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COMPUTER-AIDED TRANSFORMATIONAL ANALYSIS WITH TONE SIEVES

Sieve-theoretical methods are one of the first historical examples of theoretical tools whose implementational character has largely contributed to the development of computational musicology. According to Xenakis' original intuition, we distinguish between elementary transformations of sieves and compound ones. This makes sense if the sieve construction is considered as part of the musical meaning, as we show by analyzing Scriabin's Study for piano Op. 65 No. 3. This clearly suggests that the transformational character of sieve-theory is still open to new possible applications in computer-aided music analysis.

INTRODUCTION

According to Iannis Xenakis introductory note to the cello piece Nomos Alpha (1966), sieve theory is "a theory which annexes the residual classes and which is derived from an axiomatics of the universal structure of music". It applies to the formalization of traditional scales as well as microtonal scales, non octaviant scales and any musical phenomenon having a total order structure (intensities, durations, densities, etc.). For exemple, by combining different periodicity by means of classical set-theoretical operations (union, intersection, complementation, symmetric difference), and by interpreting the resulting sieve in the rhythmic domain one can easily "build [...] very complex rhythmic architectures which can even simulate the pseudo-unpredictable distribution of points on a strait line, if the period is long enough" [START_REF] Xenakis | Sieves[END_REF]. In fact, as pointed out by the composer in his Formalized Music, "sieve theory is the study of the internal symmetries of a series of points either constructed intuitively, given by observation, or invented completely from moduli of repetition" [START_REF] Xenakis | Formalized Music[END_REF]. Moreover, as the composer already predicted in his thesis defense Art/Sciences Alloys, sieve theory is entirely implementable and one of the future research area will be the computer-aided exploration of the theoretical and analytical aspects of this approach [START_REF] Xenakis | Art/Sciences Alloys[END_REF]. By analyzing the evolution of computational musicology, starting from André Riotte and Marcel Mesnage computer-aided models of music analysis (see [START_REF] Riotte | Formalismes et modèles[END_REF] for a collected essay of their theoretical writings), many attemps have been made to apply sieve-theory to other dimensions than pitch [START_REF] Amiot | Duration Structure Generation and Recognition in Musical Writing[END_REF] and to propose general sieve-theoretical algorithms for the formalization of musical structures (see [START_REF] Xenakis | Sieves[END_REF] for some algorithms proposed by Xenakis and [4] for the most recent account of implementational model of sieve-theory). More generally, is the approach of inner metric analysis as such sieve-related. It has been proposed by Guerino Mazzola in the context of the software RUBATO [START_REF] Mazzola | The Topos of Music[END_REF] and has been further elaborated and discussed in many musical analyses by Anja Volk (Fleischer) [START_REF] Fleischer | Die analytische Interpretation. Schritte zur Erschlieung eines Forschungsfeldes am Beispiel der Metrik[END_REF] and [START_REF] Volk | Metric Investigations in Brahms' Symphonies[END_REF]. The building stones of these analyses are local meters, i.e. bounded elementary sieves of onsets within a piece. The inner metrical analysis is the combinatorial investigation of a complex union of all maximal local meters, i.e. as a compound sieve. Metrical and spectral weights quantify the incidence relation of the bounded or unbounded components, respectively. Section 2 of [START_REF] Nestke | Inner Metric Analysis[END_REF] gives a sieve-theoretic account to the study of musical meter. In this paper we only focus on the pitch domain and on the computer-aided sieve-theoretical description of chord structures and transformations between them.

TONE SIEVES AND THEIR TRANSFORMATIONS

The elementary building stones of Xenakis' sieves are discrete affine lines of the kind a b = {ka + b, k ∈ Z}, i.e. arithmetic sequences of integers. General sieves are built from these elementary ones through the boolean operations of union, intersection and complement. OpenMusic visual programming language [START_REF] Agon | Computer Assisted Composition at Ircam: PatchWork & OpenMusic[END_REF] offers specialized functions and factories to construct sieves and to experiment with them for compositorial or analytical purpose (see section 4).

Our analytical example in section 3 departs from two types of elementary sieves and their complements. One the one hand we consider the (complementary) wholetone sieves

2 0 = {..., -4, -2, 0, 2, 4, ...} 2 1 = {..., -3, -1, 1, 3, 5, ...} (1) 
On the other hand we consider the elementary minorthird sieves in associations with their octatonic complements 

From these buildings stones we go on to construct the following unions and intersections:

A 0 -1 = 2 0 ∩ 3 -1 c A 0 0 = 2 0 ∩ 3 0 c A 0 1 = 2 0 ∩ 3 1 c A 1 -1 = 2 1 ∩ 3 -1 c A 1 0 = 2 1 ∩ 3 0 c A 1 1 = 2 1 ∩ 3 1 c (4) B 0 -1 = 2 0 ∪ 3 -1 c B 0 0 = 2 0 ∪ 3 0 c B 0 1 = 2 0 ∪ 3 1 c B 1 -1 = 2 1 ∪ 3 -1 c B 1 0 = 2 1 ∪ 3 0 c B 1 1 = 2 1 ∪ 3 1 c
(5) We consider the six sieve pairs which are obtained from the same two components and introduce the following arrownotation.

