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INTRODUCTION

The estimation of the fundamental frequency, or F0, of a sound source from a given signal is an essential step for many signal processing applications. For the monophonic case there exist many approaches that achieve very high performance. Despite increasing research activities with respect to polyphonic signals the estimation of multiple F0s remains a challenging problem. Some of the generally admitted difficulties are: estimating the number of F0s, retrieving reliable time-frequency properties, treating mixtures of transient parts and stationary parts. In the following article, we propose a new method for multiple F0 estimation under the assumption that the number of F0s is known in advance.

There exist several approaches for multiple F0 estimation. A probabilistic signal modeling approach proposed in [START_REF] Davy | Bayesian Harmonic Models for Musical Signal Analysis[END_REF] applies specific prior distributions on the model parameters, such as the frequency and the amplitude of each partial, the number of partials, the detuning factor for each sinusoidal component, etc. This approach is computationally expensive and limited results are reported. In [START_REF] Wu | A multipitch tracking algorithm for noisy speech[END_REF], a robust multipitch estimation is achieved by means of selecting reliable frequency channels as well as reliable peaks in the normalized correlograms. This technique has been reported to work for two-voice speech and the authors conclude that the proposed algorithm could be extended to more than two pitches. Klapuri's iterative multiple F0 estimation algorithm handles most of the difficulties like estimating the number of F0s and treating the overlaps of coincident partials. Promising results are reported by evaluating a variety of polyphonic musical signals.

An iterative estimation and cancellation model has been proposed by de Cheveigné earlier in [START_REF] De | Separation of concurrent harmonic sounds: Fundamental frequency estimation and a timedomain cancellation model of auditory processing[END_REF]. He compared an iterative approach and a full search approach which performs a joint evaluation. Based on this early study and later work in [START_REF] De | Multiple pitch estimation and pitch perception model[END_REF], he reported that a joint cancellation performs better than an iterative cancella-tion in that a single F0 estimation failure may lead to successive errors in an iterative estimation cancellation manner. In fact, a joint evaluation strategy provides more flexibility in solving this problem. For each set of multiple F0 hypotheses, spectral components in the interleaved spectrum could be reasonably allocated to each F0 hypothesis and disturbed information provided by overlapped partials could be identified and taken care of in a more accurate way.

Therefore, we propose a new method for the joint evaluation of multiple F0 hypotheses. Based on a generative quasiharmonic spectral model, hypothetical partial sequences are constructed and evaluated using three physical principles: harmonicity, spectral smoothness and synchronous amplitude evolution within a single source. Harmonicity is the essential principle in nearly all F0 estimation techniques. It is known that using only harmonicity, however, often causes subharmonic/superharmonic ambiguity and thus more cues are necessary to improve the estimation performance. Both Kashino [START_REF] Kashino | A Sound Source Separation System with the Ability of Automatic Tone Modeling[END_REF] and Goto [START_REF] Goto | A Predominant-F0 Estimation Method for CD Recordings: MAP Estimation using EM Algorithm for Adaptive Tone Models[END_REF] introduce tone models as a constraint on relative partial amplitudes. Klapuri has utilized the spectral smoothness principle [START_REF] Klapuri | Multipitch estimation and sound separation by the spectral smoothness principle[END_REF] which assumes that the spectral envelopes of natural quasiharmonic sounds are in general rather smooth. Besides the two principles applied by the above authors, we include the synchronous evolution of sinusoidal amplitudes as another principle and finally formulate these principles into a new score function to rank all hypothetical combinations, which is one important contribution of this article. The second contribution is a new proposition to make use of the hypothetical F0s to determine reliable information in the observed spectrum.

This paper is organized as follows. In section 2 the generative quasiharmonic model is described and the principles for F0 estimation are established. In section 3, we introduce a framebased F0 estimation method using the proposed score function. In section 4, experimental results are shown, which proves the competitive performance of the proposed method. Finally, further improvements are discussed and conclusions are drawn.

