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ABSTRACT

This paper is about the use of perceptual principles for melody
estimation. The melody stream is understood as generated by the
most dominant source. Since the source with the strongest energy
may not be perceptually the most dominant one, it is proposed to
study the perceptual properties for melody estimation: loudness,
masking effect and timbre similarity. The related criteria are inte-
grated into a melody estimation system and their respective contri-
butions are evaluated. The effectiveness of these perceptual criteria
is confirmed by the evaluation results using more than one hundred
excerpts of music recordings.

1. INTRODUCTION

Auditory scene analysis of music signals is an ongoing active re-
search in recent years as encouraging results continue to explore
various applications in the field of digital audio effects (DAFx)
and music information retrieval (MIR) [1]. Among the harmonic
sources present in the music scene, the “melody” source usually
forms perceptually and musically the most dominant stream [2] [3]
[4]. The problem of melody estimation is difficult because it re-
quires not only low-level information about sound signals but also
high-level information about perception of music. In this article,
we define the melody estimation problem as the estimation of the
fundamental frequency (F0) of the most dominant source stream.
Since the source with the strongest energy may not be perceptu-
ally the most dominant one, our study will make use of perceptual
properties and evaluate their effectiveness.

In addition to the perceptual grouping cues of harmonic sounds
in auditory scene analysis [5], many of the existing methods for
melody estimation further make use of other perceptual proper-
ties such as loudness [6] [7], masking [8], timbre similarity [6] [9]
[10] and auditory filters [3] [11] [12]. If one looks at the evalu-
ation results of the MIREX (Music Information Retrieval Evalua-
tion eXchange) campaign for the “Audio Melody Estimation” task,
the systems that make use of these perceptual properties seem to
show certain advantages in performance. In fact, the perceptually-
motivated system proposed by Dressler [13, 14, 9, 15] always ranks
the top [16]. Although important details of perceptual criteria are
missing in her descriptions, it is nevertheless reasonable to assume
that the key problem of melody estimation is related to percep-
tual criteria. In this study, we propose to evaluate the follow-
ing perceptual criteria: loudness, masking, and timbre similarity
within the proposed melody estimation system. The auditory fil-
ters and other multi-resolution analysis methods are not explored
here because we believe that the melody source stream is usually
significantly present in the mid-frequency range and a fixed resolu-
tion of STFT(short-time Fourier transform) can thus be sufficiently
adapted.

The proposed system consists mainly of two parts: candidate
selection and tracking. As the salience of an F0 candidate is de-
rived from the the dominant peaks that are harmonically matched,
we propose to compare perceptually-motivated criteria with low-
level signal features for dominant peak selection. Similarly, candi-
date scoring based on perceptual criteria is also evaluated to reveal
how a correct candidate can be more favored than others. Based
on the algorithm previously proposed in [17], a tracking algorithm
dedicated to melody estimation is developed to determine the co-
herent source stream with an optimal trade-off among candidate
score, smoothness of frequency trajectory and spectral envelope
similarity.

The paper is organized as follows: In Section 2, we present
the methods for dominant peak selection and candidate scoring. In
Section 3, the components of the tracking system is detailed. In
Section 4, the effectiveness of the perceptual criteria are evaluated
and the performance of the proposed system is compared to the
state-of-the-art systems. Finally, conclusions are drawn and future
works are proposed.

2. CANDIDATE EXTRACTION

Extraction of compact F0 candidates from polyphonic signals is
not an easy task because concurrent sources interfere with each
other and spectral components from different sources may form
reasonable F0 hypotheses [18]. Although a proper multiple-F0 es-
timation allows proper treatment of overlapping partials, a simpler
scheme shall meet our needs for melody estimation.

Under the assumption that the melody stream is generated by
the most dominant source, the interference from other sources has
less impact on its spectral components. The remaining problem is
then to avoid extracting subharmonic F0 candidates that are sup-
ported by the combination of spectral components from different
sources. They appear to be very competitive to the correct F0 and
are very likely to cause octave errors. Since the target source is as-
sumed to be dominant, its harmonic components should be present
as dominant spectral peaks. By means of selecting the dominant
peaks, we can avoid excessive spurious candidates and efficiently
establish a compact set of F0 hypotheses with reliable salience.

