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Abstract
We propose a model which tries to take into account

the differences between double-reed instruments and typ-
ical single reed models. These differences are identified
from experiments on real double-reed instruments. Ex-
perimental data also allow the estimation of physical pa-
rameters to be introduced into a real-time sound synthesis
model.

1. Introduction

Recent work on double reed instruments ([1] and [2])
sheds new light on the physical behavior of the reed.
Observational data allow the validation of theoretical hy-
pothesis on double reeds ([3] and [4]).

In this paper we propose a flexible real-time model
of a double-reed instrument that can be adapted to the
knowledge acquired by on-going experimental research
on a real instrument. These experiments can provide both
values of physical parameters of the model and newer re-
finements to the mathematical model from which the sim-
ulations are derived

2. Mathematical Model

The conception of a wind instrument model is usually
based on the assumption that the reed and the bore of the
instrument can be described independently. Their only
interaction is made through two variables which can be
considered homogeneous on a surface between the reed
and the bore. In a one-dimensional model, these are the
acoustically significant variables, pressurep and volume
flow q.

2.1. Reed

Both blades of a double reed are considered to be equiv-
alent (based on experimental observations already pub-
lished [5]) and to have symmetric displacement. There-
fore, only one blade needs to be modeled as a harmonic
oscillator with a massm, stiffnessk and dampingr. Its
position at rest is notedH. The distance between the two
blades of the double reed is thus obtained by doubling
the position of the single harmonic oscillator. The pres-
sure and position of the lips of the player against the reed

blades act as control parameters which only influence the
reed position at restH1. The only external force applied
to the reed are then due to the pressure difference between
the mouthpm and the inside of the reedpr.

m
∂2z(t)
∂t2

+ r
∂z(t)
∂t

+ k|z(t)−H|β = pr(t)− pm (1)

where the usual mass and damping have been implicitly
divided by the reed effective area, yieldingm andr. The
stiffness law (usually∆p = k × (z(t)−H)) is replaced
here by a power law (∆p = k(z(t) − H)β), since the
experimental data does not fit to a linear law, as we shall
see in section 3.

The right-hand side of equation 1 is the pressure dif-
ference between the inside of the reed and the mouth (the
latter considered constant).

2.2. Flow

The same pressure difference affecting the reed (pm −
pr) also creates a flow entering the reed. A simplified
description of this flow is obtained using the Bernoulli
theorem. The volume flow is calculated from the velocity
by considering that the velocity is homogeneous over the
reed entrance section (Sin(z) – depending on the reed
positionz).

q(t) =

√
2
|pm − pr(t)|

ρ
Sin(z(t))

[1 + sign(z(t))] sign(pm − pr(t)) (2)

The opening area of the reedSin(z(t)) is proportional to
the reed coordinatez(t). In fact it is calculated as:

Sin(z(t)) = αγlrz(t) (3)

γ is the geometrical coefficient obtained in [1] by image
analysis of a real double reed. It expresses the fact that the
reed entrance is not a rectangle.α is theVena Contracta
coefficient.

1Lips may also affect the other parameters of the reed, such as the
effective mass or damping.



Equation 2 corresponds to the simplest model that re-
produces the behavior of a reed exciter if we consider that
the reed pressurepr(t) is the acoustic input to the bore.
Such an assumption is justified for reed instruments such
as the clarinet, where the jet formed at the reed entrance
completely dissipates its energy in the embouchure cham-
ber of the clarinet. However, the geometry of a double
reed suggests that more complex phenomena might arise
in the flow within the reed. As proposed in [4], these
phenomena can be modelized by the following formula,
using an averaging approximation:

pr(t) = p(t) +
ρ

2
Ψ

(
q(t)
Sra

)2

(4)

It relates the pressure at the beginning of the reed (pr(t))
to the acoustic input pressure to the bore (p(t)). Ψ is a
phenomenological coefficient which expresses the impor-
tance of the flow differences from a clarinet embouchure.
Sra is a cross-section area averaged throughout the reed.

2.3. Resonator

The resonator, assumed to have a linear response, is usu-
ally described either by its input impedanceZin(ω) or by
its reflection functionr(t).

