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Abstract

We present the results of an analytical study concerned
with the frequency resolution of our adaptive additive syn-
thesis model. First, we derive the relation between the char-
acteristics of the piece wise polynomial parameter trajecto-
ries of the model and the frequency resolution that can be
obtained by means of adapting the model using a minimum
error objective. Second, we present an analytical investiga-
tion of the problem to model signal resonances beyond the
frequency resolution of the model. Based on the analytical de-
scription of the situation a new solution is proposed that leads
to high quality additive models of non stationary sounds with
dense resonances, i.e. choir or drum sounds, and provides
increased robustness with respect to sound transformations.

1 Introduction

Additive synthesis is one of the major means for analy-
sis/synthesis systems which, originally, has been restricted to
only weakly non stationary sounds. Recent enhancements,
however, successfully deal with non stationary and percus-
sive sounds as well (Fitz, Haken, and Christensen 2000b).

Most of the known analysis algorithms for additive mod-
els use the short time Fourier transformation (STFT) to derive
sampled parameters of the amplitude, frequency and phase
of the model partials. Problems with this approach are the
requirements to group the samples to obtain proper partial
trajectories and to find a compromise between the usually in-
consistent frequency and phase estimates. To prevent these
problems a new adaptive approach has been developed (R¨obel
1999). In contrast to the STFT based estimation techniques
it adapts a piece wise polynomial trajectory model for ampli-
tude and phase trajectories such that the model error is min-
imized. Due to the fact that the parameter trajectory model
is explicitely and consistently used for finding the optimal
model parameters no further heuristics are required and phase
and frequency are a priori consistent.

In the following we will present two results of an analyt-
ical study of the model. The first is related to the frequency
resolution that can be obtained by means of adapting a poly-
nomial trajectory model. We will show that the frequency

resolution is determined by the basic splines of the polyno-
mial trajectory model. Second we investigate the case where
the signals resonances to be modeled are dense and can not
be resolved into independent partials due to insufficient fre-
quency resolution. We derive a new formula that describes
the relations between the amplitude and phase parameters of
a set of non stationary cosines and the amplitude and phase of
a single partial that exactly represents the set. Based on this
new understanding of the problem we extend the adaptive al-
gorithm such that the robustness of the synthesized sounds
after parameter transformation is significantly increased even
for difficult examples with dense resonances, i.e. a drum or a
choir signal.

Note that, for distinguishing between the physical pro-
cess that originates the signal and the mathematical model the
terms resonances (signal) and partials (model) will be used in
the following investigation.

2 The parameter trajectory model

The parameter trajectory model analyzed in the follow-
ing is an improved version of the piece wise linear trajectory
model used in the original version of the algorithm (R¨obel
1999). To improve the convergence of the adaptive algorithm
the frequency trajectory models of the algorithm have been
replaced by phase trajectories. The advantage of the phase
trajectories is related to the fact that non local operations have
to be undertaken to achieve a local change in phase with a fre-
quency based trajectory model. Additionally, the piece wise
linear trajectory models have been replaced by piece wise
polynomial trajectory models with arbitrary order.

The description of the polynomial trajectories by means
of basic splines (B-splines) renders the mathematical treat-
ment simple and straight forward (de Boor 1978) because a
piece wise polynomial function���� of order� can be ex-
pressed by linear superposition of B-splines of the same order
following
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Here�� is the weighting parameter of the i-th B-spline of or-
der�, �����. Note, that B-splines are functions with local sup-
port, hence they are non zero only in a connected and bounded
region. Moreover, there exist different types of B-splines that



obey increasing smoothness constraints on the boundaries of
the supported region. For a B-spline that converges maxi-
mally smoothly to zero at the support boundaries the first���
derivatives are smooth with existing derivatives. To facilitate
a less restrictive decay of a partial trajectories less smooth B-
splines are used at the trajectory end points. A single partial
is modeled as

� ��� � ���� ���������	 (2)

where���� and���� are the piece wise polynomial ampli-
tude and phase trajectories. Using eq. (1) the partial model
can be written as
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Note, that if the same polynomial order is used for amplitude
and phase trajectory the same B-Splines can be used, and, that
a change of the polynomial order can simply be achieved by
exchanging the B-splines��.

The resulting model
��� that represents the sound sig-
nal���� is simply a sum of partials of the form described in
eq. (3). The model parameters are adapted using a second
order scaled conjugate gradient algorithm (Møller 1993) that
minimizes the sum of squared error
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3 Frequency resolution

For existing additive synthesis algorithms the properties
of the analysis stage are characterized by means of the time/
frequency resolution that can be obtained. This resolution is
determined by the shape of the window that selects the ana-
lyzed block of samples, and its spectral main lobe width and
side lobe height. The result described in the following section
shows that the analysis properties of our adaptive algorithm
can be expressed in terms of time/frequency resolution, too,
and that this resolution is determined by the the basic splines
��.