= (A 0 -1 , B 0 -1 ) ↑ = (A 0 0 , B 0 0 ) = (A 0 1 , B 0 1 ) = (A 1 -1 , B 1 -1 ) ↓ = (A 1 0 , B 1 0 ) = (A 1 1 , B 1 1 )
Figure 1 displays these six configurations, which are obtained from the combinatorics of 2 wholetone scales and 3 octatonic scales.

This array is useful for the distinction between elementary and compound sieve transformations. Horizontal and vertical connections correspond to the rotation (transposition) of either the octatonic or the whole tone sieves, respectively. Diagonal connections involve a simultaneous rotation of both components. The following analysis of a late piano study of Alexander Scriabin has the interesting property that all successive sieve transformations are elementary. ) and the elementary transformations between them. The association between segments of the piece with these sieve pairs is straight forward and from there the transformational analysis leads to a two-voice "Sieve Counterpoint".

Bars 1 -16

Bars 1 -6 exemplify three sieve pairs, namely ↓ = (A 1 0 , B 1 0 ) in bar 1 -3, = (A 1 1 , B 1 1 ) in bar 4 and = (A 1 -1 , B 1 -1 ) in bars 5 -6 (continuing till bar 8). See Figure2. The left hand of these segments exemplifies the intersection sieves A 1 0 = {1, 5, 7, 11}, A 1 1 = {3, 5, 9, 11}, and A 1 -1 = {1, 3, 7, 9}. Both hands together exemplify the sieves B 1 0 , B 1 1 , and B 1 -1 up to two missing tones each. The score in Figure 3 displays a reduction of the bars 1 -16 , which justifies the sieve pairs in table 1.

Bars 17 -62

In follows a longer passage of 14 bars, which is associated with the opening sieve pair sieve pair (A 1 0 , B 1 0 ). The A in bar 20 does not belong to the intersection sieve A 1 0 , but it imitates the A's in bars 17 and 19 and can therefore be seen as a satellite to the right hand. The tones of both 4).

The associated sieves can be verified with the help of the reduction of bars 17 -62 (see Figure 5).

Bars 63 -92 and Coda

Up to a rhythmic detail bars 63 -92 entirely repeat bars 1 -30. Thus we have the sieve segmentation in table 2.

The Coda (bars 95 ff.) presents a particularly inter- esting situation, because of the chromatic run in the right hand, which seems to undermine the fine harmonic structure by a purely melodic mechanics. However, this is not the case. It appears that the trioles in each half bar fit with the left hand chords which themselves descend in minor thirds along the four bars 95 -98. This results in a corresponding pendulum between the sieve pairs ↓ = (A 1 0 , B 1 0 ) and ↑ = (A 0 0 , B 0 0 ). Within this process each of the two 10tone-sieves B 1 0 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11} and B 0 0 = {0, 1, 2, 4, 5, 6, 7, 8, 10, 11} is fully accumulated.

A Two-Voice Sieve Counterpoint

Aside from the pure segmentation it is of course interesting to study the transformational behavior of the sieves in their succession. To that end we use the metaphor of a two part counterpoint. Each sieve pair is determined by one out of three states of the octatonic component and by one out of two states of the whole tone component (see Figure7). The following two voice counterpoint encodes the octatonic states in its upper voice (using the tones c 2 , b 1 , and d 2 for 3 0 , 3 1 , 3 -1 respectively) and the whole tone states in its lower voice (using the tones c 1 and d 1 for the 2 1 , 2 0 respectively. The sieve-pair "arrow down" = (A 1 0 , B 1 0 ) shall be called the central sieve pair and is meant to be a sieve-theoretic analogue to the traditional concept of "Klangzentrum". In the abstract sieve-counterpoint the concrete tones c 1 and c 2 represent the elementary constituents of the central sieve pair, i.e. the whole tone sieve {1, 3, 5, 7, 9, 11} and the octatonic sieve {1, 2, 4, 5, 7, 8, 10, 11}. In order to avoid confusion between the concrete music and the analytical abstraction we chose tones which are not elements of these sieves. We chose the stable interval of the octave c 1 -c 2 in order to express the aspect of centrality, while the other four intervals c

1 -b 1 , c 1 -d 2 , d 1 - c 2 , d 1 -b 1 represent
"out of center"-sieve pairs. The sievepair (A 0 1 , B 0 1 ) corresponding to the sixt possible interval d 1 -d 2 does not occur in the analysis.

