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ABSTRACT

In this paper a novel algorithm for sound texture synthesis is pre-
sented. The goal of this algorithm is to produce new examples of
a given sampled texture, the synthesized textures being of any de-
sired duration. The algorithm is based on a montage approach to
synthesis in that the synthesized texture is made up of pieces of
the original sample concatenated together in a new sequence. This
montage approach preserves both the high level evolution and low
level detail of the original texture. Included in the algorithm is a
measure of uniqueness, which can be used for the identification
of regions in the original texture containing events that are atypi-
cal of the texture, and hence avoid their unnatural repetition at the
synthesis stage.

1. INTRODUCTION

Sound textures are a class of sounds typically associated with the
background of a scene that are somehow repetitive; for example
rain, fire, or machinery. It is difficult to define precisely the prop-
erties of sound textures. Saint-Arnaud and Popat [1] offered some
suggestions towards a working definition. They suggest that sound
textures should, in some sense ‘exhibit similar characteristics over
time’; that is that one short snippet of a texture should exhibit sim-
ilarities to another. They also suggest a two level description of
textures. At the low level atoms of the texture are time localized
sound elements, and the higher level describes the distribution of
these atoms. They note that while such an atomic model is some-
times relevant to the physics of the texture, e.g. rain, they do not
intend it as a general physical description. They give some points
summarizing their working definition of sound textures.

1. Sound textures are formed of basic sound elements, or atoms.

2. Atoms occur according to a higher-level pattern, which can
be periodic, random, or both.

3. The high-level characteristics must remain the same over
long time periods (which implies that there can be no com-
plex message).

4. The high-level pattern must be completely exposed within
a few seconds attention span.

5. High-level randomness is also acceptable, as long as there
are enough occurrences within the attention span to make a
good example of the random properties.

McDermott et al [2, 3] suggest that given the temporal homo-
geneity of sound textures they can be characterized by time aver-
aged statistics. This approach was inspired by previous work on
image textures [4]. This hypothesis was tested by synthesizing

various textures by imposing the statistics of a particular texture
on a white noise sample. The statistics used described the ampli-
tude envelopes of the textures after being passed through an au-
ditory filterbank. These statistics included the first four moments
of the envelopes, cross correlation between envelopes, and some
measures relating to the autocorrelation of each envelope. The
resulting synthesized sounds were not intended to be perceptually
accurate reproductions, rather they were meant to test their hypoth-
esis. They found that the synthesized sound textures could indeed
be identified.

These studies give important insights into the requirements
of a synthesis algorithm. There are many approaches to sound
texture synthesis (for a thorough review of the literature see [5]).
Broadly speaking, we can group these methods into model based
approaches where the signal is synthesized from model parame-
ters, and sampling or granular approaches where content from the
original signal is used in the synthesized signal.

For many applications, such as cinema and computer games,
realism of the synthesized sound is paramount. Sampling based
methods can bring realism as they contain elements of the target
sound. Some previous sampling based algorithms [6, 7] look for
points of change to segment texture signals, these segments are
then concatenated in a probabilistically determined sequence to
produce the synthesized texture. The algorithm of Dubnov et al.
[8] uses similarity in history and scale to select sampled wavelet
coefficients. Drawbacks of sampling based methods include repe-
titions of parts of the original signal, difficulty modeling the higher
level structure of the texture, and smooth concatenation of the sam-
pled elements.

The proposed algorithm falls into the sampling based category.
It looks to exploit regions of similarity in the original texture to in-
form the sequencing of sampled elements. There are two levels
to the synthesis model. Longer term sections, called segments,
are used to model the higher level structure of textures. These
segments are synthesized from the concatenation of shorter term
sections, called atoms. Atoms preserve the local structure of the
texture. The sequences of both the segments and atoms are mod-
eled probabilistically, this avoids repetition in the synthesized tex-
ture. A new overlap add method is introduced for concatenation.
This enables concatenation with short overlap without introducing
perceptible modulations.

