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ABSTRACT

A nonlinear string can be modelled as a prestressed beam using Reissner’s assumptions. Namely, that plane
sections normal to the neutral axis remain plane but that their displacements and rotations can be arbitrarily
large. The strains are assumed to be small enough to neglect material nonlinearity, which means that each
section is a rigid body. The nonlinear analysis of such a system can lead to a complex formulation when second
Piola-Kirchoff stress and Green-Lagrange strain tensors are used.

Alternatively, Lie groups and algebras offer a efficient formulation by considering the space of mechanical system
transformations (the SE3 group) instead of the generalised co-ordinates space (R3). The intrinsic nonlinearities
due to the curvature of the group SE3 (geometric nonlinearities) are correctly handled and this leads to a
compact and exact form of the nonlinear equilibrium equations from which further models can easily be derived.
As evidence, a linearisation in the neighbourhood of the prestressed beam can be written taking into account
tension, flexion, shear, rotation and coupling phenomena. The general nonlinear problem can also be solved
using pure numerical methods or semi-analytical Volterra series.

INTRODUCTION

In the context of musical acoustics, physical model of musical instruments have to be more and more sophisti-
cated. For string model realism is obtained by taking into account tension, flexion, shear, rotation and coupling
phenomena but also nonlinear effects.

Since the nineteen century, Kirchhoff [10], Carrier [5], Anand [1] or more recently Watzky [14], Chaigne[6] or
Bilbao[3] have all studied this problem but they all made the assumption that the strain is represented by the
Green-Lagrange tensor expressed in terms of a displacement function. This leads to a certain complexity but
the more complex the models, the slower the sound synthesis.

As an alternative, the Lie groups and algebras offert an elegant way to express the strain vector and tensor in
terms of group elements. Properties of Lie groups can then be applied to mechanics.

Following the work of D. Primault [11], the first part of this article establishes a nonlinear model for Reissner
Beam. The Reissner’s definitions for kinematics of beam suitable for large displacement and small strain is
adopted. In that context, Hamilton’s principle can be applied with the help of Lie groups and algebras. It
gives rise, in a second part, to an application to string instruments where the dynamic equations suitable for a
prestressed beam are studied.

NONLINEAR MODEL FOR REISSNER BEAM

Reissner kinematic and Lie groups and algebras

A beam of length L, with cross-sectional area A and mass per unit volume ρ is considered. Following the
Reissner kinematic, each section of the beam is supposed to be a rigid body. The beam configuration can be
described by a position r(X, t) and a rotation R(X, t) of each section. The coordinate X corresponds to the
position of the section in the reference configuration Σ0 (see figure 1).
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Any material point M which is located at x(X, 0) = r(X, t) + w0 = XE1 + w0 in the reference configuration
(t = 0) have a new position (at time t) x(X, t) = r(X, t) + Rw0 with velocity ẋ = ṙ + Ṙw0.

X = 0 X = L

E1

Reference configuation Σ0

Current configuation Σt

e1

e2

wt
∂r
∂X

E2

r(X, t)
ei = R(X, t)Ei i = 1, 2, 3

γ(X, t)

XE3

w0

e3

Fig. 1: Reference and current configuration of a beam. Each section, located at position X in the
reference configuration Σ0, is parametrized by a translation r(X, t) and a rotation R(X, t) ∈ SO3 in

the current configation Σt.

Since the three-dimensional rotation, R, belongs to the Lie group

SO3 = {R ∈ gl(3,R)| RTR = I et det(R) = 1}, (1)

where gl(3,R) is the vectorial space of 3× 3 matrices with real coefficients, some interesting properties can be
used. Matrix R ∈ SO3 checks

d

dt
(RTR) = 0 = ṘTR + RT Ṙ. (2)

The angular velocity, Ω̂ = RT Ṙ, is then a skew-symmetric matrix (Ω̂T = −Ω̂) with vanishing trace that can
be associated to an axial vector

Ω =

0
@

ω1

ω2

ω3

1
A , such that Ω̂ =

0
@

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

1
A (3)

Thus, ∀u ∈ R3, once have Ω̂u = Ω ∧ u.

To every Lie group G, we can associate a Lie algebra, whose underlying vector space is the tangent space of G
at the identity element, which completely captures the local structure of the group. The matrices Ω̂ = RT Ṙ
belong to the space so3 tangent to SO3.