GENERATIVE QUASIHARMONIC MODEL

The following algorithm is based on a polyphonic quasiharmonic signal model of the following form

y[n] = M m=1 Hm hm=1 a m,hm [n] cos (1 + δ m,hm )hmωmn + φm[n] + v[n], (1) 
where n is the discrete time index, M is the number of sources, Hm is the number of partials for the m-th source, ωm represents the F0 of source m, and φm[n] denotes the phase. In the current context those parameters are either fixed or of minor interest. The score function will make use of a m,hm [n] and δ m,hm , which are the time varying amplitude and the constant frequency detuning of the hm-th partial and v[n], which is the residual noise component. Generally it is supposed that the noise is sufficiently small such that a considerable part of the individual sinusoidal components can be identified.

Similar to [START_REF] Doval | Estimation of fundamental frequency of musical sound signals[END_REF] we understand the observed spectrum as generated by sinusoidal components and noise. Each spectral peak is characterized by its amplitude and frequency. A sinusoidal peak is assigned to one or more of the M sources in eq.( 1), all unassigned peaks contribute to the noise component v[n]. The model supposes quasi-stationary frequency and, therefore, the sinusoidality of an observed peak is used to rate the requirement to include it into the quasiharmonic parts of the source model. Based on this model and given the observed spectrum and M , the most plausible F0 hypotheses are going to be inferred. The procedure is close to the Bayesian model specified in [START_REF] Davy | Bayesian Harmonic Models for Musical Signal Analysis[END_REF], however, to prevent the huge computational requirements of numerically maximizing the likelihood a more pragmatic approach is proposed.

To construct and evaluate hypothetical sources, we use three physical principles for quasiharmonic sounds stated in the following.

Principle 1: Spectral match with low inharmonicity. For a F0 hypothesis, a hypothetical partial sequence HPSF 0 is constructed by selecting harmonically matched peaks from the observed spectrum in such a way that δ m,h are minimized. The set {HPSF 0m } M m=1 should combinatorially "explain" the sinusoidal components in the observed spectrum. Under the assumption that the noise energy is small it is reasonable to favor F0 hypotheses that explain more components of the observed spectrum as long as they are not contradicted by the following two principles.

Principle 2: Spectral smoothness. For natural quasiharmonic sounds, the spectral envelopes usually form smooth contours. While constructing HPSF 0 of a source, the partials should be selected in a way that {a m,hm } Hm hm=1 results in a smooth spectral envelope. For partial sequences fitting well to Principle 1, those with smoother spectral envelopes are more probable to be originated from natural sources such as musical instruments.

Principle 3: Synchronous amplitude evolution within a single source. Partials belonging to the same source should have similar time evolution of the amplitudes {a m,hm } Hm hm=1 collected in a HPS. If the partials of a hypothetical source match mostly to noisy peaks, they evolve in a random manner and thus do not have a synchronous amplitude evolution.

MULTIPLE F0 ESTIMATION

Based on the three principles described above, we design a framebased multiple F0 estimation system. The main task is to formulate these principles into four criteria serving as the core components in a score function for evaluating the plausibility of one set of multiple F0 hypotheses.
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Extracting hidden partials

When analyzing polyphonic signals with limited spectral resolutions, one often observes that the dense distribution of partials causes some peaks be hidden by relatively larger coincident ones. Thus, extracting hidden partials is essential to increase spectral resolution, which leads to a more accurate harmonic matching in the later stage. As shown in the top of Figure 1, a peak of unsymmetric form might correspond to overlapped partials. To search for these hidden partials, we use a simple symmetry test for the shapes of the observed peaks. For each peak, we locate its neighboring valleys and choose the closer one to define a reference range (the bin number from one observed peak to its nearest valley). The degree of symmetry is defined as the summation of amplitude differences between the two sides of a spectral peak, considering the frequency bins within the reference range. Then a threshold is set for the degree of symmetry to select relatively unsymmetric peaks for further processing. After estimating the frequency and the frequency slope of each selected peak [START_REF] Röbel | Estimating partial frequency and frequency slope using reassignment operators[END_REF], we subtract it using the least square error criterion to extract the hidden peak as indicated in the bottom plot of Figure 1. To prevent the addition of simple residual energy as a new sinusoid, a resolved peak is kept as a successfully extracted partial only if it is not weaker than the original peak by 40 dB and should be located further than half the mainlobe width away from the original peak.