The paper is organized as follows: Section 2 discusses the re-
lationship of the algorithm to the properties of sound textures out-
lined in section 1. Section 3 presents the basic algorithm in detail
while section 4 extends the algorithm to deal with unique events.
Section 5 presents some sound examples. Section 6 presents some
conclusions and possible future work.
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2. THE RELATIONSHIP OF THE MONTAGE
APPROACH TO SOUND TEXTURE PROPERTIES

As stated in the introduction, the montage approach to texture syn-
thesis has two levels; segments and atoms. Segments are used to
model the high level structure of the texture. By high level struc-
ture we mean features that determine the long term structure of a
texture such as quasi-periodicity (e.g. pneumatic drill) or random-
ness (e.g fire). At the lower level atoms preserve the local structure
of the segments.

Segments are modeled after longer sections of the texture. There
is not a set length for a segment, rather they have user defined min-
imum and maximum lengths. The length of each segment is de-
pendent on the selection of its successor. The sequencing of seg-
ments is informed by both local similarity for concatenation, and
longer term similarity for preserving higher level structure. This
sequencing has a probabilistic element to avoid repetition in the
higher level structure of the synthesized texture.

These segments are used as templates for the synthesized tex-
ture. The segments are synthesized by a process of atom substitu-
tion. The original texture is split into atoms. These atoms all have
the same user defined duration. For each atom a number of candi-
dates are selected as possible replacements. These candidates are
selected from throughout the texture based on the local similarity
of the envelopes from an auditory filterbank analysis. This ‘enve-
lope matching’ preserves the phase of envelope modulations in the
synthesized texture. The synthesis of segments consists of substi-
tuting each of the original atoms with one of its qualifying candi-
dates (including itself as one of the candidates). The selection of
substitutes is probabilistic. This process preserves local structure
and introduces new variation over the duration of the segment not
present in the original texture. This is to avoid repetition on the
atom scale in the synthesized texture.

The algorithm can be considered in terms of the properties of
sound textures suggested by Saint-Arnaud and Popat [1] quoted in
section 1.

• The presented model synthesizes textures from atoms.

• The high-level pattern of the atoms is preserved by sequenc-
ing them according to segments of the original texture. If
there is periodicity in the texture it can be reproduced be-
cause the atoms will be aligned according to the original
texture, this effectively matches the phase of the envelopes.
Likewise randomness is maintained by randomizing both
the selection of segments from the candidate successors and
the choice of atom from the candidates for substitution.

• New high level structure will be introduced due to the se-
quencing of segments. As the long-term similarity of seg-
ments are matched this new structure should be coherent
with the original texture.

The algorithm can also be considered in terms of the statistical
description of the envelopes suggested by McDermott in [3].

• If the segments are distributed approximately evenly over
the duration of the synthesis the moments of the envelopes
will be approximately equal to those of the original.

• As the atoms are sampled from the original texture the lo-
cal synchronicity of the envelope modulations is preserved.
This is related to cross correlation of the envelopes in Mc-
Dermott’s texture model.

• The matching of atoms over localized time and frequency,
the sequencing of atoms from segments of the original, and
the transitions based on history all relate to the autocorrela-
tion of the envelopes; the atom sequencing preserving local
modulations and the segment sequencing preserving/synthesizing
longer term modulations.

3. THE ALGORITHM

In this section the algorithm for analysis and synthesis of textures
using the proposed approach is described. After the analysis phase
the choices for synthesis are tabulated; all possible segments have
candidates for their successors and each atom of the texture has
candidates for substitution.

3.1. Analysis

The analysis stage of the montage approach involves finding re-
gions in the texture that are in some way similar - this is necessary
both for the selection of candidates for segment succession and the
selection of candidates for atom substitution. The first step in the
analysis is to represent the signal in a suitable form. As ultimately
we are concerned with the perceptual closeness of the synthesized
signal to the original a perceptually informed representation of the
signal is utilized.

As much of the salient information in textures is contained in
the envelopes of the auditory bands [3], a suitable comparison for
similarity is taken to be a comparison of the time evolving energy
from an auditory filter bank. The short time Fourier transform is
a common and suitable processing platform, and so the algorithm
will be presented in the context of the STFT.

The STFT is given by:

X (l, k) =

N−1∑
n=0

x (n)ω (n− lh) e
−i2πnk

N . (1)

Where l is the frame number, k is the frequency bin, N is the
analysis window length and h is the hopsize.