Rather than using the reflection function, which re-
lates the present value of the incoming pressure wave to
the past values of the outgoing one, we propose to use
an expression relating present and past values of pressure
and flow. This allows easier interaction between experi-
ments, modeling and simulation. The generic form of a
resonator is:

Q (q(t)) = P (p(t)) (5)

P andQ are differential operators applied to pressure
p and flowq. They can be determined using the acous-
tic impedanceZi(ω). As shown in section 4.1.3, the to-
tal number of coefficients used in the discrete version of
equation 5 is kept rather small.

As an example, for an ideal cylindrical resonator,
equation 5 becomes:

p(t) + p(t− τ) = Z0 (q(t)− q(t− τ)) (6)

and for a conical one

S(r1)

ρc

((
∂p

∂t

)
t

+

(
∂p

∂t

)
t−τ

)
+

S(r1)

ρr1
((p)t − (p)t−τ ) =

(
∂q

∂t

)
t

−
(

∂q

∂t

)
t−τ

(7)

with τ = 2lt/c the back and forth path time inside the
resonator, wherelt is the resonator length. In this expres-
sion,r1 is the distance of the truncation point to the apex
of the cone andS(r) is the cone cross-section at distance
r form the apex.

3. Parameters

The model described in section 2 requires the knowledge
of a number of physical parameters which are not easy to
measure. They are estimated experimentally.

3.1. Reed parameters

The stiffness law of the reed (see sect. 2.1) must be deter-
mined using a setup which resembles as much as possi-
ble that of a playing regime. This means for instance that
the force must be evenly distributed over the reed surface
rather than being applied at a single point. The simplest
way to achieve this is to use air pressure applied only to
the exterior face of both blades.

The experiment which we devised uses a similar setup
as the one we use to estimate the reed characteristic ([2]),
but we cover the reed entrance with a flexible transparent
film to stop the flow. This way the only force acting upon
the reed is the mouth pressure. The reed displacement is
measured from the images of the slit entrance synchro-
nized with the measured pressure.
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Figure 1: Reed position versus pressure difference ap-
plied between the reed’s inside and outside while prevent-
ing any flow

Figure 1 shows the data resulting of an experiment
where we slowly increased the pressure until the reed
closed completely and then decreased it again to 0. The
reed follows a different path while pressure is being in-
creased or decreased. At the end of the experiment the
reed is more closed than it was at the beginning. This
suggests that there might be some visco-elastic effect in-
fluencing the reed position, although the pressure was in-
creased and decreased very slowly. This fact was also
observed on clarinet reeds [6].

As a preliminary test, we chose to build a stiffness
model based on the increasing pressure curve, because it
was aligned with the reed’s position at rest. From this
curve we estimated the following power law ( written in
S.I. units), as shown in figure 2:
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Figure 2: Reed displacement as a function of pressure
applied to the reed

∆p = 2.85 · 105|z −H|0.4 (8)

This power law replaces the linear spring model usu-
ally used in classical reed models, in order to test its rele-
vance in sound synthesis. Mass and damping coefficients
can also be estimated from dynamic measurements. At
present, we estimate them from theoretical considera-
tions.

3.2. Estimation ofΨ coefficient

Ψ is an important phenomenological parameter in our
simulations (see sect. 2.2), since it might introduce quali-
tative changes in the shape of the reed characteristic, such
as hysteresis, as shown in [4]. By comparing this theoret-
ical characteristic curve to one measured on a real instru-
ment we can infer a value for this coefficient.

The measurement of the characteristic curve is de-
scribed in [2]. We measure simultaneously the pressure
difference between the mouth and the inside of the reed
and the flow, by means of a calibrated diaphragm cov-
ering the output of the double reed. We represent the
measured points (circles) in a pressure/flow graphic in
figure 3. We start by increasing the mouth pressure un-
til the reed suddenly shuts (pointA). This immediately
increases the pressure, so that the transition to regionB
is not represented in the graph (dashed arrow). We then
decrease the pressure while the reed slightly opens until
point C. Again the reed suddenly opens inducing a rapid
transition to pointD. The trajectory to zero pressure is
then coincident with the beginning of the measurement.