Multiplying on the left the definition Ω̂ = RT Ṙ by the rotation R, it comes the differential equation Ṙ−RΩ̂ = 0
whose solution is

R = R(0)eΩ̂t (4)

This is called the exponential map and it maps the Lie algebra so3 into the Lie group SO3. It provides a
diffeomorphism between a neighborhood of 0 in so3 and a neighborhood of the idendity in SO3.

Since two rotations do not commute, the group SO3 is curved, which is not the case of the “flat” physical
space R3. According to Primault [11] mechanical models based on the material physical space can “lead to a
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certain complexity due, not to the intrinsic nonlinearity of the system (the curvature of the group) but rather
to the parameter setting, that is to say to the flattening operation which it implies”.

The dynamics of a mechanical system will not be described in terms of the evolution of its material components
(material points in R3) but rather in terms of the transformations (translations and rotations) that they may
endure. This subtle distinction makes it possible to obtain an exact dynamic model of nonlinear Reissner beams.

Hamilton’s principle

Hamilton’s principle states that the beam configuration u(X, t) = (r(X, t),R(X, t) must maximize the quantity

A =

Z t2

t1

(T − V )dt, for all interval [t1, t2]

where T and V represent kinetic and total potential energies. To obtain the dynamic equations of the beam an
infinitesimal variation

rε = r + εδr, Rε = Reεδψ̂ (5)

is introduced in the neighborhood of the solution u. If the action A is a extremun for the solution u, its Lie
derivative should vanish :

δA =
d

dε

˛̨
˛
ε=0

Aε = lim
ε→0

Aε −A

ε
=

Z t2

t1

(δT − δV )dt = 0. (6)

So, the variations δT and δV , in the neighborhood of the solution u, due to the variations (5) have to be
determined in order to obtain a mathematical model for the beam dynamics. In the following, the potential
energy V will be splited into internal and external parts : V = Uint − Uext.

Contribution to Hamilton’s principle due to kenetic energy

Using Lie algebras tools, the kinetic energy density 1/2ρẋT ẋ can be evaluated with the velocity expression,
ẋ(X, t) = ṙ(X, t) + R(X, t)Ω̂.w0, to give

1/2ρẋT ẋ = 1/2ρ
ˆ
ṙT ṙ + 2ṙTRΩ̂w0 + ΩT ŵ0

T ŵ0Ω
˜
.

Integrating over the beam, and taking into account the center of mass property1, the kinetic energy and its
variation are finally

T = 1/2

Z L

0

ρAṙT ṙdX + 1/2

Z L

0

ρΩTJΩdX and δT =

Z L

0

ρAδṙT ṙdX +

Z L

0

ρδΩTJΩdX (7)

where J is the inertial tensor2of the section.

Equation (7) shows that the variation, δΩ, consequence of the variations (5) must be computed. To do so, lets

calculate δΩ̂ = d
dε

˛̨
˛
ε=0

Ω̂ε = limε→0
Ω̂ε−Ω̂
ε

with Ω̂ε = RT
ε Ṙε and

Rε = Reεδψ̂ ' R(I+ εδψ̂)

Ṙε = Ṙeεδψ̂ + εRδ
ˆ̇
ψeεδψ̂ ' Ṙ + ε(Ṙδψ̂ + Rδ

ˆ̇
ψ)

RT
ε Ṙε = RT Ṙ + ε[RT Ṙδψ̂ + δψ̂

T
RT Ṙ + δ

ˆ̇
ψ] + O(ε2).

1In the current configuration, the fiber located by r(X, t) is the a line which joins the center of mass of each

section. The kinetic energy expression is different for any other definition : the term
R L
0

R
S ρṙTRΩ̂w0dSdX could

not vanish. In the general case (variable cross-sectional area over the beam), this fiber must not be interpreted as
the neutral axis (fiber without any deformation commonly used in mechanics).

2It is important to see that, as a consequence of the Lie algrebra’s rules, the inertial tensor

J =

Z

S
ŵ0

T ŵ0dS =

Z

S

0
@

Y 2 + Z2 0 0
0 Z2 −Y Z
0 −Y Z Y 2

1
A dS

has been obtain from the w0 expression

w0 =

0
@

0
Y
Z

1
A→ ŵ0 =

0
@

0 −Z Y
Z 0 0
−Y 0 0

1
A .
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that is to say

δΩ̂ = Ω̂δψ̂ + δψ̂
T
Ω̂ + δ

ˆ̇
ψ = Ω̂δψ̂ − δψ̂Ω̂ + δ

ˆ̇
ψ

= [Ω̂; δψ̂] + δ
ˆ̇
ψ = Ω̂ ∧ δψ + δ

ˆ̇
ψ.

