the non-reliable components
from HPSF0m

, we simply set them to zero to maintain cor-
rect positioning of all partials. Then the duration ofHPSF0m

could be calculated as

DURF0m
=

√√√√2 ·
∑Nm

n=1 n[HSPF0m(n)]2

L ·
∑Nm

n=1[HSPF0m(n)]2
(6)
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Figure 3: Spectral envelope comparison between F0 and
F0/2 of a clarinet note at 148 Hz

whereNm is the length ofHSPF0m
. L is a normalization

factor determined bybF90/F0minc, whereF90 stands for the
frequency limit containing90% of spectral energy in the ana-
lyzing frequency range andF0min is the minimal hypothetic
F0 in search. Since spectral envelopes of natural sounds are
not always smooth, this criterion functions as the further test
of physical consistency ofPrinciple 2 and acts as a penalty
function for subharmonics which “explain” more than one
source in the observed spectrum.

Criterion 4 To evaluate the synchronicity of the tem-
poral evolution of the hypothetic sinusoidal components in a
HPS, we rely on the estimation of the mean time for individ-
ual spectral peaks. Mean time is an indication of the center
of gravity of signal energy[2] and the mean time of a spec-
tral peak can be used to characterize the amplitude evolution
of the related signal[14]. For a coherentHPSwe expect syn-
chronous evolution resulting in a small variance of mean time
concerning a collection of peaks.

The mean time of a hypothetic source, denoted asTF0m ,
is calculated as the power spectrum weighted sum of the
mean time of the hypothetic partials. The variance of mean
time of the partials inHPSF0m

is then formulated as

VARF0m
=

I∑
i=1

{[t̄i − TF0m
]2 · wF0m

(i)} (7)

where t̄i denotes the mean time of thei-th observed peak
and the weighting vector{wF0m

(i)}I
i=1 is constructed from

HPSF0m
by setting zeros for the following components: (i)

non-reliable partials due to overlaps and (ii) close partials
of which spectral phases are probably disturbed. Lastly,
{wF0m(i)}I

i=1 is compressed by an exponential factor to
reduce the dynamic range such that the significance of
spurious peaks is raised. This makes use of the spurious
peaks to penalize more aHPS containing more spurious
peaks. VARF0m

is then square-rooted and then normalized



by half of the window size to defineDEVF0m
.

ThenMBW of a set ofF0 hypotheses is defined as the
weighted sum of{MBWF0m}M

m=1:

MBW=
∑M

m=1[
∑Nm

n=1 HPSF0m
(n)] · MBWF0m∑M

m=1

∑Nm

n=1 HPSF0m
(n)

(8)

DURandDEVare thus equivalently defined.

Score function The final score function is defined as

DCP
M

=
1∑4

j=1 pj

{
p1·HAR+p2·MBW+p3·DUR+p4·DEV

}
(9)

where{pj}4
j=1 are the weighting parameters for the four cri-

teria. These criteria are designed in a way that a smaller
weighted sum stands for higher score. The best of totalCP

M

combinations has the highest score. Notice thatHAR fa-
vors lower hypotheticF0s whileMBW, DUR andDEV favor
higher ones. Therefore, the criteria perform in a complemen-
tary way and the weighting parameters should be optimized
to balance the relative contribution of each criterion such that
the score function generally supports correctF0s the best.

4. Experimental results

To evaluate the proposedF0 estimation method, we perform
a frame-based test using mixtures of musical samples. Non-
transient parts of musical samples are pre-selected and then
mixed with equal mean-square energy. Estimation of a poly-
phonic sample is performed within a single frame. The num-
ber ofF0s is given in advance for theF0 estimation system
to find the most probable set ofF0 hypotheses.

4.1. Parameter optimization

The parameters to be optimized are the weighting parameters
{pj}4

j=1 in the score function andα for determining the tol-
erance interval in eq(2). 300 polyphonic samples containing
100 samples for each voice mixture are generated by ran-
domly mixing musical instrument samples from the Univer-
sity of Iowa2. Then the parameters are optimized utilizing the
evolutionary algorithm [15] and the set of parameters of the
best performance ({pj}4

j=1 = {20, 11, 11, 11}, α = 0.035)
is used for the final evaluation on a large database.

