
HAL Id: hal-01161035
https://hal.science/hal-01161035

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multisymplectic geometry with symmetry. Application
to the Reissner beam

Joël Bensoam, Florie-Anne Baugé

To cite this version:
Joël Bensoam, Florie-Anne Baugé. Multisymplectic geometry with symmetry. Application to the
Reissner beam. Unfold Mechanics for Sound and Music UMSM, Sep 2014, Paris, France. pp.1-1.
�hal-01161035�

https://hal.science/hal-01161035
https://hal.archives-ouvertes.fr


Multisymplectic geometry with symmetry.
Application to the Reissner beam

Joël Bensoam, Florie-Anne Baugé
IRCAM, UMR 9912 STMS (IRCAM/CNRS/UPMC)

Instrumental Acoustics Team
1 place I. Stravinsky 75004 Paris, France

Email: joel.bensoam@ircam.fr, florie-anne.bauge@ircam.fr

Abstract—Although acoustics is one of the disciplines of
mechanics, its ”geometrization” is still limited to a few areas. The
Reissner beam is one of the simplest acoustical system that can
be treated in the context of mechanics with symmetry. It seems
that the non-linear phenomena can be handled in their intrinsic
qualities through the concepts of differential geometry. Using
the symmetry of Lie groups, the geometric constructions needed
for reduction are presented in the context of the ”covariant”
approach.

INTRODUCTION

This article is devoted to extend, in the context of field
theories, some results of symplectic geometry.

A. Article organization

In order to state the subject, the study made by Elie Cartan
on variational problems is related in a brief subsection. He
has explained, in his "Leçon sur les invariants intégraux" [1],
the way the Poincaré-Cartan form is obtained and what are its
properties. The differential of the Poincaré-Cartan form, called
pre-symplectic form, gives rise to the Hamilton’s equation of
motion and can be related to the Poisson formalism.

After this historical introduction a section is dedicated to
extend the discussion to a more general jet-bundle and leads to
what is called now multi-symplectic geometry1. In this context,
the proofs are more laborious but follow the main ideas of
Cartan. This leads to a general formalism (section I) where
theories on reduction by Lie group action can be handled
with confidence in the second part of this article (section II).
Hamiltonian formalism finishes this paper.

B. Historical remark: Cartan’s lesson

Let’s summarize Elie Cartan’s lesson where Hamiltonian
formalism is obtained by introducing in a natural way the
Poincaré-Cartan form. This form comes from considering
variations of the action functional along real trajectories with
variable boundary conditions. The action functional is written
A =

∫ t1
t0

£(q, q̇, t) dt, (where £(q, q̇, t) is the lagrangian
density of the system).

Cartan expresses the variation of the action δA using a
variation vector field Z(ε, t). With his "magic rule" for the

1By the way, it is worth mentioning that Cartan in 1933 in [2] thought about
doing a geometry where geodesics would be replaced by (hyper)surfaces.

Lie derivative of a form: LZα = Z y dα + d(Z yα), he may
compute (integrating by part)

δA = dA(Z) =

[
∂£

∂q̇

∂qε
∂ε

∣∣∣∣
ε=0

+ £ dt(Z)

]t1(ε)

t0(ε)

(1)

−
∫ t1(ε)

t0(ε)

(
d

dt

(
∂£

∂q̇

)
− ∂£

∂q

)
∂qε
∂ε

∣∣∣∣
ε=0

dt.

By choosing a vector field of variation, Z, vanishing on the
boundaries t0, t1, the first term disappears. The principle of
least action then leads to the well known Euler-Lagrange
equation of motion

d

dt

(
∂£

∂q̇

)
− ∂£

∂q
= 0. (2)

But Elie Cartan continues his discussion by choosing vari-
able boundary conditions (the boundaries ti(ε) depend on
a parameter of variation ε). With this assumption and for
real trajectories verifying the Euler-Lagrange equation (2), the
variation of action reduces to the first term of (1) since the
second integral vanishes. On the boundaries, ti(ε), he then
uses the relation

∂qε
∂ε

∣∣∣∣
ε=0

= dq(Z)− q̇dt(Z), (3)

in (1) to obtain δA = [Θ]
t1
t0

introducing the Poincaré-Cartan
form

Θ = p dq −Hdt, (4)

with new variables p = ∂L
∂q̇ and H = ∂L

∂q̇ q̇ − L: the Legendre
transform appears very naturally.

Then, Cartan shows that this computation leads to an
integral invariant along critical sections (solutions) of the
variational problem. To do so, he considers a collection of real
trajectories labeled by a parameter ε. "Finally, suppose that
we consider a tube of trajectories, i.e., a closed continuous
linear collection of trajectories, each of which is limited to
a time interval (t0, t1) that varies also with ε. The formula
which gives the variation of the action along these variable
trajectories reduces to

δA = [Θ]
t1
t0

= (Θ)1 − (Θ)0.



When one returns to the initial trajectory the total variation
of the action is obviously zero, in such a way that, if one
integrates with respect to ε then one will have∮

δA = 0⇒
∮

(Θ)1 =

∮
(Θ)0

[...] given an arbitrary tube of trajectories, if the integral
∮

Θ
is taken along a closed curve around the tube then that integral
will be independent of that curve and will depend only upon
the tube..."