2.1. Peak Selection

We propose four peak selection methods. The first two are based
on loudness weighting and masking effects respectively to select
perceptually dominant peaks, and the other two are based on cep-
stral envelope and noise envelope respectively to select energy
dominant peaks.
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Select by Loudness

It is known that the relative energy of the spectral components
one measures is very different from the relative loudness one per-
ceives [19]. Since calculating the loudness for complex sound is
not straightforward, a common approach is to apply proper spec-
tral weighting by a selected equal-loudness contour to imitate the
perceptual dominance of spectral components. Accordingly, we
weight the spectrumX with a frequency dependent equal-loudness
curve L to obtain the loudness spectrumXL:

XL(k) =
X(k)

L(k)
; (1)

where k is the frequency bin. We choose the equal-loudness curve
proposed by Fletcher and Munson [20] measuring at 0dB SPL
(sound pressure level) for L:

20 log10 L(k) =3.64 · f−0.8
k − 6.5 · e−0.6·(fk−3.3)2

+ (10−3) · f4
k

(2)

where the frequency fk in “kHz” is converted from the respective
frequency bin k. Then, we select the peaks that are not smaller
than δLdB of the maximum of XL (see Fig. 1(a)).

Select by Masking Curve

The masking effect depicts how a tone can mask its neighboring
components across critical bands, which can be represented by the
spreading function (on dB scale) [21]

Sf (i, j) =15.81 + 7.5((i − j) + 0.474)

− 17.5(1 + ((i − j) + 0.474)2)0.5
(3)

where i is the bark frequency of the masking signal, and j is
the bark frequency of the masked signal. The formula of convert-
ing frequency fk from “kHz” to the bark scale is [22]:

B(fk) = 13 · arctan(0.76 · fk) + 3.5 · arctan(
fk

7.5
)2 (4)

The strength of masking of a peak is not only determined by
the magnitude of the peak, but also related to its being tonal or
noisy. We follow the MPEG’s standard to classify a peak [23]: If
a peak is 7dB higher than its neighboring component, it is con-
sidered tonal. Otherwise, it is considered noisy. Accordingly, the
mask contributed by a peak is thus (on dB scale):

M(i, j) =Sf (i, j) − (14.5 + i) · α − 5.5 · (1 − α)

(tonal : α = 1, noisy : α = 0)
(5)

By means of selecting the maximal mask overlaying at each
bin, the masking curveXm is constructed:

20 log10 Xm(k) = max{M(i, B(fk))}, ∀i ∈ I (6)

where I is the set of all peaks. The peaks which are larger than the
masking curve are selected (see Fig. 1(b)).

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−20

0
20
40

(a)  

 

 
loudness spectrum

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−20

0
20
40

(b)  

 

 
masking curve

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−20

0
20
40

(c)  

 

 
cepstral envelope

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−20

0
20
40

Frequency(Hz)

(d)  

 

 
noise envelope

Figure 1: Dominant peak selection by (a) loudness spectrum, (b)
masking curve, (c) cesptral envelope, and (d) noise envelope. The
original spectrum is plotted as thin solid line and the selected peaks
are marked by crosses. The y-axis is the log-amplitude in dB.

Select by Cepstral Envelope

The cepstral envelope is an approximation of the expected log-
amplitude of the spectrum [24]. That is, it is a frequency-dependent
curve that passes through the mean log-amplitudes at respective
frequencies. Accordingly, it is reasonable to assume that the spec-
tral peaks of the most dominant source lie above the cepstral en-
velope (see Fig. 1(c)). An optional raise of δC dB can be used to
prevent selection of noise peaks.

Select by Noise Envelope

For the case of polyphonic signals, the cepstral envelope may not
give reasonable estimation due to dense distribution of sinusoidal
peaks. Besides, it allows some noise peaks to be selected because
it passes through the mean of the noise peaks. A solution to these
problems is the use of the noise envelope which is the raise of the
mean noise level [18]. The proposed noise level estimation makes
use of the Rayleigh distribution to model the spectral magnitude
distribution of noise and is adaptive in frequency [25]. We raise the
mean noise level by δNdB as the noise envelope to select dominant
peaks (see Fig. 1(d)).