Taking the envelopes to be the energies in subbands distributed
according to the ERB scale:

engEnvb (l) =

kb2∑
k=kb1

|X (l, k)|2 Hb (k) . (2)

Where kb1 is the first bin and kb2 is the last bin of the bth band
and H is a bank of (frequency domain) band pass filters.

The envelopes then undergo further perceptual processing. The
perceived change in loudness with intensity approximately obeys
a power law. Hence the envelopes are compressed nonlinearly to
simulate this. Each band is also scaled according to the equal loud-
ness curve.

envb = (engEnvb/L (fb))
0.3 . (3)

Where L is the loudness curve, fb is the centre frequency of the
bth band and 0.3 is an experimentally determined exponent [9].

This gives a perceptually informed time/frequency representa-
tion of the signal sampled at the rate of the STFT analysis. Here we
will refer to each time slice of both the STFT and the perceptually
processed STFT as a frame.

The next stage in the analysis divides this representation of the
signal into atoms. Each atom comprises several analysis frames
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Figure 1: Selection of candidates for an atom

and have a 50% overlap with neighboring atoms. The atoms should
be long enough to enable the comparison of envelopes and short
enough to ensure enough variation in the synthesized texture. In
our example set [10] we use 0.1s as the atom duration. This gives
us a time/frequency representation of each atom. Each of these
atoms undergoes further analysis; looking for similar regions over
the duration of the texture.

3.1.1. Candidates for Atom Substitution

For each atom a difference function is created. This difference
function gives us a measure of the difference between the atom
under consideration and the associated region of the texture. The
difference function for the ath atom at the lth frame is given by:

da (l) =√∑F−1
f=0

∑B
b=1 {envb (l + f)− envb (aF/2 + f)}2√∑F−1

f=0

∑B
b=1 {envb (l + f)}2

. (4)

Where F is the number of frames in an atom and the atoms have a
50% overlap, i.e. an atom hopsize of F/2. This difference function
is calculated at intervals of a single frame. This difference measure
corresponds to the normalized euclidean distance between the au-
ditory envelopes of the atom and the auditory envelopes of the tex-
ture from the lth to l + F − 1th frame.

A set of substitution candidates for each atom is selected from
local minima in the difference function. There is a minimum time
distance between selected candidates, dependent on the number
of candidates to be selected. This is to ensure that candidates are
selected from across the duration of the analyzed texture. This
can be important for the selection of segments successors, as the
candidates for substitution will also be considered as candidates
for segment successors, and for this purpose it is desirable to have
candidates spread over the duration of the texture.

An example of a difference function and candidates for a sin-
gle atom of a texture are shown in Figure 1 for a helicopter sample
(available to listen to at [10]). This is a quasi periodic texture, and
this example illustrates how periodicity of events can be preserved
with this model. Note that the envelope of the candidates is in
phase with the envelope of the original atom. It is not necessary to

Figure 2: Transition from reading one segment to starting another

retain the difference function after the analysis of an atom. Once
the candidates for substitution are tabulated the difference func-
tion can be discarded. The result of the atom analysis is a list of
pointers to the addresses in the original STFT of candidates for
substitution and a normalized difference value for each of the can-
didates.

3.1.2. Candidates for Segment Successors

During synthesis segment succession occurs by substituting the
last atom of the current segment with the beginning of its suc-
cessor. And so each atom will be considered as a potential end
of a segment and its candidates for substitution as a potential be-
ginning for a succeeding segment. For segments, as well as the
local similarity from the atom analysis, a longer term compari-
son is used. This is termed the history for the segment. Hence, a
history comparison is also made between each atom and its candi-
dates for substitution. This will be used to judge the possibility of
a segment succession at the location of the atom during synthesis.
No difference function is created as the history is only calculated
for already found atom candidates.