Generating the candidate list

To generate a F0 hypothesis list, we use an harmonic matching technique since harmonicity is the primary concern in F0 estimation. The harmonic matching technique matches the regular spacing between adjacent partials to determine a coherent F0 and has been widely used for F0 estimation in the spectral domain [START_REF] Hess | Pitch Determination of Speech Signals[END_REF].

Given a F0, we construct a vector dF 0 evaluating the degree of deviation from a harmonic model to the observed peaks. A tolerance interval around each harmonic is used to measure the goodness of the harmonic match. For the i-th observed peak matching the h-th harmonic, the degree of deviation is formulated as

dF 0(i) = |f peak (i) -f model (h)| α • f model (h) (2) 
where f peak (i) is the frequency of the ith observed peak, f model (i) is the frequency of the hth harmonic of the model, and α determines the tolerance interval 2 • α • f model (h). If an observed peak situates outside the corresponding tolerance interval, it is regarded as unmatched and dF 0(i) is set to 1. Since inharmonicity exists in most of the string instruments, it is necessary to dynamically adapt the frequencies of model harmonics according to the matched peaks. Thus, f model (h) is calculated by means of adding F0 to the previously matched peak frequency. If not a single peak is matched for the previous partial, f model (h -1) + F 0 is used for the current match. The technique of selecting one single matched peak (among all the peaks situating in the tolerance interval) as a reference position makes use of Principle 2 and is described later.

Three vectors are chosen to weight dF 0: (i) the complex correlation between each observed peak and an ideal peak defined by the analysis window, (ii) the linear amplitudes of the observed peaks, and (iii) an attenuation vector favoring the first several partials 1 , as indicated in the top plot of Figure 2. The complex correlation favors peaks of better sinusoidality (shape and phase). The linear peak amplitude adjusts relative significance by considering peaks of larger energy more important. The third weighting vector attenuates less reliable matches for higher partials because they tend to be inharmonic and non-stationary. Besides, the gradual decay nature of higher partials reduces the reliability in the presence of stronger partials from other sources. Then the weighted deviation vector is summed and normalized between 0 and 1. The resulting indicator for harmonic matching is denoted as D. An example is shown in the bottom plot of Figure 2, the weighted sums of the deviation vectors for F0 hypotheses ranging from 50Hz to 2000Hz are plotted. A lower value means a better match and thus higher harmonicity. The harmonic matching indicator is applied to polyphonic spectra to select F0 candidates corresponding to local minima of D for the joint evaluation.

Assume there are P F0s in the candidate list and there are M F0s to be estimated from the observed spectrum which results in the need to evaluate C P M combinations of F0 hypotheses.

Generating Hypothetical Partial Sequences

Constructing HPSs of F0 hypotheses in the candidate list is realized by the partial selection technique. Both Parsons [START_REF] Parsons | Separation of speech from interfering speech by means of harmonic selection[END_REF] and Duifhuis [START_REF] Duifhuis | Measurement of pitch in speech: An implementation of Goldstein's theory of pitch perception[END_REF] have proposed selecting the nearest peak around a harmonic. However, this technique might fail if a partial is surrounded by spurious peaks and partials of other sources. Therefore, we try to increase the robustness by means of utilizing Principle 2 and the knowledge of spectral locations where partial overlaps may occur according to the current F0 hypotheses under investigation. The goal is to make the best of the available credible information. 1 The third partial is tested to be a good starting point for attenuation.

The construction procedure has two steps: (i) Each HPS is constructed by assigning the most plausible peaks, and (ii) the overlapped partials containing less credible amplitudes are removed from HPS to ensure reliability for evaluating the spectral envelope in the score function.

