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Abstract
The representation of the glottal source is of paramount impor-
tance for describing para-linguistic information carried through
the voice quality (e.g., emotions, mood, attitude). However,
some existing representations of the glottal source are based
on analytical glottal models, which assume strong a priori con-
straints on the shape of the glottal pulses. Thus, these repre-
sentations are restricted to limited number of voices. Recent
progresses in the estimation of the glottal models revealed that
the Phase Distortion (PD) of the signal carries most of the infor-
mation about the glottal pulses. This paper introduces a flexible
representation of the glottal source - based on the short-term
modelling of the phase distortion. This representation is not
constrained by a specific analytical model, and thus can be used
to describe a larger variety of expressive voices. We address the
efficiency of this representation for the recognition of various
voice qualities, with comparison to MFCC and standard glottal
source representations.
Index Terms: glottal source, phase distortion, voice quality.

1. Introduction
The glottal source contains most of the para-linguistic informa-
tion that convey the expressivity of a voice [1, 2, 3]. Conse-
quently, accurate representation of the glottal source character-
istics is of primary importance in many automatic speech pro-
cessing systems, from the extraction of para-linguistic informa-
tion (emotions [4, 5], among others [6, 7]), speaker recognition
[8], automatic voice casting [9], etc. In particular, the glottal
source is closely related to the voice quality [1], which plays a
central role in speech communication (linguistic [2] and para-
linguistic [3]). Furthermore, the automatic recognition and clas-
sification of the voice quality has recently raised as major re-
search topic [10, 11, 12]. For speech classification, the signal
representation of the glottal source characteristics, the features,
must represent most of the properties of the glottal source.

According to the source/filter model of the speech produc-
tion, a speech signal results from the filtering of the Glottal
Source (GS) by the Vocal Tract Filter (VTF). Since the am-
plitude spectrum characteristics can be summarized into the
widely known MFCC, many research works have focused on
the VTF, which carries most of the spectral amplitude proper-
ties. However, the GS conveys extra-information to the VTF:
the fundamental frequency f0(t) (mean, jitter); the shape of the
glottal pulses (estimated from inverse filtering [13], or phase
minimization using an analytical glottal model [14, 15]), the
noisiness of the GS (SNR measures [16, 6, 7]).

Recent advances with glottal models have indicated promis-
ing results in recognition tasks related to voice quality [4, 17,
18]. However, the definition of analytical models assumes

strong a priori constraints which considerably limit the range of
GS properties that can be represented. Accurate glottal model
estimations [14, 19] are based on the minimization of Phase
Distortion (PD) [20] between the speech signal and the glottal
model [15, 14] (see also Sec. 2.1). This indicates that the PD of
the signal carries all of the crucial information about the glot-
tal pulses’ shape, which can be used directly in classification
[17], thus, avoiding the glottal model limitations. Additionally,
as shown later on, PD can be used to measure the variations
of the glottal pulses over time, which might also be relevant to
describe the noisiness of the GS.

In this paper, in order to avoid the limitations of the glot-
tal models and obtain a more flexible representation of the GS
properties, we suggest to use short-term statistics of the PD.
These statistics include: the PD’s Mean (PDM) within a short-
term slidding window, which is a robust correlate of the pulse’s
shape [15, 14], and, the PD’s standard-Deviation (PDD), which
measures the noisiness of the pulses’ shape in the same window.
The PD’s computation require a Harmonic Model (HM) of the
speech signal [21]. In our work, we used a full-band HM which
avoids voiced/unvoiced decision in the time and frequency do-
mains [22]. This full-band/full-time approach allows to avoid
voice segmentation, which is usually an error-prone estima-
tion procedure. We assess the efficiency of the suggested GS
features for the recognition of various voice qualities (breathy,
creaky, hoarse, and pressed), with comparison to MFCC and
standard glottal source representations.

2. Representations of the Glottal Source
In order to compute the voice source features, the signal is first
represented by a Harmonic Model (HM) at instants ti [21, 22].
The HM parameters consist of frequencies h · f0(ti) (integer
multiples h of the fundamental frequency f0(ti)), the amplitude
ai,h and the instantaneous phase φi,h. As suggested in [22], the
HM model is employed in this work for the full-band of the
signal, for the voiced segments and the unvoiced segments (as-
suming that f0 values can be obtained in unvoiced segments
within a controled range (70-700Hz in our work)). Note that it
has been shown that this approach can be used for resynthesis of
the speech signal [22]. Thus, the perceived elements are fully
represented by the HM parameters. In our work, we used the
SWIPEP method for the estimation of f0(t) [23]. The param-
eters ai,h and φi,h are estimated using the Least Square (LS)
solution [21]. For estimation of the Rd-glottal parameter [24]
presented later on, ti is defined at regular intervals of 5ms. To
estimate the short-term statistical model, an intermediate pitch
synchronous analysis is first necessary, as detailed later on. The
next sections describe the mean to estimate the voice source
features using the harmonic parameters.



2.1. The Phase Distortion (PD)
The phase difference between two frequency components is
called Phase Distortion (PD) in [20], whose perceived char-
acteristics are already known [20, 25, 26]. Using a harmonic
model, the phase difference between consecutive harmonics
φi,h+1 − φi,h can be seen as a discrete approximation of a fre-
quency derivative. Thus, the PD of a harmonic model is simi-
lar to the group-delay, whose perceived characteristics are also
known [27] and whose applications are numerous [28, 29, 30].