As each segment has a minimum and maximum duration, the
succeeding segment will begin between these points (see section
3.2.1). And so in the analysis phase each atom in this range is con-
sidered as a possible transition point from the current segment to
its successor. This can be considered as a moving window anal-
ysis, the window length being the maximum minus the minimum
duration of a segment. An example of a subset of possible segment
succession points found for a texture is illustrated in Figure 2. For
each step in this analysis there are typically many candidates. For
example, for a single instance of this analysis if the difference be-
tween the minimum and maximum length between transitions is
1.5 seconds, and there are 20 atoms per second and 10 candidates
per atom then there are 300 candidate points to consider as possi-
ble transition points. Only the succession points with the lowest
measured difference are considered, again the selected succession
points spanning the duration of the texture. The outcome of the
succession analysis is a table of pointers for candidate segment
end points for the current segment, associated difference values,
and associated starting points for the next segment.

3.2. Synthesis

During synthesis the segment sequence is selected. From this the
sequence of atoms is derived. These atoms are concatenated in
the STFT domain before inverse Fourier transform and final over-
lap/add in the time domain are performed.
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Figure 3: Sequence of transition in synthesized texture vs origin in
original texture.

Figure 4: Sequence of atoms in synthesized texture vs origin in
original texture.

3.2.1. Sequence Model

Starting from a random point in the original texture the algorithm
selects successive segments from the candidates selected during
analysis. This high level navigation of the texture acts as a tem-
plate for the synthesized texture. There are some constraints on
the choice of succeeding segments:

1. A segment must be at least a minimum, user defined, length.

2. A segment has a maximum, user defined, length.

3. If the succeeding segment occurs some time before the cur-
rent segment in the original texture that time must be greater
than a user defined minimum (at least equal to the length of
the transition ’history’).

The first constraint serves two functions: it prevents the syn-
thesized texture from jumping too much and it allows the candi-
dates for succeeding segments to be selected in the analysis phase.
The second constraint prevents keeping the same high level struc-
ture as the original for long periods. The third prevents repeating
parts of the high level structure in rapid succession.

Once a segment successor is selected the duration of the cur-
rent segment is determined. The atoms for this segment can then
be substituted probabilistically with the candidates selected during
analysis, each of the qualifying candidates given equal probability
of selection. A difference threshold can be used in the selection
of atom substitutes. This defines the maximum difference allowed
between atoms and possible switches. It was found that taking the
median value of the normalized difference of all the candidates for
all the atoms was an effective value for thresholding. An example
of the sequencing of transitions and substitutions is illustrated in
Figure 3 and 4.

The process of segment succession and atom substitution can
continue for any desired period of time, producing varied textures
which are perceptually similar to the original.

3.2.2. Overlap Add Operation

If we see the atoms as pieces of a jigsaw, the overlap-add operation
can be seen to be a way of squeezing in pieces similar to the origi-
nal into their place. Straightforward overlap-adding of broad band
noise leads to modulations due to phase interference. Here a new
solution to this problem is proposed. The cross fade of the atoms
is done in the STFT domain. The number of frames involved in
the cross fade is dependent on the bin number of the DFT (i.e. it is
frequency dependent). The cross fade region is taken to be 4 times
the inverse of the bin center frequency (i.e. 4 times the period),
with a maximum of half the number of frames in an atom and a
minimum of a single STFT frame. For bins with an overlap region
less than half an atom length the point of maximum cross fade (i.e.
50%) is positioned at the point of least interference. This point is
taken to be the point at which the absolute value of the complex
difference in the overlap region is minimum.

4. DEALING WITH UNIQUE EVENTS IN THE TEXTURE

Often sampled textures contain local events that are uncharacter-
istic of the long term texture. Such events can be due to a record-
ing artifact, an unwanted event in the recording, or a unique local
event that is part of the process creating the texture. At the syn-
thesis stage it may be desirable to avoid using atoms that contain
such unique events as their repetition may be noticeable and artifi-
cial sounding in the synthesized texture; highlighting the sampling
process and losing the naturalness of the synthesized texture.

Strobl [11] in a study of the concatenative algorithms of [6]
and [7] refers to such events as ’disturbing elements’, and proposes
to identify them manually. Here we propose a method for identi-
fying such elements that is a straightforward and natural extension
to the montage approach.

There are two basic steps to this algorithm; 1) identify the
unique region and 2) replace it with a qualifying piece of the tex-
ture. The replacement step allows the synthesis algorithm de-
scribed above to remain unchanged.