To construct a HPS we start with the first partial by simply assigning it to the closest peak observed. For the following partials we consider two candidate peaks: the closest one and the one of which the mainlobe contains the corresponding harmonic position. Compared to the formerly selected partials, the peak candidate forming a smoother envelope is sequentially allocated to the HPS. The case of overlapped partials requires special consideration. The treatment for this case is based on the idea that an overlapped partial still carries important information for at least the HPS that locally has the strongest energy. Therefore, the algorithm aims to assign the overlapped partial to this HPS. The strategy for treating the overlapped partials is listed below:

(i) Partials having potential collision are determined from each hypothetical combination of HPSs.

(ii) The local energy strength of the envelope is obtained by means of interpolating the neighboring partial amplitudes that are not collided. By comparing the interpolated amplitudes estimated from all HPSs, the overlapped partials is exclusively assigned to the one having the most dominant interpolated amplitude among all and then labeled as "usable" which means that it could be used for interpolation for its neighboring partials. For the rest of the HPSs the overlapped partial is labeled as existing but without a specified partial amplitude.

(iii) If one neighboring partial happens to be overlapped, the non-overlapped partial at the other side is used instead. If the two neighboring partials are overlapped, the corresponding HPS is not considered as having reliable information for interpolation and thus excluded.

(iv) If the amplitude of the overlapped partial is smaller than any interpolated amplitude, it is difficult to infer which F0 hypothesis contributes the most and thus partial assignment is not carried out but this overlapped peak in all HPSs are labeled as "usable" for further use of interpolation.

The score criteria explained in the following are designed to gracefully deal with this kind of incomplete HPSs. An example of treating the overlapped partials in HPSs of three notes is shown in Figure 3. The above plot shows the HPSs before the treatment and the bottom plot shows those after the treatment.

The score function

Having constructed the most reasonable peak sequences for each set of F0 hypotheses we design a score function to rank these hypothetical sets. The score function formulates the three principles into four criteria: harmonicity HAR, mean bandwidth MBW and duration DUR of the partial amplitude sequence, and the standard deviation of mean time DEV. Criterion 1 HAR is an indication of harmonicity and totally "explained" energy. It is formulated as where I is the number of peaks, i is the peak index, Corr is the complex correlation weighting vector, Spec is the linear peak amplitude and dM (i) is obtained by combining {dF 0m (i)} M m=1 at the ith peak in the following way:

HAR = I i=1 Corr(i) • Spec(i) • dM (i) i [Corr(i) • Spec(i)] (3 
dM (i) = min {dF 0m (i)} M m=1 (4)
That is, each observed peak is matched with the closest partial among those of {HPSF 0m } M m=1 and thus each combination under evaluation could perform its optimal match. Criterion 2 To evaluate the smoothness of a HPS, we calculate the mean bandwidth of the partial amplitude sequence. Each HPS is assembled with its "mirror sequence" to construct a new sequence SF 0m for further evaluation. It could also be interpreted as a hypothetical partial sequence constructed from a complex spectrum. An example of SF 0m is shown in the middle plot of Figure 4.

Applying K-point Fast Fourier Transform on SF 0m to obtain the linear spectral amplitude vector XF 0m , we can calculate the mean bandwidth MBWF 0m as

MBWF 0m = 2 • K/2 k=1 k[XF 0m (k)] 2 K/2 k=1 [XF 0m (k)] 2 (5)
This indicates the degree of energy concentration in low frequency region and thus SF 0m with less variation results in a smaller value of MBWF 0m .

The function of MBWF 0m is to discriminate correct F0s from subharmonics. As the example shown in Figure 4 the spectral envelopes of a harpsichord note. Although the nature of the harpsichord does not form a smooth spectral envelope due to resonance , the HPS of its subharmonic F0/2 contains even more variations and thus larger MBWF 0m .

Criterion 3 For a quasiharmonic sound, the spectral centroid usually lies around lower partials. Applying this general principle related to Principle 2, we could similarly evaluate the energy spread of the partial sequence, that is, the duration DURF 0m of HPSF 0m . Instead of removing the non-reliable components from HPSF 0m , we simply set them to zero to maintain correct positioning of all partials. Then the duration of HPSF 0m could be calculated as

DURF 0m = 2 • Nm n=1 n[HPSF 0m (n)] 2 L • Nm n=1 [HPSF 0m (n)] 2 (6) 
where Nm is the length of HPSF 0m . L is a normalization factor determined by F90/F 0min , where F90 stands for the frequency limit containing 90% of spectral energy in the analyzing frequency range and F 0min is the minimal hypothetical F0 in search. Since spectral envelopes of natural sounds are not always smooth, this criterion functions as the further test of physical consistency of Principle 2 and acts as a penalty function for subharmonics which "explain" more than one source in the observed spectrum.