In figure 3, we have also plotted a theoretical charac-
teristic curve (thin line) correspondent to best fit ofΨ to
the measured data. This curve corresponds toΨ = −2.

While in [4] emphasis is given to the influence of a
positive value ofΨ, the experimental data available at
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Figure 3: Fitting of the model of section 2 to the available
p/q characteristic data

present needs a negative value ofΨ in order to be fitted
to the static version of equations (1), (2) and (4).

4. Modeling

Real simulations require a suitable discretization of the
equation set described in the previous section.

4.1. Discretization

4.1.1. Reed

A centered Euler discretization scheme is simple enough
to get a set of algebraic equations which can be solved
explicitly, as we shall see in section 4.2. It approximates
better the solution at timet than the right-aligned Euler
scheme, while allowing an explicit resolution (which the
right-aligned Euler does not allow).

∂z

∂t
→ 1

2
(zt+dt − zt−dt) (9)

∂2z

∂t2
→ zt+dt − 2zt + zt−dt (10)

Equation 1 becomes:

(M + R)z′t+dt − 2Mz′t + (M −R)z′t−1

− K(H ′ − z′t)
α − p′t + p′m = 0 (11)

While discretizing equation 1, we also replace the pa-
rameters by non-dimensional values, so that all the terms
appearing in equation 11 are of order 1. In the latter we
have:

• M = m
dt2

1
k ; R = r

dt
1
k ; K = 1

• Primes (y′) represent dimensionless values of a
physical variable or parameter



4.1.2. Flow

The flow equation 2 does not need to be discretized but
we rewrite it with non-dimensioned values:

q′t = B1z
′
t

√
|p′m − p′t|

= sign(p′m − p′t) (12)

with B1 = 1 after adimensionalization.

4.1.3. Resonator

The discretization of the equation for a generic resonator
(5) can be written as:

N∑
i=0

Pi
kH

P0
p′t−idt =

M∑
j=0

Qj
kαlr
P0

(
2kH

ρ

)1/2

q′t−jdt

(13)
In the present model this discretization uses a right-

aligned Euler scheme.
The coefficients ofp′ andq′ are dimensionless so that

both the variables and the terms have an order of magni-
tude of 1.

4.2. Solution

z′t can be computed before the other variables, since it
only depends on past values of those. The solution is
given by equation 11 by replacingt by t − dt. It is pos-
sible that at some point in the simulation this equation
might give a negative value for the reed position. This
is physically impossible becausez′t = 0 corresponds to
a shut reed. In such a case the reed position is forced to
z′t = 0 and the solution for the other two equations (12
and 13) is trivial.

4.3. Real-time model

The model described in the former paragraphs is sim-
ple enough to be implemented in real time environments
such aspd 2. We usepd to test different versions of the
model and to quickly test the influence of newly intro-
duced terms in the flow (2) or reed (1) equations.

The measured values of the stiffness law andΨ co-
efficient were introduced in the real-timepd model. Al-
though the difference from a single reed model can be
perceived by scanning the appropriate range of param-
eters, the effect is difficult to demonstrate graphically
because the variation of timbre can be more important
within a model than between the two models for a similar
parameter set.

The effect of the negativeΨ coefficient is an overall
gain in brilliance of the sound, while the power law for

2 Pure-Data is a real-time graphical programming en-
vironment for audio and graphical processing. See
http://www.pure-data.org

the stiffness seems to soften the attacks and decays of the
sound.

5. Conclusion

Present real-time simulations presented in this article are
not suitable for the sound synthesis of a real double-reed
instrument, due to the excessive simplification of some
important parts of the instrument (such as the resonator).
However, the parallel approach of gathering experimen-
tal data and testing it in a real-time model speeds up the
testing for relevance of the phenomena identified in the
experiments: relevant details of the model produce qual-
itative changes in the behavior of the model and in the
sound it produces.

By completing the measurements hereby presented,
and extending them to non-static regimes we expect to
improve the quality of the reed model. We will refine the
resonator model using the same implementation princi-
ples but including theoretical and experimental data al-
ready existent in the literature. This will hopefully allow
us to propose an interesting double-reed model for sound
synthesis.
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