To identify events the difference measure obtained from 4 is
utilized as a measure of the uniqueness of atoms. After the initial
analysis stage each atom has a number of its closest matches from
throughout the texture. The difference between an atom and its
best match is taken to be a measure of its uniqueness.

A user defined parameter defines which atoms are to be re-
placed. This user parameter is a threshold and is stated as percent-
age of the maximum uniqueness found for the analyzed texture.

In order to find a region to replace the region selected as unique
we again use the difference value defined by 4. Here we use a sum
of the difference functions for the atoms adjacent to the selected
region. The difference function of the latter atom in the sum is
delayed by the appropriate time:

du (l) = da1 (l) + da2 (l + (wu + 1)F/2) . (5)

Where du (l) is the difference function used for finding the best
match for the uth unique region, da1 is the difference function
for the a1th atom (the adjacent atom previous to the uth region)
and da2 is the difference function for the a2th atom (the adjacent
atom following the uth region). The minimum of this function
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(a) Original with click highlighted.

(b) Click identified and replaced.

Figure 5: Example of identifying and replacing unique elements
in a sampled texture.

gives the closest matching region, according to our measure, to
replace the region identified as being unique. Once this region is
identified the analysis described in section 3.1.1 is performed for
the replacement atoms. Also, reference to the replaced atoms as
substitutes for other atoms should be removed. Synthesis can then
be performed as described in section 3.2.

An example of this is shown in figure 5. This is a recording of
a steam train which contains a single ‘click’ sound. This ‘click’ is
identified as the most unique region in the texture. For synthesis
it is replaced as described above. This method can also be used
to repair damaged recordings as is illustrated in figure 6. This il-
lustration shows the spectrograms of helicopter sample, the same
sample with a piece deleted, and the sample with the deleted piece
replaced using the above method. Note how the approximate pe-
riod of the events is preserved. The samples used to illustrate this
are available at [10].

5. RESULTS

The presented algorithm was used to synthesize both textures con-
taining quasi periodic elements and textures of a more random na-
ture. The synthesized samples are twice the duration of the origi-
nals. The original samples were taken from [3]. The details of the
synthesis for these sounds are as follows: the atom length was set
to 0.1 seconds, the history set to 0.5 secs, and the maximum dura-
tion before a new transition set to 2 seconds. 20 candidates were
selected for each atom, and 5 candidates selected for each transi-
tion. The transition candidates were selected by a simple sum of
the normalized distance of the atom (local) difference and differ-
ence in histories. These examples can be found at [10].

6. CONCLUSIONS

In this paper an efficient and versatile algorithm for sound texture
synthesis was presented. For efficient synthesis the atom and tran-
sition candidates can be tabulated from the analysis phase. Syn-
thesis is then a fairly straightforward overlap add procedure in
the STFT domain. The algorithm fulfills many requirements of a

(a) Original.

(b) With missing piece.

(c) Missing piece replaced.

Figure 6: Example of replacing a missing or damaged piece of a
sampled texture (quasi-periodic helicopter).

sound texture synthesis algorithm. At the low level the textures are
synthesized from atoms and these atoms are sequenced to model
the higher level organization of the original sound texture. Repeti-
tions are avoided by introducing randomness in the sequencing of
both the atoms and the segments, and smooth transitions are con-
structed by taking account of local similarity, longer history and a
new overlap/add method.

While there are a number of user defined parameters in this
algorithm, these parameters are not abstract, they have a natural
relationship with the synthesis.

For the atom analysis the STFT hopsize determines the tem-
poral resolution of the atom analysis, while the atom duration and
difference threshold for substitution affect the variation of the tim-
bre of the texture. For the segment sequencing the history length
defines the region in which to compare the context of the high level
structure, while the minimum and maximum length determine the
high level variation.

The synthesis examples ([10]) show that for a large class of
textures the synthesis is not extremely sensitive to these parame-
ters. However, if there are extended events or a lot of variation in
the original texture it may be beneficial to constrain the variation
in the synthesized texture, i.e. lower the difference threshold for
atom substitution and extend the history and minimum segment
length.

As well as texture synthesis the algorithm has applications to
editing textures, such as removing unique events or damaged por-
tions of a sampled texture. The results seem very promising for a
wide range of textures; from quasi periodic to random processes.
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