Fig. 1. Tube of real trajectories: the integral I =
∮
Γ Θ does not depend

on the choice of the closed loop Γ around the tube. This quantity is thus an
integral invariant that depends only on the choice of the tube.

So, the quantity I =
∮

Θ is invariant i.e. does not depend on
the closed curve Γ along the tube of trajectories. In a modern
language, I is invariant along the vector field X tangent to the
critical sections, that is

0 = dI(X) =

∮
Γ

LX Θ =

∮
Γ

X y dΘ +

∮
∂Γ

X yΘ.

The last integral taken over a closed loop is obviously null.
Since this property is true for any choice of the tube, one
must have X ydΘ = 0. So Cartan introduces the differential
of the Poincaré-Cartan from: Ω = −dΘ = dq ∧ dp+ dH∧ dt
that verifies X yΩ = 0, for all vector field X tangent to real
trajectories. In other words, since Ω is also a closed form, the
Lie derivative of the (pre)-symplectic form vanishes

LXΩ = 0, ∀X tangent to real trajectories. (5)

He then notices that each coefficient of δq = dq(X),
δp = dp(X) and δt = dt(X) in X yΩ = 0, i.e.

(dp+
∂H
∂q

dt)δq − (dq − ∂H
∂p

dt)δp− (dH− ∂H
∂t

dt)δt = 0

must necessarily be canceled. Doing so, he recovers the
Hamilton canonical equation of motion

dq = ∂H
∂p dt

dp = −∂H∂q dt

dH = ∂H
∂t dt

(6)

C. Poisson formalism

More generally, the invariance (5) of the (pre)-symplectic
form along real trajectories verifying dt(X) = 1 can be written
X y dq ∧ dp = dH. The real trajectories can be viewed as a
canonical transformation (an infinitesimal transformation that

conserves the canonical symplectic structure Ω̃ = dq ∧ dp).
It gives rise to the notion of hamiltonian vector field YF
associated to a canonical transformation F defined by

YF y Ω̃ = dF.

This last statement can also be written Ω̃(YF , .) = dF (.).
Thus, considering the Hamiltonian vector field XH associated
to a physical problem, the dynamic of any observable F can
be computed by Ω(YF , XH) = dF (XH) where the last term
is related to the variation of F along real trajectories: that is
dF (XH) = dF

dt = Ḟ . This leads, by introducing the Poisson
bracket {F,H} = Ω̃(YF , XH), to the Poisson equation

Ḟ = {F,H}. (7)

I. LAGRANGIAN FORMALISM OF FIRST-ORDER FIELD
THEORIES

This discussion has started in 1922 in a context where
only one independent variable "t" was taken into account in
variational problems. In modern language, one would speak
about symplectic geometry. The considered space is a jet-
bundle with unidimensional base (i.e. endowed with volume
form ω = dt).

This section relates this formalism to a more general jet-
bundle. In the context of field theory, the state space (t, q, v)
(time, position, velocity) originally conceived by Cartan to
study the geometry of the trajectories (curves) according to
the optimization principle, is extended to fiber bundles. To be
more precise, let M be an orientable manifold and π : E →M
a differentiable fiber bundle with typical fibre F (dim F = N ).
In the fiber bundle context, more than one independent variable
(dim M = n+1) are allowed for (space-time) parametrization
and then, the concept of curves is generalized to the concept
of sections (φ : M → E in the sequel).

To take into account the velocities, it is also necessary to
lift these sections to the extended jet-bundle j1E (velocity
space for short) to obtain (j1φ) : M → j1E. The holonomic
concept is used to that purpose with the help of a contact
form θ which might be related to the form (3) in Cartan’s
lesson. Furthermore, an optimization process seeks the critical
section among a family of variated sections generated by a
infinitesimal transformation. The vector field tangent to this
transformation (say Z) needs also to be lifted by a holonomic
process (j1Z in the sequel).

A. Principle of least action

From now on, M is an oriented manifold and ω ∈ Λn+1(M)
is a fixed volume (n + 1)-form on M . With these elements
well-defined (see Arturo Echeverria-Enriquez & al [3] and
appendix A1 for notations) the lagrangian formalism is used.
The lagrangian form is written as

L = £(xµ, yA, vAµ )ω, £ ∈ C∞(J1E),

in a natural local system (xµ, yA, vAµ ) on J1E. So, we can
define



DEFINITION I.1 Hamilton principle
Let ((E,M ;π),L) be a lagrangian system. Let Γc(M,E) be
the set of compact supported sections of π and consider the
(action) map

A : Γc(M,E) → R

φ 7→
∫
M

(j1φ)∗L.

The variational problem posed by the lagrangian density L
is the problem of searching for the critical (or stationary)
sections of the functional A .

The section φ must be stationary with respect to variations
given by φε = τε ◦ φ, where τε is a local one-parameter
group of any vector field Z ∈ χV (π)(E) which is π-vertical,
i.e. Z = βA~∂A (with lift (33), see appendix for details).
Nevertheless, even in this more complicated circumstance,
a similar expression to (1) may be obtained to express the
variation of the action functional, ∀β

δA =

∫
∂M

(j1φ)∗j1Z yΘL (8)

−
∫
M

(βA ◦ φ)

[
~∂µ(

∂£

∂vAµ
◦ (j1φ))− (

∂£

∂yA
◦ (j1φ))

]
ω.