4.2. Evaluation setups and results

Specifications for this evaluation are described below:

• Three databases: two-voice, three-voice and four-
voice mixtures, labeled as TWO, THREE and FOUR
respectively, are generated using McGill University
Master Samples3. In combiningM -voice polyphonic

2http://theremin.music.uiowa.edu/MIS.html
3http://www.music.mcgill.ca/resources/mums/html/

samples,M out of twelve note names are preliminar-
ily assigned and then samples ranging from65Hz to
1980Hz are randomly mixed. Around 1500 samples
for each database are generated in a way that each
combination of note names are of equal proportion.
Musical instrument samples not fitting the quasihar-
monic model are excluded. To facilitate comparison,
the database is published on the author’s web page4.

• The search range forF0 is set from50Hz to 2000Hz
and the observed spectrum is analyzed up to5000Hz.
A Blackman window is used for analysis.

• F0 reference values are created from singleF0 esti-
mation of monophonic samples before mixing. A cor-
rect estimate should not deviate from the correspond-
ing reference value by more than3%. The error rates
are computed as the number of wrong estimates di-
vided by the total number of targetF0s.

The results of evaluation using two analysis window
sizes,186ms and93ms, are shown in Table 1 and Table 2,
respectively. Since musical samples mixed randomly surely
contain harmonically related notes, we present the error rates
for two groups of samples: one group of mixtures contain-
ing harmonically related notes, labeled as “harmonical”, and
another group “non-harmonical”. The overall error rates are
shown in the “total” columns. The percentages of samples in
the group “harmonical” are22.43%, 32.78% and49.46% for
the three databases TWO, THREE and FOUR.

polyphony non-harmonical harmonical total

TWO 0.58% 7.28 % 2.09%
THREE 1.48% 5.16 % 2.68%
FOUR 2.46% 6.57 % 4.50%

Table 1:F0 estimation results using a 186 ms window

polyphony non-harmonical harmonical total

TWO 1.61% 7.59% 2.96%
THREE 3.27% 7.61% 4.69%
FOUR 5.68% 11.78% 8.70%

Table 2:F0 estimation results using a 93 ms window

The errors in the group non-harmonical are quite small
which proves the satisfying performance of the proposed
method. The overall errors are slightly better than the ones
reported by Klapuri [10], however, this comparison is not
conclusive due to the fact that the testing set comprises dif-
ferent samples and that in [10] a larger set of samples from
four different databases has been used.

4http://www.ircam.fr/anasyn/cyeh/database.html



5. Discussions

The score function sometimes fails to correctly resolve
the ambiguity concerning targetF0s and their subharmon-
ics/superharmonics especiallyF0/2 and 2F0. This failure
scenario accounts for a great proportion of the estimation
errors. Polyphonic samples mixed with musical instrument
samples of rich resonances often result in this kind of wrong
estimates. Taking the string instruments for example, sev-
eral predominant resonances occur with the excitation [8].
If strong resonances exist in the frequency range below the
fundamental, the correctF0s might lose too much score to
subharmonics by the amount of explained energy(HAR). If
strong resonances boost certain partials too much, correct
F0s might lose too much score to superharmonics by the
spectral smoothness(MBW). Dealing with resonance peaks is
a key to improving robustness.

With the increase of polyphony, the performance suffers
from the reduction of the window size. Therefore, further im-
provements of the techniques for treating overlapped partials
are necessary.

The way of constructing polyphonic databases for eval-
uation should be carefully examined. With the increase of
polyphony, the number of possible combinations among dif-
ferent notes and different instruments increases dramatically.
A limited number of samples mixed in a random manner
could not ensure a general representation of the large sam-
ple space. Besides, the number of harmonically related notes
increases in higher polyphonic random mixtures and thus ef-
fective approaches to estimateF0s of exact multiple relations
become more important.

6. Conclusions

As discussed in [9], a successfulF0 estimation algorithm
should make use of the principles which have complemen-
tary performances and combine them in an appropriate way.
Following this proposal we design a new score function
for joint evaluating the plausibility of multipleF0 hypothe-
ses. Evaluation over a large polyphonic database has shown
encouraging results. However, there are still issues to be
addressed. Despite the extraction of hidden peaks having
been implemented to gain spectral resolution, the proposed
method still suffers performance degradation due to an insuf-
ficient window size, especially for higher polyphony cases.
Therefore, we envisage that further improvements on the in-
adequate treatment for overlapped partials will lead to higher
robustness.
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