In the last line the Lie crochet, [A; B] = AB −BA, has been used with the property [Â; B̂] = Â ∧B. In term
of axial vector, the variation of the angular velocity is finally

δΩ = Ω ∧ δψ + δψ̇ (8)

Putting this expression into variation (7) and integrating by part, the kinetic contribution to the Hamilton
equilibrium equation (6) is obtained

Z t2

t1

δTdt =

Z L

0

[ρAδrT ṙ + δψT ρJΩ]t2t1dX −
Z t2

t1

Z L

0

`
δṙT δψT

´„ ρAδrT r̈

ρJΩ̇ + Ω ∧ ρJΩ)

«
dXdt (9)

Contribution to Hamilton’s principle due to potential energy

In order to calculate the strain energy, two quantities are introduced : the strain vector Γ and the curvature
tensor Π̂. The first one distinguishes the longitudinal and tangential strain. The coordinate Γ1 denotes the axial
strain while the Γ2 et Γ3 coordinates measure the shear strain. This vector is obtain by the difference between
the tangent to the axial fiber and the normal to the section, that is

γ = ∂Xr− e1.

This quantity is evaluated in the moving referencial (e1, e2, e2) . To convert it in the fixed referencial a rotation
must be applied (see fig. 1),

Γ = RT γ = RT ∂Xr−E1, written in the followings RT r′ −E1 (10)

This is an objective vector because it is invariant by any rigid body motion of the beam (global translation or
rotation). The curvature tensor, Π̂, is obtained, as the angular velocity Ω̂, by a derivation of the definition (1)
of SO3, but this time a spatial derivation is used (see section )

Π̂ = RT ∂XR, written in the followings Π̂ = RTR′ (11)

This skew symmetric tensor is also an objective one and can be represented by an axial vector

Π =

0
@

k1

k2

k3

1
A , such that Π̂ =

0
@

0 −k3 k2

k3 0 −k1

−k2 k1 0

1
A

This pseudo vector takes into account strain due to the torsion (component k1) and to the bending (k2 et k3).
Assuming a linear stress-strain relation, those definitions (10) et (11) give a expression to the internal force
F = HdΓ and torque M = HrΠ, where the Hooke tensors are

Hd =

0
@

EA 0 0
0 GA 0
0 0 GA

1
A , Hr

0
@

GIρ 0 0
0 EIa 0
0 0 EIa

1
A (12)

with E, G and A are the Young’s modulus, shear coefficient and cross-sectional area respectively. The value
Iρ =

R
S
(Y 2 +Z2)dS is the polar moment of inertia, while Ia represent the axial moment of inertia (for a cicular

section Ia =
R
S

Y 2dS =
R
S

Z2dS).

Under that circumstances, the strain energy and its variation are given in a quadratic form

Uint = 1/2

Z L

0

ΓTHdΓdX + 1/2

Z L

0

ΠTHrΠdX and δUint =

Z L

0

δΓTHdΓdX +

Z L

0

δΠTHrΠdX (13)

The last expression shows that δΓ and δΠ must be also computed. The same calculus as (8) can be achived to
obtain

δΓ = RT r′ ∧ δψ + RT δr′ (14)

δΠ = Π ∧ δψ + δψ′ (15)

which follow the elementary variations (5).
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Again putting (14) and (15) in Hamilton’s principle, integrating by part and taking into account the virtual
work produced by external forces and moments δUext = δrT F̄ + δψT M̄ , a potential contribution is obtained

Z t2

t1

(δUint − δUext)dt =

Z t2

t1

 h `
δrT δψT

´„ RHdΓ− F̄
HrΠ− M̄

«iL
0

(16)

−
Z L

0

`
δrT δψT

´„ (RHdΓ)′ + F̄
RT r′ ∧HdΓ + RT (RHrΠ)′ + M̄

«
dX

!
dt.

The difference of two terms (9) and (16) consitute the principle of virtual work applied to a Reissner Beam.