Now, the (Lagrangian) Poincaré-Cartan (n+ 1)-form

ΘL =
∂£

∂vAµ
dyA ∧ dnxµ −

(
∂£

∂vAµ
vAµ −£

)
ω, (9)

is introduced with the n-form dnxµ = ~∂µ yω. Following
Cartan’s idea, the Poincaré-Cartan (n+1-form) is obtained
from the variation of the action functional and the Legendre
transformation2 follows in a natural way as it appears clearly
in (9).

On one hand, choosing a vector field Z that vanishes on the
boundary ∂M gives the Euler-Lagrange field equations

~∂µ
∂£

∂vAµ

∣∣∣∣
(j1φ)

− ∂£

∂yA

∣∣∣∣
(j1φ)

= 0, A = 1, . . . , N. (10)

On the other hand, if Z is not compactly supported, the
first integral on the boundary ∂M in the variation (8) must
be taken into account. Choosing sections φ verifying the
Euler-Lagrange equations (10), the second integral vanishes.
The lagrangian pre-multisymplectic (n + 2)-form in J1E,
ΩL = −dΘL, is then used in the variation theorem (see, for
example, [3] for proof and details).

B. Variation theorem

2Legendre transformation pµA = ∂£
∂vAµ

, H = ∂£
∂vAµ

vAµ −£.

THEOREM 1 Variation theorem
The following assertions regarding a section φ of the bundle
π : E →M are equivalent

(i) φ is a stationary point of A =
∫
M

(j1φ)∗L;
(ii) the Euler–Lagrange equations (10) hold in coordinates;

(iii) for any vector field X on J1E

(j1φ)∗(X yΩL) = 0. (11)

The variation theorem is really useful especially in pres-
ence of symmetry. It allows to demonstrate the first Noether
theorem and to obtain a conserved quantity named current.

C. Lagrangian symmetries and Noether’s theorem

In Mechanics, a symmetry of a lagrangian dynamical system
is a diffeomorphism in the phase space of the system (the
tangent bundle) which leaves the lagrangian function invariant.
It can be thought of being generated by a vector field. This
leads to the following definition:

DEFINITION I.2 An infinitesimal natural symmetry
Let ((E,M ;π),L) be a lagrangian system. An infinitesimal
natural symmetry of the lagrangian system is a vector field
S ∈ χ(E) such that its canonical prolongation leaves L
invariant (vanishing Lie derivative)

L(j1S)L = 0.

If the vector field S ∈ χ(E) is an infinitesimal natural
symmetry of the lagrangian system ((E,M ;π),L) then the
Poincaré-Cartan form is also invariant, i.e Lj1SΘL = 0.

According to the first Noether’s theorem, the presence of
symmetries leads to conserved quantities. The main result is:

THEOREM 2 First Noether’s theorem
Let S ∈ χ(E) be an infinitesimal natural symmetry of
the lagrangian system ((E,M ;π),L). Then, the n-form
J(S) := (j1S) yΘL is constant (closed) on the critical sec-
tions of the variational problem posed by L.

Proof: let φ : M → E be a critical section of the variational
problem, that is, according to the variation theorem (11)

(j1φ)∗X y dΘL = 0, ∀X ∈ χ(J1E)

Since L is invariant under S, we also have the invariance of
the Poincaré-Cartan form

0 = Lj1SΘL = d
(
j1S yΘL

)
+ j1S y dΘL.

Therefore, on critical section

0 = (j1φ)∗Lj1SΘL

= (j1φ)∗
[
d
(
j1S yΘL

)]
+ (j1φ)∗

[
j1S y dΘL

]
= (j1φ)∗

[
d
(
j1S yΘL

)]
= d

[
(j1φ)∗

(
j1S yΘL

)]



and the result follows. For critical section φ of the variational
problem posed by L, the expression (j1φ)∗J(S) is called
Noether’s current associated with S.

II. LAGRANGIAN FORMALISM WITH SYMMETRY

To obtain the preceding results, the vector field of variation
(say Z) needs to be lifted (j1Z). This process can be handled
by considering the canonical contact form given in coordinates
by θ = (dyA − vAµ dxµ)⊗ ~∂A (see appendix A2 and A3).

What happens if we now consider a principal bundle where
the fiber is a Lie group? What are the expressions of the
contact form and the lift of vector field in this context? What
does become of the Euler-Lagrange equations of motion and
what about the Poincaré-Cartan form? If all these questions
had an answer then the Noether theorem will give new
expression of an invariant current along solutions.

Since each velocity can be translated to the tangent space
at the identity e of the group G, the Lie algebra g is used in
the 1-jet bundle definition and the specific canonical contact
form must be expressed using the Maurer-Cartan form. The
definition generally used to compute the lift of vector field j1Z
is to say that its flow leaves invariant the contact module θ. We
would prefer, for practical reasons, a more geometric definition
saying that a holonomic section stay holonomic under the
action of a contact transformation.