While the time resolution of a piece wise polynomial pa-
rameter trajectory is obviously related to the length of the
polynomial segments, the determination of the frequency res-
olution requires further investigation. In the following we
will estimate the impact of a small stationary perturbing co-
sine on the estimation of the partial parameters for a single
non stationary resonance. Hence, the signal to be studied is
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The target partial parameters����� and����� are assumed
to match the polynomial trajectory model such the trajecto-
ries can be represented without error. Using this signal the
influence of the disturbing cosine on the optimal partial pa-
rameters can be studied. Starting point are the equations
that require the gradient of the error function with respect
to the parameters to be zero at the global minimum. For


 � 
 the global minimum is achieved for����� � ����
����� � ����. These zero conditions are now linearized
with respect to
, and the model parameters��, �� around
the global optimum for
 � 
. The linearized equations will
approximately describe the change of� � and�� for small
changes of
 and can be used to determine the impact of the
disturbing cosine on the partial parameters.

The mathematical investigation reveals, that the change
of the optimal model parameter due to the disturbing signal,
are linear combinations of all the products that can be build
out of the disturbing signal, a single B-spline of the trajectory
model and a harmonic function of the partials optimal phase
trajectory
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These products can be interpreted in the frequency domain
by noting that the multiplication between the B-spline, which
has the form of a standard window function, and the disturb-
ing signal results in a widening of the spectral peak related
to the disturbing signal by means of a convolution with the
B-splines Fourier spectrum. The following product and sum
over� can be interpreted in the frequency domain as a sum
over the product of the spectrum of the optimal partial and
the convolved disturbing peak. Because the disturbing sig-
nal affects the model only after being windowed by means of
a basic spline we conclude that the B-splines, that are used
to represent the phase and amplitude trajectories, determine
the frequency resolution of the adaptive algorithm in a simi-
lar manner as the window function determines the frequency
resolution that can be obtained with STFT based algorithms.
With respect to the adaptive model the following conclusions
have to be drawn:

First, because the B-splines depend on the size of the
polynomial segments they have to be considered as the link
between frequency and time resolution of the algorithm. The
B-splines for a piece wise polynomial of order� and segment
length� can be derived by�-times convolving a rectangular
window of width� with itself. Therefore, the frequency reso-
lution that can be achieved using segment length� is compa-
rable to the resolution obtained from a STFT based algorithm
with rectangular window of size�.

Second, the cross talking of partials in different frequency
bands is lowered with increasing polynomial order because
the side lobes of the spectra of the B-splines are lowered with
increasing order�. To achieve sufficient side lobe attenuation
we generally select� � 
 .

Third, to achieve optimal resolution for the adaptive pro-
cess the data blocks used to calculate the model error and
adapt the parameters should not cut a B-spline that is related
to a parameter to be optimized. Otherwise the spectral rep-
resentation of the effective B-spline will undergo a signif-
icant increase of the spectral main lobe width and the side
lobe height which will reduce the frequency resolution of the
analysis. Because the theoretical background has not been
available yet, the previous implementation of the algorithm



was not in accordance with the requirements and sub optimal
frequency resolution has been achieved.

4 Beyond the frequency resolution

One of the problems for additive synthesis algorithms
is the fact that the resonances that are contained in natural
sounds are often to close in frequency to be resolved by the
analysis algorithm. Different strategies have been developed
to deal with the problem using some kind of noise processes
that represents the dense resonances of the signal (Serra and
Smith 1990; Fitz, Haken, and Christensen 2000a). Noise
based models, however, perform badly if the number of reso-
nances is not very high, as for example in choir signals.

Without any means to deal with the problem the original
version of our adaptive algorithm performed badly if the fre-
quency resolution was not sufficient to resolve all resonances.
In these cases the sets of partials extracted from the sound
were generally wildly frequency modulated and, while the
sound quality of the resynthesized sound was high, the sound
characteristics changed significantly whenever a transforma-
tion has been applied.

4.1 Modeling sets of resonances

The non stationary partial model used in eq. (3) sup-
ports an understanding of the model as a collection of am-
plitude and phase modulated partials, each of which will
model all resonances that are close to their respective fre-
quency trajectory. Therefore, an analytical formula was re-
quired that would describe the equivalence relations between
a set of nonstationary resonances and a single modulated
partial. While the relation is simple and well known if the
set comprises only two stationary cosines, we are not aware
of a mathematical equation describing the general case and
matching the present situation. Therefore, the formula de-
rived in the following provides new insights into the behavior
of additive synthesis models applied to dense resonances. It
may be used in the future to change a models internal rep-
resentation from independent partials to modulated partials
according to the requirements of an intended sound transfor-
mation.

Starting from a set of K resonances a single modulated
partial is searched that exactly represents the set. The mathe-
matical relation to be solved is

�
� ����� ���������� � ����� ����������� (7)

Here the k-th resonance has amplitude and phase trajectories
����� and�����while the equivalent partials trajectories are
����� and����� respectively.