2.2. Candidate Generation and Scoring

Harris suggested locating all groups of pitch harmonics by means
of identifying equally spaced spectral peaks on which the salience
of a group is built [26]. This method belongs to the spectral in-
terval type F0 estimators [27]. For polyphonic signals, however,
partials belonging to different sources may form a group of har-
monics which results in subharmonic F0s. One way to avoid gen-
erating subharmonic F0 candidates is to cast further constraints
on the spectral location of each partial. Similar to the inter-peak
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beating method proposed in [18], we present a method for gener-
ating F0 candidates from the selected dominant peaks. First, the
F0 hypotheses are generated by collecting the spectral intervals
between any pair of dominant peaks in the spectrum. Then, the
spectral location principle is applied: If the generated hypothesis
is not harmonically related to the peaks that support its spectral
interval, it is not considered a reasonable candidate. Due to the
overlapping partials, frequencies of the peaks are not sufficiently
precise. Thus, a semitone tolerance is allowed for the harmonic
matching.

In order to reflect the perceptual dominance of a candidate, we
propose to score F0 candidates based on the loudness spectrumXL

(eq. 1): the score of a candidate is the summation of the firstH =
10 partials in the loudness spectrum. The contribution of a partial
is determined by the harmonically matched peak with the largest
loudness nearby. The partials not selected as dominant peaks will
not contribute to the score.

3. TRACKING BY DYNAMIC PROGRAMMING

Given a sequence of candidates extracted from the spectrogram,
we adapt the tracking algorithm proposed in [17] to decode the
melody stream. Since the melody stream may not be always the
most dominant source at each short-time instant, decoding with
the maximal score will not yield the optimal result. Therefore,
we propose to integrate an additional criterion, spectral envelope
similarity, into the dynamic programming scheme. Following [17],
we describe the problem using the hidden Markov model (HMM):

• Hidden state: true melody F0
• Observation: loudness spectrogram
• Emission probability: normalized candidate score
• Transition probability

– trajectory smoothness: the frequency difference be-
tween two connected F0 candidates

– spectral envelope similarity: the spectral envelope dif-
ference between two connected candidates

Compared with the previous method, two novelties are intro-
duced in the transition probability. One is the probability distri-
bution of the melody F0 difference between frames for evaluat-
ing the trajectory smoothness. Learned from the ADC04 training
database, the distribution is approximated by the Laplace distri-
bution (see Fig. 2). The trajectory smoothness is then modeled
by

F (cn, cm) =
1

2b
exp(−|fcn − fcm |

b · fcm

), b = 0.0077889 (7)

where cn, cm represent the two candidates with frequencies fcn , fcm .
Notice that cn, cm may be located at different analysis frames and
the distance allowed for connection is three frames.

The other novelty is the integration of the spectral envelope
similarity in the transition probability. This is intended to favor
candidate connection with similar timbre such that the decoded
stream is locked to the same source even when it becomes less
dominant (smaller score).

A(cn, cm) = 1−
∑H

h=0 |XL(tn, hfcn ) − XL(tm, hfcm)|2
∑H

h=0 XL(tm, hfcm)2
(8)
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Figure 2: (a) The probability distribution of frequency deviation
from ADC04 database (b) The probability density function mod-
eled by the Laplace distribution. The x-axis is the frequency devi-
ation in percentage.

where tn, tm denotes the frames where cn, cm are extracted. The
transition probability is thus given by

T (cn, cm) = F (cn, cm)A(cn, cm)γ (9)

where γ is a compression parameter which should reflect the im-
portance of the envelope similarity measure. In order to obtain the
optimal trade-off between the emission probability (score) and the
transition probability, we further apply a compression factor β on
the emission probability.

The connection weight between two nodes is defined by the
product of the emission probability and the transition probability,
from which the forward propagated weights can be accumulated.
The optimal path (melody stream) is then decoded by backward
tracking through the nodes of locally maximal weights.

4. EVALUATION

In this section, we present the evaluation of the effectiveness of the
perceptual criteria. Firstly, the different peak selection methods
are evaluated. Then, the system with/without perceptual criteria
is evaluated. Finally, the performance is compared with that of
MIREX participants. The databases used are listed below:

• ADC04: 20 excerpts of about 20s including MIDI, Jazz,
Pop and Opera music as well as audio pieces with a synthe-
sized voice. It is used for our training database [28].

• MIREX05: 25 excerpts of 10-40s from the following gen-
res: Rock, R&B, Pop, Jazz, Solo classical piano [29]. Only
13 excerpts are made publicly available.