Fig. 2. The section (j1φ) is called the canonical lifting or the canonical
prolongation of φ to J1E. A section of π which is the canonical extension
of a section of π is called a holonomic section

Thus, in the following (and it is the main interest of this
article), the Poincaré-Cartan and multi-symplectic forms are
obtained for a principal G bundle. It allows to formulate the
Euler-Poincaré equations of motion and leads to a Noether
current defined in the dual Lie algebra.

A. Principal bundle

1) Left-Right invariant bases and canonical contact form:
Let consider now a principal G bundle π : E → M with
structure group G. A point in the bundle is P = (xµ, gA) where
g belongs to the group G (µ = 1, . . . , n, 0 and A = 1, . . . , N ).
Let ~eA, be the left-invariant basis on TG obtained by left
translation TLg from the identity e of the vectors ~∂A

~eA = TeLg(~∂A)

If the point P̄ = (xµ, gA, ξAµ ) of the 1-jet bundle J1E is over
P = (xµ, gA) then it exists a section φ representative of that
point such that ξAµ = λA( ∂φ∂xµ ). Here, the form λA is the
Maurer-Cartan 1-form: dual basis of the left-invariant basis
~eA defined by λA(~eB) = δAB . The computation of the contact
form gives in this context

θ P̄ = (λA − ξAµ dxµ)⊗ ~eA. (12)

B. Jet prolongation of vector fields: the lift

If a vector field is given in the coordinate system (xµ, gA)
by

Z = αµ~∂µ + βA~eA, (13)

its lift requires the variation of the Maurer-Cartan form
λ = λA ⊗ ~∂ξA which is involved in the contact form (12).
The idea to obtain this jet-prolongation (or the infinitesimal
contact transformation) is
• to start from a holonomic section (j1φ),
• to transform φ : M → E into φε = τZε ◦ φ according to

the flow generated by Z,
• to ask for the new section (j1φε) to be also holonomic.

Doing this in an infinitesimal way, the jet-prolongation j1Z
of Z is obtained.

If the section φ : M → E is characterized by n+ 1 tangent
vector fields Xµ (µ = 1, . . . , n, 0), this infinitesimal procedure
will involve the bracket of vector fields. More precisely, the
Lie derivative of the two vector fields X and Z, at point P, is
given by (see [4] for example),

LZX = [Z,X] (P) =
d

dε

∣∣∣∣
ε=0

(
(τZε )∗X(P′)

)
=

d

dε

∣∣∣∣
ε=0

(
T(τZ−ε)

X(P′)
)

= lim
ε→0

T(τZ−ε)
X(P′)−X(P)

ε

where P′ = τZε (P). Evaluating this definition at point P′, one
obtains a finite expansion of the tangent map of the flow τZε

Xε(P′) = T(τZε )X(P) = X(P′) + ε [X,Z] (P′) +O(ε2) (14)

which represents also the vector field tangent to the trans-
formed section φε. Without loss of generality, it is convenient
to consider the "normalized" vector fields

X̃µ = ~∂µ + ξAµ ~eA (15)

which are tangent to the section φ at point (xµ, gA, ξAµ ). Since
the lifted section (j1φ) (resp. (j1φε)) is asked to be holonomic,
the contact form (12) taken in the direction of X̃µ cancels and
gives the following relation

λA(X̃µ) = ξAν dx
ν(X̃µ) = ξAν δ

ν
µ = ξAµ

(resp. λAε (X̃ε
µ) = (ξε)

A
µ ). So the lifts of the sections, (j1φ)

and (j1φ)ε, go respectively through the points (xµ, gA, ξAµ )

and (xµε , g
A
ε , (ξε)

A
µ ). The component along ~∂ξA of j1Z (the

lift of the vector field Z) is then obtained by the following
calculus

dξAµ (j1Z) = lim
ε→0

(ξε)
A
µ − ξAµ
ε

= lim
ε→0

λAε (X̃ε
µ)− λA(X̃µ)

ε
.



This expression involves the variation of the Maurer-
Cartan form λAε in the Z direction that can be again ex-
pressed using the Lie derivative formula

(
LZλ

A
)

(X) =

limε→0
λAPε (Xε)−λAP (X)

ε to give

λAPε(Xε) = λAP (X) + ε
(
LZλ

A
)

(X) +O(ε2). (16)

The fact that the section φε, transformed under the action of
Z with tangent vectors X̃ε

i , is also holonomic is equivalent to
the following linear system

θ P̄(X̃
ε
i ) = 0⇒ λAε (X̃ε

i ) = (ξε)
A
ν dx

ν(X̃ε
i ).