Criterion 4

To evaluate the synchronicity of the temporal evolution of the hypothetical sinusoidal components in a HPS, we rely on the estimation of the mean time for individual spectral peaks. Mean time is an indication of the center of gravity of signal energy [START_REF] Cohen | Time-frequency analysis[END_REF] and the mean time of a spectral peak can be used to characterize the amplitude evolution of the related signal [START_REF] Röbel | A new approach to transient processing in the phase vocoder[END_REF]. For a coherent HPS we expect synchronous evolution resulting in a small variance of the mean time for the HPS of a single source.

The mean time of a hypothetical source, denoted as TF 0m , is calculated as the power spectrum weighted sum of the mean time of the hypothetical partials. The variance of mean time of the partials in HPSF 0m is then

VARF 0m = I i=1 {[ ti -TF 0m ] 2 • wF 0m (i)} (7) 
where ti denotes the mean time of the i-th observed peak and the weighting vector {wF 0m (i)} I i=1 is constructed by the following steps:

1) Initially set {wF 0m (i)} I i=1 as the linear peak amplitude vector.

2) For the peaks situating too close in the observed spectrum, their spectral phases are probably disturbed. Therefore, we set the corresponding component in {wF 0m (i)} I i=1 to 0.

3) According to the treatment of overlapped partials among {HPSF 0m } M m=1 , the components of {wF 0m (i)} I i=1 corresponding to unusable partials are set to 0. 4) {wF 0m (i)} I i=1 is then compressed by an exponential factor to reduce the dynamic range such that the significance of noisy peaks is raised. This makes use of noisy peaks to penalize a hypothetical partial sequence containing more noisy peaks. Finally, {wF 0m (i)} I i=1 is normalized to be a weighting vector. DEVF 0m is then defined as the square root of VARF 0m divided by half of the window size.

For each combination under investigation, MBW of a set of F0 hypotheses is defined as the weighted sum of {MBWF 0m } M m=1 :

MBW = M m=1 [ Nm n=1 HPSF 0m (n)] • MBWF 0m M m=1 Nm n=1 HPSF 0m (n) (8) 
This makes use of the credible components in each HPSF 0m as a weighting of relative importance. DUR and DEV are thus equivalently defined.

Score function

We define the score function as

D C P M = 1 4 j=1 pj p1 • HAR + p2 • MBW + p3 • DUR + p4 • DEV (9)
where the weighting coefficients {pj}4 j=1 are to be trained by an evolutionary algorithm [START_REF] Schwefel | Evolution and Optimum Seeking[END_REF]. The score function is designed in a way that smaller values stands for higher scores. Notice that HAR generally favors lower hypothetical F0s while MBW, DUR and DEV favor higher ones. Therefore, the criteria perform in a complementary way and the weighting coefficients should be optimized to balance the relative contribution of each criterion such that the score function generally supports correct F0s the best.

EXPERIMENTAL RESULTS

To evaluate the proposed F0 estimation method, we perform a frame-based test using mixtures of musical samples. Since the criteria are designed for stationary quasiharmonic sounds, stationary parts of musical samples are pre-selected and then mixed with equal mean-square energy. Estimation of a polyphonic sample is performed within a single frame. The number of F0s is given in advance for the F0 estimation system to find the most probable set of F0s.

Parameter optimization

The parameters to be optimized are the weighting coefficients {pj} 4 j=1 in the score function and α for determining the tolerance interval in eq [START_REF] Wu | A multipitch tracking algorithm for noisy speech[END_REF]. 300 polyphonic samples containing 100 samples for each voice mixture are generated by randomly mixing musical instrument samples from the University of Iowa2 . Then the parameters are optimized using evolutionary algorithm and the set of parameters performing the best is used for the final evaluation on a large database.