As one can immediately observe, all transformations are elementary, i.e. in each succession there is only one voice moving. This indicates the absence of semitone Cliff Callender [START_REF] Callender | Voice-Leading Parsimony in the Music of Alexander Scriabin[END_REF] argues on the background of investigations into voice leading that the harmonic vocabulary of the late compositions of Alexander Scriabin is located between the wholetone scale and the octatonic. This directly motivates the present study. For further investigations see [START_REF] Noll | The Topos of Triads[END_REF], [START_REF] Noll | Transformationelle Logik der Dissonanzen und Konsonanzen[END_REF] and [START_REF] Noll | From Sieves of Tones to Sieves of Transformations -Analytical Perspectives on Skriabins Study for Piano Op. 65 No.3[END_REF]. In [START_REF] Noll | Transformationelle Logik der Dissonanzen und Konsonanzen[END_REF] the authors give an informal introduction the the study of transformational logics , which includes sieves of transformations. The paper Noll [START_REF] Noll | The Topos of Triads[END_REF]presents a more mathematically oriented investigation into this subject and, finally, [START_REF] Noll | From Sieves of Tones to Sieves of Transformations -Analytical Perspectives on Skriabins Study for Piano Op. 65 No.3[END_REF] investiges the links between sieves of tones, such as in this paper, with sieves of triadic transformations.

We divide the piece in small harmonic segments such as half bars and sometimes larger segments (as in bar 17 and following bars). To each harmonic segment we may attribute exactly one pair of indices m and n such that the left hand tones are contained in the corresponding intersection sieve A m n and that the tones of both hands together are contained in the corresponding union sieve B m n . The sieves A 1 0 /B 1 0 represent the Klangzentrum of this piece. According to the fact that the whole-tone and the octanonic sieves share a periodicity of 12 we may reduce this analysis to pitch classes.

Figure 8 displays the global harmonic organization of the whole piece. For each harmonic segment there is exactly one pair of indices n and m, such that the union sieve A n m covers the all pitch classes of both hands and the intersection sieve B n m covers the left hand pitch classesThe harmonic organisation of the piece becomes transparent.

This segmentation is a proper refinement to the segmentation into maximal sieve-extensions. The former one has less dense segments within the sieves but it is more sound with the topos-theoretic considerations of [START_REF] Noll | The Topos of Triads[END_REF] as well as with the voice leading considerations of [START_REF] Callender | Voice-Leading Parsimony in the Music of Alexander Scriabin[END_REF] 

SIEVE CONSTRUCTIONS IN OPENMUSIC

We now present some aspects of a recent implementation of sieve-theoretical models in OpenMusic visual programming language [START_REF] Agon | Computer Assisted Composition at Ircam: PatchWork & OpenMusic[END_REF]. This environment for computer- 1 The OpenMusic presentation includes an maquette, where each small or large segment can be played and interactively investigated. aided music theory, analysis and composition has been integrated as a package of mathematical tools (MathTools) in the last version 5.0 of OpenMusic. In a more general way, the MathTools environment enables the construction of algebraic models of music-theoretical, analytical and compositional processes. Its "paradigmatic" architecture, taking several different group actions as the basis of variable catalogues of musical structures, enables to give a formalized and flexible description of the notion of "musical equivalence". This makes use of some standard algebraic structures (cyclic, dihedral, affine and symmetric groups) as well as more complex constructions based on the ring structure of polynomials. In this package, there are six main families of functions, which are: circle, sieves, groups, sequences, polynomials, canons. In a previous paper [START_REF] Andreatta | Algebraic Models in Music Theory, Analysis and Composition: Towards a Formalized Computational Musicology[END_REF] we focused on four families of tools which were strictly connected with the problem of paradigmatic classification of musical structures (the circular representation, groups and polynomials). Although from a mathematical point of view sieves are infinite ordered structures, the sieve theoretical construction we used for the analysis of Scriabin's Study Op. 65 No. 3 are isomorphic to subsets of the finite cyclic group of order 12. For this reason, we can easily represent the sieves by means of the circular representation. Figure 9 shows the OpenMusic implementation of the complementary whole-tone sieves of equation ( 1).

Figure 10 shows the constructions and musical representation of the first octatonic sieve in equation ( 3) starting from its minor-third complements. Notice that the same octatonic sieve could be constructed as the set-theoretical union of two minor-thirds sieves (Figure 11).

By using set-theoretical intersections and unions, we can graphically represented the process leading, for exemple, to the construction of A 0 0 = 2 0 ∩ 3 0 c and B 0 0 = 2 0 ∪ 3 0 c (see Figure 12). Starting from the circular representation, sieves can also be represented in traditional musical notation via the function c2chord which maps the geometric representation of a given chord into a chord or a rhythmic pattern. Figure 13 shows the pitch and rhythmic representation of the sieve B 0 0 = 2 0 ∪ 3 0 c .

CONCLUSIONS

It is very likely that the sieve analysis of the chosen example by Alexander Scriabin does not represent a poietic perspective. But on a neutral level of analysis it is quite convincing and pedagogically more convincing than some of Xenakis own examples. Furthermore it suggests a more systematic study of partial transformations in complex sieve constructions, i.e. the independent transformations of elementary components of compound sieves. In our examples the partial transformations represent a special case of transpositions, but generally this will not be the case: A transposition of a defining component of a compound sieve does not necessarily result in a transposition of the compound sieve. Sieve-theoretical models have both a pedagogical and a musicological interest for they enable the music theorist to visualize some structural musical properties in a geometric way and to test the relevance of different segmentations in music analysis. This could have a strong implication in the way to teach music theory, analysis and composition.
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