Nonlinear equations of movement

The nonlinear equilibrium equations can finally be obtained from (9) and (16) considering that the variations`
δrT , δψT

´
are virtuals

8
>>>>>>>><
>>>>>>>>:

constitutives equations for X ∈]0, L[

(RHdΓ)′ + F̄ = ρAr̈ translation

RT r′ ∧HdΓ + RT (RHrΠ)′ + M̄ = ρJΩ̇ + Ω ∧ ρJΩ rotation

boundaries conditions for X = 0 andX = L

RHdΓ = F̄ forces

HrΠ = M̄ torques

(17)

The strains definitions of Γ and Π must be added to these relations , as functions of the variables r et R given
by (10) and (11) ; the angular velocity is related to the rotation R by

Ω̂ = RT Ṙ (18)

DYNAMIC BEHAVIOR OF A PRESTRESSED BEAM

In this section an axial prestressed beam is studied. First a trivial static equlibrium solution is obtain from
the nonlinear equations (17). In a second time, an linearization of this model in the neighbourhood of the
static solution is outlined leading to a linear model of a string where stretching, bending, shearing, rotating
and coupling phenomena are taking into account. Finally a second order model is obtained to catch the first
nonlinear phenomena of a string.

Static equilibrium

A beam is subjected to a Dirichlet boundary condition at X = 0 and to a static force F̄L to its extremity
X = L. Introducing a tension coefficient α, it is easy to see that the couple (r0(X),R0) such that

r0(X) = (α + 1)E1X, and R0 = I (19)

is a static solution of (17) with F̄L = αEAE1.

String : first and second order model

A linear and a second order model are then obtained, in the neighbourhood of the static solution, by introducing
small variations (∆r, ∆ψ) in the form

rε = r0 + ε∆r, Rε = eε∆ψ̂ = I+ ε∆ψ̂ + ε2/2∆ψ̂∆ψ̂ + . . . (20)

This leads to the constitutives linear equations for X ∈]0, L[

(
Hd∆r′′ +Hc∆ψ′ + ∆F̄ = ρA∆r̈ translation

Hr∆ψ′′ +Hc∆r′ +Hψ∆ψ + ∆M̄ = ρJ∆ψ̈ rotation
(21)

where Hc = A
ˆ
(α + 1)G− αE

˜
Ê1 and Hψ = (α + 1)HcÊ1 .The skew-symmetric matrix Ê1 is made from E1

considered as an axial vector. This leads to the matrix Hc, also skew-symmetric, which traduces the coupling
between translation and rotation. Dynamic external forces and moments applied to the string are handled by
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∆F̄ and ∆M̄ repectively. The configuration of the beam can be restituted by (20) with the choice ε = 1. The
constitutives equations (21) change at the second order to give

8
>>>>>><
>>>>>>:

Hd∆r′′ +Hc∆ψ′ + ∆F̄ − ρA∆r̈ +Hψψ
ˆ
∆ψ ∧ (E1 ∧∆ψ)

˜′
+
`
[∆ψ̂;Hd]∆r′

´′
= 0

translation

Hr∆ψ′′ +Hc∆r′ +Hψ∆ψ + ∆M̄ − ρJ∆ψ̈

+(E1 ∧∆ψ) ∧He∆r′ + ∆r′ ∧Hd∆r′ +Hc(∆r′ ∧∆ψ)−Hf (∆ψ ∧ (E1 ∧∆ψ))

+∆ψ′Hr∆ψ′ + 1
2
Hr(∆ψ′′ ∧∆ψ)− 1

2
ρJ(∆ψ̈ ∧∆ψ)−∆ψ̇ ∧ ρJ∆ψ̇ = 0 rotation

(22)

where et Hψψ = A
ˆ
(α + 1)G− α

2
E
˜
I− α+1

2
Hd, He = (α + 1)(Hd −GAI) et Hf = (α+1)2

2
Hc

CONCLUSIONS AND PERSPECTIVES

The linear model (21) can be easily solved using numerical methods. In the thesis [2], a modal method base
on finite element is proposed and can lead to real time sound synthesis. For the second order model Volterra
series can be evoked. This technic is usually used to solve algrebraic nonlinear differential equations but an
extension to weakly nonlinear partial differential equations have been made by T. Helie and M. Hasler in [8].
Since Helie [9] has adapted the method to treat acoustic propagation in tubes and Roze [12] for nonlinear string.
Under some hypothesis (relatively small variations) the system of equations (22) are suitable for such a method
saving computation time compare to the general Newmark procedure proposed by Boyer and Primault in [4]
or [11]. Sound synthesis simulation are in progress and will be presented at the conference.
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11. D. Primault, modélisation géométriquement exacte de poutres fines - application à la robotique, Phd
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