From this and using finite expansions (14) and (16) for vector
fields and Maurer-Cartan form, one can easily obtain

(ξε)
A
µ = ξAµ + ε

((
LZλ

A
)

(X̃µ)− ξAi dxi(
[
X̃µ, Z

]
)
)

+O(ε2)

and thus

dξAµ (j1Z) =
(
LZλ

A
)

(X̃µ)− ξAi dxi(
[
X̃µ, Z

]
)

This can be simplified in three steps.
1) First step: Using the vectorial 1-form λ and noting that,

on one hand, λP(X̃µ) = ξµ and that, on the other hand taking
into account the Maurer-Cartan equation for λ, we have

(LZλ) (X̃µ) = (d(Z yλ) + (Z y dλ)) (X̃µ)

= (dβ − (Z y [λ,λ])) (X̃µ) since dλ = − [λ,λ]

= (dβ − ([λ(Z),λ])) (X̃µ)

= dβ(X̃µ) +
[
λ(X̃µ),λ(Z)

]
= dβ(X̃µ) +

[
ξµ,β

]
,
(

= dβ(X̃µ) + λ
[
X̃µ, Z

])
and then

dξAµ (j1Z) = dβA(X̃µ) + λA(
[
X̃µ, Z

]
)− ξAi dxi(

[
X̃µ, Z

]
)︸ ︷︷ ︸

θAP̄ ([X̃µ,Z])

2) Second step: As the differential of the map (xµ, gA) 7→
~eA has no component along ~∂µ, i.e. d(~eA) = ΩBA~eB , the
computation of the commutator[

X̃µ, Z
]

= dZ(X̃µ)− dX̃µ(Z)

=
(
dαν~∂ν + dβA~eA + βAd(~eA)

)
(X̃µ)−

(
ξAµ d(~eA)

)
(Z)

= dαν(X̃µ)~∂ν +
[
(dβA + βAΩBA)(X̃)− ξAµ ΩBA(Z)

]
~eB

shows3 that the term dxi(
[
X̃µ, Z

]
) equals dαi(X̃µ). So we

have now

dξAµ (j1Z) = dβA(X̃µ) +
[
ξµ,β

]A − ξAi dαi(X̃µ).

3It is important to notice that X̃µ are defined for a fixed ξAµ .

3) Third step: Expressing any vector X̃µ in both basis ~eA
and ~∂A gives X̃µ = ~∂µ + ξIµ~eI = ~∂µ + vQµ

~∂Q, for some ξIµ
and vQµ . That is, if dy is the dual basis to the basis ~∂A,{

λA(X̃µ) = ξAµ = λA(vQµ
~∂Q) = vQµ λ

A(∂yQ)

dyB(X̃µ) = vBµ = dyB(ξIµ~eI) = ξIµdy
B(~eI)

and then since βA is a function of x and y

dβA(X̃µ) =

(
∂βA

∂xν
dxν +

∂βA

∂yB
dyB

)(
~∂µ + ξIµ~eI

)
=
∂βA

∂xµ
+
∂βA

∂yB
ξIµdy

B(~eI) =

(
∂βA

∂xµ
+ vBµ

∂βA

∂yB

)
(same computation for α). Finally, the lift of a vector field
given by (13), at point P̄ = (xµ, gA, ξAµ ) is

dξAµ (j1Z)P̄ =

(
∂βA

∂xµ
+ vBµ

∂βA

∂yB

)
− ξAν

(
∂αν

∂xµ
+ vBµ

∂αν

∂yB

)
+

[
ξµ,β

]A
,

remembering that vBµ = dyB(X̃µ) = ∂φB

∂xµ . It mainly differs by
a Lie bracket term from the standard formalism (32) given for
convenience in appendix A3. if Z ∈ χV (π)(E) is a vertical
vector field (that is, π∗Z = 0 - then if τε is a local one-
parameter group associated with Z, it induces the identity on
M), it would be written Z = βA~eA, in a local natural system
of coordinates, with canonical prolongation (lift)

j1Z = βA~eA +

[(
∂βA

∂xµ
+ vBµ

∂βA

∂yB

)
+
[
ξµ,β

]A] ~∂ξAµ . (17)

III. LAGRANGIAN REDUCTION FORMALISM OF
FIRST-ORDER FIELD THEORIES

This section is devoted to the introduction of reduced
lagrangian densities. The reduction is due to symmetry induced
by the action of a lie Group G. Following, step by step, the
construction made in the section I for standard lagrangian
formalism, the geometrical objects (Poincaré-Cartan form and
Euler-Poincaré equation) are then obtained naturally and allow
us to study the dynamical behaviour of field theories with
symmetry. The reduced lagrangian form is now written as

L = l(xµ, gA, ξAµ )ω, l ∈ C∞(J1E), ω ∈ Λn+1(M)

in a natural local system (xµ, gA, ξAµ ) on J1E. This reduced
lagrangian is used in the Hamilton principle I.1 with the action
functional A =

∫
M

(j1φ)∗L.

A. Euler Poincaré equations and Poincaré-Cartan form

Introducing the co-adjoint operator ad∗ such that([
ξµ,β

]
,π
)

=
(

adξµβ,π
)

=
(
β, ad∗ξµπ

)
,

the same procedure as in preceding sections can be used. In
the computation of δA (i.e. introducing the lift formula 17),
the (Lagrangian) Poincaré-Cartan (n+1)-form must be written

ΘL =
∂l

∂ξAµ
λA ∧ dnxµ −

(
∂l

∂ξAµ
ξAµ − l

)
ω, (18)



to obtain the same form as (1) or (8). That is, ∀β,

δA =

∫
∂M

(j1φ)∗j1Z yΘL (19)

−
∫
M

(βA ◦ φ)

[
~∂µ(

∂l

∂ξAµ
◦ (j1φ))

− (TAB
∂l

∂yB
◦ (j1φ))−

(
ad∗ξµ

∂l

∂ξµ

)A
◦ (j1φ)

]
ω,

setting TAB = dyB(~eA). It obviously furnishes the equations
of motion, named Euler-Poincaré equations, ∀A = 1, . . . , N

~∂µ
∂l

∂ξAµ

∣∣∣∣
(j1φ)

−
(

ad∗ξµ
∂l

∂ξµ

)A ∣∣∣∣
(j1φ)

− TAB
∂l

∂yB

∣∣∣∣
(j1φ)

= 0.