Evaluation setups and results

Specifications for this evaluation are described below:

• Three databases: two-voice, three-voice and four-voice mixtures, labeled as TWO, THREE and FOUR respectively, are generated using McGill University Master Samples 3 . In combining M -voice polyphonic samples, M out of twelve (C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B) tones are preliminarily assigned and then samples ranging from 65Hz(C2) to 1980Hz(B6) are randomly selected to mix. Around 1500 samples for each database are generated in a way that each combination of note names are of equal proportion. Musical instruments not fitting the quasiharmonic model are excluded. This database contains about 30 different musical instruments. To facilitate comparison, the database is published on the first author's web page 4 .

• The search range for F0 is set from 50Hz to 2000Hz and the maximal analyzing frequency limit is fixed at 5000Hz. A Blackman window is used for analysis and all parameters are fixed for this evaluation.

• Multiple F0 reference tables are built from single F0 estimation of monophonic samples before mixing. A correct estimate should not deviate from the corresponding reference value by 3%. The error rates are computed by the number of error estimates divided by the total number of target F0s.

Evaluation using two analysis window sizes, 186ms and 93ms, are performed and the results are shown in Table 1 and Table 2, respectively. Since musical samples mixed randomly surely contain notes with harmonically related F0s, we present the error rates for two groups of samples: one group of mixtures containing harmonically related notes, labeled as "harmonical", and the other group "non-harmonical". The overall error rates are shown in the "total" column. The percentages of samples in the group "harmonical" are 22.43%, 32.78% and 49.46% for the three databases The errors in the group non-harmonical are quite small which proves the satisfying performance of the proposed method. The overall errors are slightly better than the ones reported by Klapuri [START_REF] Klapuri | Signal processing methods for the automatic transcription of music[END_REF], however, this comparison is not conclusive due to the fact that the testing set comprises different samples and that in [START_REF] Klapuri | Signal processing methods for the automatic transcription of music[END_REF] a larger set of samples from four different databases has been used.

DISCUSSIONS

The score function sometimes fails to correctly resolve the ambiguity concerning target F0s and their subharmonics or superharmonics especially F0/2 and 2F0. This failure scenario accounts for a great proportion of the estimation errors. Polyphonic samples mixed with musical instrument samples of rich resonances often result in this kind of wrong estimate. Taking the string instruments for example, several predominant resonances occur with the excitation [START_REF] Fletcher | The physics of musical instruments[END_REF]. If strong resonances exist in the frequency range below the fundamental, the correct F0s might lose too much score to subharmonics by the amount of explained energy (HAR). If strong resonances boost certain partials too much, correct F0s might lose too much score to superharmonics by the spectral smoothness (MBW). Dealing with resonance peaks is a key to improving robustness.

The window size is still a concern. For those mixtures containing harmonically related F0s, inharmonic partial structures might give a chance for correct estimation if a sufficient spectral resolution is provided. With the increase of polyphony, the performance suffers from the reduction of the window size. Therefore, investigating the techniques for treating overlapped partials is necessary.

The way of constructing polyphonic databases for evaluation should be carefully examined. With the increase of polyphony, the number of possible combinations among different notes and different instruments increases dramatically. A limited number of samples mixed in a random manner could not ensure a general representation of the large sample space. Besides, the number of harmonically related notes increases in higher polyphonic random mixtures and thus effective approaches to estimate F0s of exact multiple relations become more important.
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CONCLUSIONS

We have presented a new method for joint evaluating the plausibility of multiple F0 hypotheses based on three physical principles. The three principles could be interpreted as reasonable prior distribution for all parameters in the generative spectral model. Instead of using an analytical approach, we optimize each hypothetical partial sequence based on these principles and then compare the credibility of possible combinations among F0 hypotheses using a score function. Evaluation over a large polyphonic database has shown encouraging results. However, there are still issues to be addressed. We envisage that further improvements on the inadequate treatment for overlapped partials will lead to higher robustness.