• RWC: 100 excerpts, 80 from Japanese hit charts in the 1990s
and 20 from American hit charts in the 1980s [30]. This
large database is rarely used in existing publications on melody
estimation.

Peak selection

To evaluate the performance of different peak selection methods,
we use two metrics: recall rate and mean rank. Recall rate is the
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percentage of the correct melody F0 being extracted in the candi-
date set. A good peak selection method shall not exclude too many
peaks that support the correct F0. Mean rank is the average score
ranking of the correct melody F0 in the candidate set. As long as
the dominant partials of the correct F0 are selected, the resulting
score shall be high and the ranking of the correct F0 be on top.
For the methods implying thresholds, several values are tested in
search of the best configuration. The result is shown in Fig. 3. A
good configuration shall result in a point located more to the top-
right corner in the figure. The reasonable results obtained seem to
locate in the region of which recall rate varies from 0.85 to 0.9 and
mean rank varies from 2 to 1. In general, the perceptual criteria
seem to be more effective than the spectral envelopes in favoring
the correct F0s.
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Figure 3: Evaluation results of different peak selection methods.
The parameters tested are δL:(48,36,24,12), δC :(18,12,6,0) and
δN :(12,9,6,3,0). The masking curve method does not involve any
parameter and is shown as a single point.

System configurations

To understand the contribution of each component in the system,
we propose to evaluate the system with different configurations.
Since our current system does not detect if the melody is present
(voiced) or not (unvoiced), we choose the following evaluation
metrics [4]

Raw Pitch Accuracy =
number of correct estimates
number of ground truth

(10)

which is defined as the proportion of the voiced frames in which
the estimated F0 is within one semitone of the ground truth.

The baseline configuration does not take into account any per-
ceptual properties. The peak selection simply picks the first 20
largest peaks and the tracking does not use the envelope similarity
measure (γ = 0). The perceptual configuration uses the loudness
spectrum for peak selection, the envelope similarity compression
factor γ = 2.4 and the emission probability compression factor
β = 0.1. These parameters are trained from the data set ADC04.
For each configuration, we further evaluate how the tracking mech-
anism improves the average raw pitch accuracy. The results with-
out tracking simply reports the best candidate at each frame. The
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Figure 4: Raw pitch accuracy comparisons: (a) The MIREX par-
ticipant results for ADC04 database (b) The MIREX participant
results for MIREX05 database. The indices corresponding to
MIREX participant IDs are: the first five for MIREX 2010 (HJ1,
TOOS1, JJY2, JJY1, SG1) and the remaining twelve for MIREX
2009 (CL1, CL2, DR1, DR2, HJC1, HJC2, JJY, KD, MW, PC, RR,
TOOS). Please refer to MIREX website for the respective systems
[16]. The horizontal line shows the results of the proposed system.

comparison is shown in Table 1. It is found that the perceptual
configuration performs better than the baseline configuration by
about 3 to 4%. The tracking mechanism slightly improve about
1 to 2%. Further investigation is ongoing to improve the tracking
algorithm.

best candidate candidates + tracking
Baseline config. 73.16% 74.03%

Perceptual config. 76.92% 78.10%

Table 1: Average raw pitch accuracy for baseline configura-
tion(without perceptual properties) and perceptual configuration.
For each configuration, the frame-based estimation (reporting the
best candidate) is evaluated against the tracking system.

Comparison with the state-of-the-art system

Thanks to the MIREX campaign, the performance of the start-of-
the-art systems are publicly evaluated (see Fig. 4). Although the
MIREX database is only partially available for our evaluation, the
results (see Table 2) still demonstrate its competitive performance
among the top-ranked systems.

ADC04 MIREX05 RWC
81.53% 79.00% 74.49%

Table 2: Average raw pitch accuracy of proposed system evaluated
on three databases.
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5. CONCLUSION

The effectiveness of perceptual properties in the context of melody
estimation has been studied. For the proposed melody estimation
system, the accuracy is improved by more than 3% while taking
into account perceptual properties. The use of either loudness or
masking curve demonstrates advantages over the proposed spec-
tral envelope features. The envelope similarity is found to slightly
improve the accuracy, too. The proposed system is evaluated on
more than one hundred excerpts of music recordings and demon-
strates its competitive performance to the state-of-the-art systems.
Future work will be the improvement of the tracking algorithm and
the development of the voicing detection algorithm.
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