(20)
The Lagrangian Poincaré-Cartan (n + 2)-form (or pre-
multisymplectic) in J1E is then introduced as usual by
ΩL = −dΘL.

B. Legendre transformation

The covariant Legendre transformation for L is now con-
structed. It is a fiber-preserving map between the Jet-bundle
and its dual FL : J1E → J1E∗ over E which has the
coordinate expressions

πAµ =
∂l

∂ξAµ
, h =

∂l

∂ξAµ
ξAµ − l (21)

for the multimomenta πAµ and the covariant reduced hamilto-
nian h. In this circumstance, the Cartan form ΘL (resp. ΩL)
appears to be the pulling back of a canonical form Θh (resp.
Ωh) on J1E∗

ΘL = FL∗Θh (resp. ΩL = FL∗Ωh)

that is

Θh = πAµ λ
A ∧ dnxµ − hω, and Ωh = −dΘh (22)

C. Symmetries for reduced Lagrangian systems

1) Infinitesimal symmetries: For the particular case where
the group G acts on itself, by a left action

Lm : G → G

g 7→ m ◦ g,

an infinitesimal generator can be defined. Lets take a curve
m(s) = exp(ηs) through the identity at s = 0 with tangent
vector η. It gives rise to the curve g(s) = m(s) ◦ g and,
from a section φ, to a family of sections φs = m(s) ◦ φ. By
definition, the infinitesimal generator vector field of the left

action, at point g, is given by Sη = d
ds

∣∣∣∣
s=0

g(s) which is the

definition of the tangent map of the right action Rg since

d

ds

∣∣∣∣
s=0

g(s) =
d

ds

∣∣∣∣
s=0

(m(s)◦g) =
d

ds

∣∣∣∣
s=0

Rgm(s) = TgR(η).

In other words, Sη is the right invariant vector field XR
η

generated by η ∈ g. It coincides, at any point g, with a left

invariant vector field XL
ψ where ψ is related to η by the adjoint

operator
η = Adgψ, or ψ = Adg−1η

2) Noether current: If an infinite natural symmetry, Sη ,
leaves the reduced lagrangian invariant (i.e. Lj1SηL = 0), the
Noether’s theorem 2 may be applied. That is to say that a
Noether current Jη = j1Sη yΘL can be associated to each
η ∈ g using the Poincaré-Cartan form ΘL. The question is
then to compute the prolongation j1Sη from Sη . Since Sη is
a right invariant vector field, it has constant coordinates on the
right basis

Sη = ηA~eR
A = XR

η ,

(from now on, right and left invariant basis are denoted by ~eR

and ~eL). So, in the left basis ~eL
A we have

Sη = XL
ψ = ψA~eL

A = (Adg−1η)A~eL
A,

according to the fact that ψ and η are related by the adjoint
operator. The prolongation j1Sη can then be written, for some
γAµ ,

j1Sη = (Adg−1η)A~eL
A + γAµ

~∂ξAµ .

Its contraction with the Poincaré-Cartan form ΘL is then

Jη = j1Sη yΘL

=
∂l

∂ξAµ
λA(j1Sη) ∧ dnxµ −

(
∂l

∂ξAµ
ξAµ − l

)
ω(j1Sη)

=
∂l

∂ξAµ
(Adg−1η)A ∧ dnxµ =

(
πµA, (Adg−1η)A

)
dnxµ

=
(
(Ad∗g−1πµ)A, ηA

)
dnxµ = (Πµ,η) dnxµ ∀η

It allows to define a Noether current n-form

J = Πµdnxµ (23)

by stating Jη = (J,η). Here we recognize the right mo-
mentum Πµ = Ad∗g−1πµ expressed from the left momentum
πµA = ∂l

∂ξAµ
. The n-form J is constant (closed) on the critical

sections of the variational problem posed by L which gives
the balance law

d[(j1φ)∗J ] = (j1φ)∗dJ = (j1φ)∗(
∂Πµ

∂xµ
)ω = 0. (24)

3) Example: Noether current for the Reissner’s beam: In
that case, J = Πµdnxµ = Πsdnxs+Πtdnxt, and ω = ds∧dt.
So,

dnxs = ∂s y (ds ∧ dt) = dt

dnxt = ∂t y (ds ∧ dt) = −ds
Πs = Σ = Ad∗g−1σL, σL = CεL
Πt = Π = Ad∗g−1πL, πL = HνL

which gives the Noether current

J = Σdt−Πds

and the balance law

0 = (j1φ)∗dJ = (j1φ)∗
(
∂Σ

∂s
+
∂Π

∂t

)
ω.