By simply replacing the left cosines in eq. (7) by means
of the real part of an complex exponential, replacing the com-
plex exponentials by their real and imaginary parts, summing
independently over the real and imaginary parts of the partials

and applying basic rules of complex arithmetic to re-extract
the real part the desired relation is established. Starting from
�
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one obtains easily amplitude and phase of the desired partial
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To understand the erratic behavior of the partial model
when the resonances are dense in frequency a very simple ex-
ample has been studied. In this case the signal to be modeled
contains three stationary resonances that are considered close
in frequency with respect to the frequency resolution of the
model. The values of the frequencies are�� � 
�
��
�,
�� � 
����
� and�� � 
��
��
�. The amplitudes have
been chosen to be�� � ���, �� � � and�� � 
�� . Us-
ing eq. (9) the equivalent partial has been calculated and its
instantaneous amplitude����� and frequency�� ���, which is
the difference of the unwrapped phase trajectory with respect
to time, are depicted in fig. 1. The figure reveals the fact that
the instantaneous frequency is heavily modulated and moves
out of the frequency domain of the resonances whenever the
momentary amplitude is close to a local minimum. The de-
viation of the the momentary frequency in this case is quite
large, more than 100% of the band width of the frequency
range of the resonances. From the cases studied so far and
from a simple argument related to the summation of the ro-
tating complex pointers it can be concluded that in general:

For a maximum of the amplitude����� all pointers need
to be aligned and in this case the frequency (speed of rotation)
of the summation of pointers equals the sum of frequencies of
the single pointers weighted by their relative length
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where����� are the instantaneous frequencies of the under-
lying resonances. While there is no rigorous prove this ap-
pears to hold approximately true for all local maxima of the
amplitude �����.

In contrast to this the instantaneous frequency shows a
maximum deviation from the average frequency for all lo-
cal minima of ����� with the amount of frequency deviation
being larger for smaller values of teh minimum amplitude.
This is weekly supported by the argument, that the phase of
the summation of pointers is more easily affected by small
changes of a single pointer if the sum of the pointers is small.

The important conclusion to be drawn from this example
is that a stable tracking of a group of resonances by means of
a single modulated partial can not be achieved, because the
instantaneous frequency of the modeling partial occasionally
has to leave the frequency region defined by the resonances
currently modeled and will, with high probability, start mod-
eling another set that includes resonances from the neighbor-
hood. The switching between the groups of resonances is
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Figure 1: Top: Amplitude of the ideal partial model repre-
senting three stationary resonances. Bottom: Frequency of
the ideal partial model (dash dots) and the adapted model
with (dashed) and without regularization (solid). Segment
size is�

 samples. Horizontal lines indicate the weighted
average frequency (eq. (10)) and the frequency range of the
resonances.

the reason for the strong frequency modulation that has been
observed in all cases where the adaptive algorithm has been
applied to signals with dense but fairly stationary sets of reso-
nances. The resulting problem is twofold. First an interpreta-
tion of the partials found by the algorithm is hardly possible,
and second, any manipulation of the partial trajectories will
significantly effect the sound characteristics.

To solve the problem we rely on our conjecture that the in-
stantaneous frequency will leave the frequency region of the
resonances only while the instantaneous amplitude is small.
Due to the small amplitude the peaks of the frequency mod-
ulation are expected to be subjectively not important and,
therefore, the models phase trajectory can be constrained to
follow only slow frequency changes. This can be achieved by
adding a regularization term to the mean squared error min-
imization criterion that penalizes fast changes of the partials
frequency. Regarding the frequency resolution of the model
we consider fast a frequency slope that will change the fre-
quency by more then the frequency resolution within the time
of a polynomial segment. Note, that negative amplitude val-
ues are essential if the resonances can not be resolved because
sign flips of the amplitude enable the phase trajectory to eas-

ily resynchronize whenever the frequency trajectory takes a
short cut and, due to the constraints of a polynomial model,
does not follow one of the fast frequency impulses.

The assumption that the frequency trajectory need not
be modeled exactly has been verified by means of modeling
some simple sets of resonances that are dense with respect to
the models frequency resolution. The signal studied in fig. 1,
for example, has been modeled with and without regularizing
the frequency slope. The frequency trajectories derived in
both cases are displayed in fig. 1. The original model can not
track the ideal frequency trajectory due to the implicite con-
straint of the polynomial trajectory model,. Nevertheless, it is
often far outside the modeled region. The regularized model
has a smoother frequency trajectory which is always close to
the frequency range of the resonances. Note, that the regular-
ization should not be to strong, however, because it will pre-
vent the model from following resonances with fast changes
in frequency. Subjectively the sounds generated from both
models are not distinguishable and very close to the original
sound. For real sounds one can assume that the frequency
region containing dense resonances is much larger than the
bandwidth of a single modulated partial. Consequently, the
model will engage a number of modulated partials to cover
the region which will mask the small differences even further.

5 Results

The extended adaptive model has been applied to the set
of sounds provided for the SDIF based additive synthesis
comparison panel of ICMC 2000. The results obtained for
the critical sounds support the theoretical results. In all cases
high quality additive models with improved robustness with
respect to sound transformations have been achieved. Exam-
ples for some of the most difficult sounds: drum, choir, harp
will be presented at the conference.
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