IV. HAMILTONIAN FORMALISM

A. Covariant or multisyplectic Hamiltonian formalism

In this section, the covariant (or multisymplectic) hamilto-
nian formalism is developed (see also [5]).

1) Elements for the covariant hamiltonian formalism:
Following Marsden [6], we introduce sections in the dual space
J1E∗ by the definition

DEFINITION IV.1
L et φ be a section of the fiber bundle π : E →M and (j1φ)
its first jet. A section (j1φ)∗ of J1E∗ is called conjugate to
(j1φ) if

(j1φ)∗ = FL ◦ (j1φ).

In this case we say that (j1φ)∗ is holonomic.

With this definition, the variation theorem 1 is modified to

THEOREM 3
I f the Legendre transformation FL : J1E → J1E∗ is a fiber
diffeomorphism over E, the following assertions regarding a
section φ of the bundle π : E →M are equivalent

(i) φ is a stationary point of
∫
M

(j1φ)∗L;
(ii) (j1φ)∗ is a Hamiltonian section for H, that is to say

that for any vector field W on J1E∗

(j1φ)∗(W yΩH) = 0. (25)

2) De Donder-Weyl equations for Hamiltonian with sym-
metry: Let’s calculate the expression W yΩh = 0 according
to the multisymplectic form Ωh. From (22) one obtains

W y
(
−
(
dπAµ ∧ λA − πAµ [λ,λ]

A
)
∧ dnxµ + dh ∧ ω

)
= 0.

The pull-back by (j1φ)∗ yields the De Donder-Weyl equations
∂πAµ
∂xµ

∣∣∣∣
(j1φ)∗

− (ad∗∂h
∂πµ

πµ)A
∣∣∣∣
(j1φ)∗

+ TAB
∂h
∂yA

∣∣∣∣
(j1φ)∗

= 0

ξAµ

∣∣∣∣
(j1φ)∗

= ∂h
∂πAµ

∣∣∣∣
(j1φ)∗

,

(26)
that is to say, the hamiltonian form of Euler-Poincaré equa-
tion (20) (note that the last equation is the inverse Legendre
transformation). Right invariant halmitonian form can also be
obtained as (change of sign in the adjoint term)
∂ΠAµ
∂xµ

∣∣∣∣
(j1φ)∗

+ (ad∗∂h′
∂Πµ

Πµ)A
∣∣∣∣
(j1φ)∗

+ TRBA
∂h′

∂yA

∣∣∣∣
(j1φ)∗

= 0

χAµ

∣∣∣∣
(j1φ)∗

= ∂h′

∂ΠAµ

∣∣∣∣
(j1φ)∗

.

(27)
where the Hamiltonian h

′ is expressed with right multi-
momentum Π and right velocity χ ∈ g.

B. Hamiltonian form of Noether conservation law

In the sequel, it is convenient to introduce the right invariant
Maurer-Cartan form ρ. That is, If the point P̄ = (xµ, gA, χAµ )
of the 1-jet bundle J1E is over P = (xµ, gA) then it exists a
section φ representative of that point such that χAµ = ρA( ∂φ∂xµ ).

1) Symmetric vector field: If now, we consider a vector field
of symmetry. To be more precise, if the lagrangian density is
invariant under the left action of a Lie group, we consider a
right invariant vector field Sη = ηA~eR

A with constant vector η
in the Lie-algebra g. This vector field has, according to (17),
an extension4 at the point (xµ, yA, χAµ ) ∈ J1E

j1Sη = ηA~eR
A −

[
χµ,η

]A
∂χAµ (28)

By symmetry the Lie derivative of the reduced lagrangian (l′

express on the right for example) vanishes: Lj1Sη l
′ = 0. This

means dl′(j1Sη) = 0, since j1S is a π-vertical vector field
(no component on ~∂µ).

2) Conservation law: So, we have by symmetry and with
change of basis 5

0 = dl′(j1Sη) =

(
∂l′

∂xµ
dxµ +

∂l′

∂yA
dyA +

∂l′

∂χAµ
dχAµ

)
(j1Sη)

=
∂l′

∂yA
dyA(j1Sη) +

∂l′

∂χAµ
dχAµ (j1Sη)

=
∂l′

∂yB
dyB(∂yAR )ρA(j1Sη) +

∂l′

∂χAµ
dχAµ (j1Sη)

=
∂l′

∂yB
TRABρ

A(j1Sη)− ∂l′

∂χAµ

[
χµ,η

]A
, by lift (28)

=
∂l′

∂yB
TRABη

A −ΠA
µ

[
χµ,η

]A
, by Legendre transf.

=

(
− ∂h

′

∂yB
TRAB − (ad∗χµΠ

µ)A
)
ηA, since

∂l′

∂yB
= − ∂h

′

∂yB

for all η, that is (ad∗χµΠ
µ)A = − ∂h′

∂yB
TRAB . So these two terms

in the de Donder equation (27) annihilate each other to give the

conservation law
∂ΠAµ
∂xµ

∣∣∣∣
(j1φ)∗

= 0 which was all ready obtained

before in (24). It appears that, with left-invariant lagrangians,
the first Noether theorem 2 can be formulated by the right
formulation of the Hamilton-Poincaré equation of motion (27).

3) Noether’s current:
a) Left: The Noether’s current is computed by contract-

ing the Hamiltonian version (22) of the Poincaré-Cartan form
with a left expression of the symmetric vector field

j1Sη = adg−1ηA~eL
A + γAµ ∂ξAµ

4the minus sign is due to the right invariance and the formula (17) is for
left invariance.

5Change of dual basis. If V = βB~∂B = αB~eR
B , we have

dyA(V ) = βA = dyA(αB~eR
B) = dyA(~eR

B)αB = dyA(~eR
B)ρB(V ), ∀V .

Thus, dyA = dyA(~eR
B)ρB .



for some γ. It gives

j1Sη yΘh =
(
πAµ λ

A ∧ dnxµ − hω
)

(j1Sη)

= πAµ (adg−1η)Adnxµ =
(
πµ, adg−1η

)
dnxµ

J∗L η =
(
ad∗g−1πµ,η

)
dnxµ = (J∗L,η)

That is
J∗L = ad∗g−1πµdnxµ (29)

b) Right: The right version is obtained by contracting
the Hamiltonian Poincaré-Cartan form with a right expression
of the symmetric vector field (28). It gives

j1Sη yΘh′ =
(
ΠA
µ ρ

A ∧ dnxµ − h′ω
)

(j1Sη)

= ΠA
µ η

Adnxµ

J∗R η = (Πµ,η) dnxµ = (J∗R,η) .

Which is the same as (23), i.e.

J∗R = Πµdnxµ. (30)
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APPENDIX

A. Elements of differential geometry for first-order lagrangian
field theories

1) Geometrical structures of first-order jet bundles: For all
the article, the framework of Arturo Echeverria-Enriquez &
al [3] is adopted as a system of notation. It is quickly related
here for convenience of the reader. Let M be an orientable
manifold and π : E → M a differentiable fiber bundle with
typical fibre F. Let dim M = n+ 1, dim F = N . The bundle
of 1-jets of sections of π, or 1-jet bundle, is denoted by J1E.
For every P ∈ E, the fiber of J1E is denoted J1

P E and its
elements by P̄. If φ : U ⊂ M → E is a representative of
P̄ ∈ J1

P E, we write P̄ = Tπ(P)φ.
Sections of π can be lifted to J1E in the following way:

let xµ, µ = 1, . . . , n, 0, be a local system in M and yA,
A = 1, ..., N a local system in the fibers; that is, {xµ, yA} is a
coordinate system adapted to the bundle. In these coordinates,
a local section φ : U → E is written as φ(x) = (xµ, φA(x)),
that is, φ(x) is given by functions yA = φA(x).

This local system (xµ, yA) allows us to construct a local
system (xµ, yA, vAµ ) in J1E, where vAµ are defined as follows:

if P̄ ∈ J1E, with π1(P̄) = P and π(P) = x, let φ : U → E,
yA = φA, be a representative of P̄, then

vAµ (P̄) = (
∂φA

∂xµ
)

∣∣∣∣
x

These systems are called natural local systems in J1E. In one
of them, we have

(j1φ)(x) = (xµ(x), φA(x),
∂φA

∂xµ
(x)).

2) Canonical form and holonomy: The bundle J1E is en-
dowed with a canonical geometric structure θ with expression
in a natural local system

θ P̄ = (dyA − vAµ dxµ)⊗ ~∂A (31)

Holonomic sections can be characterized using this canonical
form as follows:

PROPOSITION A.1
L et ψ : M → J1E be a section of π. The necessary and
sufficient condition for ψ to be a holonomic section is that
ψ∗θ = 0.

3) Jet prolongation of vector fields : A local diffeomor-
phism ϕ : J1E → J1E defines a contact transformation if it
preserves the contact ideal, meaning that if σ is any contact
form on J1E, then ϕ∗σ is also a contact form. The flow
generated by a vector field j1Z on the jet space J1E forms
a one-parameter group of contact transformations if and only
if the Lie derivative LJ1Z(σ) of any contact form σ preserves
the contact ideal or module.

So, starting from a general vector field Z = αµ~∂µ +βA~∂A,
where αµ and βAdepend on (xµ, yA), and writing the jet
prolongation j1Z on the jet space J1E as

j1Z = αµ~∂µ + βA~∂A + γAµ
~∂µA,

the only problem is to calculate the coefficients γAµ .
Echeverria & al [3] traduce the preservation of the contact

module generated by the forms θA = (dyA − vAν dxν) by the
fact that they must have LJ1Z(θA) = ζABθ

B for some C∞

function ζAB on J1E. So, using the Cartan formula in the Lie
derivative LJ1Z and identifying the different terms, they obtain
the 1-jet prolongation of Z with coefficients

γAµ =
∂βA

∂xµ
+ vBµ

∂βA

∂yB
− vAν

(
∂αν

∂xµ
+ vBµ

∂αν

∂yB

)
. (32)

As a particular case, if Z ∈ χV (π)(E) is a π-vertical vector
field, in a local natural system of coordinates, Z is equal to
βA~∂A and its canonical prolongation is

j1Z = βA~∂A +

(
∂βA

∂xµ
+ vBµ

∂βA

∂yB

)
~∂µA. (33)