In order to reveal the phase characteristics of the voice
source and not those of the whole speech signal, the PD can
be computed on a minimum-phase residual (e.g. linear pre-
diction residual). For this purpose, similarly, we first estimate
a spectral amplitude envelope Ai(f) at each instant i through
linear interpolation of the amplitude parameters ai,h. The
minimum-phase response of Ai(f) is then computed through
the real cepstrum [31] and the residual phase is obtained by:
φ̃i,h = φi,h − ∠A(hf0(ti)).

In order to focus on the impulses’ shape of the voice source,
it is also necessary to remove the linear phase of the signal.
Because of the frequency derivative effect in the PD, the linear
phase becomes a constant. Thus, the PD computation can be
simply normalized by its value at the 1st harmonic:

PDi,h = φ̃i,h+1 − φ̃i,h − φ̃i,1 (1)

where we enforce φ̃i,0 = 0, since the DC is unreliable for
acoustic signals. In [14], we have shown that (1) is directly
linked to the maximum-phase component of the voice source1.
This sole property allows to estimate glottal model parameters,
as shown in [14, 15], and summarized in next section.

2.2. Analytical model: The Rd-Liljencrants-Fant model
As shown in [15], the PD can be used to estimate the Rd shape
parameter of the Liljencrants-Fant (LF) model [24]. Compared
to the full set of the LF parameters {te,tp,ta}, the Rd pa-
rameter represents also a limitation of the shapes of the LF
model. However, because of numerical dependency between
{te,tp,ta}, their estimation is far from robust [32, p.77]. Con-
sequently, in this work, we used Rd, which currently offers the
most reliable estimate of a glottal model parameter. Basically,
high values of Rd indicate a laxed voice whereas low values
indicate a tense voice [24]. The best method suggested in [15]
estimates Rd by error minimization with respect to candidate
Rd values:

ε(Rdi) =
1

H

H∑
h=1

(
PDi,h − LFRdih

)2
(2)

with H = 7 according to [14] and LFRdih are the PD values
of the LF model parametrized by Rdi. A minimization of (2)
leads to an estimate of Rdi. Additionally, the error ε(Rdi) can
be used to compute a confidence value, in [0, 1], of this estimate:

c(Rdi) = 1−
√
ε(Rdi)/π (3)

which describes how well the glottal model fits the PD of the
signal. As discussed in the introduction, glottal models are lim-
ited in flexibility whereas the useful information for estimation
of Rd is fully available in PDi,h.

2.3. Short-term statistical model: Mean and Deviation
In this paper, we suggest to characterize PDi,h in short-term
windows across the speech signal. In voiced time-frequency

1The rather complicate definition of PD in [15](Eq. 3-5) is actually
equal to Eq. (1).

regions, PDi,h is mainly related to the shape of the glottal pulse.
In unvoiced time-frequency regions (e.g. fricatives and mid-
high frequencies of vowels), we assume that PDi,h can also be
used to characterize the voice source. More precisely, we as-
sume that the time evolution of PDi,h, which also represents the
source impulses throughout adjacent frames, can reveal the ran-
domness of the voice source. Therefore, in this paper, we sug-
gest to characterize PD statistically, in short-term sliding win-
dows. For this purpose, at each ti, we extract a feature related
to the average shape of the source impulses and another feature
representing the local variation, the randomness, of this source
shape.

The procedure of the feature extraction starts the follow-
ing. Firstly, a constant number of periods is necessary in each
short-time window used for computing PD’s moments, as de-
scribed in the next subsections. Thus, PDi,h values are com-
puted pitch synchronously, using 4 analysis instants per period:
ti = ti−1 + 0.25/f0(ti−1) with t0 = 0. According to experi-
ments, 4 analysis instants are sufficient for an estimate of PD’s
moments with sufficient accuracy. Secondly, to remove the de-
pendency of PDi,h from the harmonic structure, we interpolate
PDi,h on a linear frequency scale, like a phase spectral enve-
lope [33, 34], using 512 frequency bins up to the Nyquist, i.e.
PDi,h ⇒ PDi[k].

Since PDi[k] is defined on a wrapped support (e.g.
(−π, π]), we estimate the average shape and the randomness of
the voice source through estimation of the mean and standard-
deviation of the wrapped normal distribution [35, 36] over a few
periods. The mean, called Phase Distortion Mean (PDM) in the
following, is estimated using:

(PDM) µi[k] = ∠

(
1

L

∑
l∈C

ejPDl[k]

)
(4)

where C = {i − L−1
2
, · · · , i + L−1

2
} and we used L = 13

(3 periods). Three periods have been chosen experimentally, so
that C is long enough for obtaining a reliable mean and short
enough so that µi[k] can follow the variations of the speech
signal across time.

As described above, the variance of PDi[k] owns the ran-
domness of the voice source impulses. However, it also owns
the smooth evolution, the trend, of the glottal pulse shape. Since
this trend is already represented by µi[k], it is necessary to re-
move it, prior to the estimation of PD’s standard-deviation, i.e.
PDi[k]− µi[k]. Thus, the standard-deviation, called Phase Dis-
tortion Deviation in the following, is estimated by [35]:

(PDD) σi[k] =

√
−2 log

∣∣∣ 1

L

∑
l∈C

ej(PDl[k]−µl[k])

∣∣∣ (5)

with C and L as above.
Finally, the feature are resampled each 5ms through lin-

ear interpolation, in order to keep a time sychronicity with the
other features used in the experiments. Fig. 1 shows examples
of features extraction for various voice qualities. Through vi-
sual inspection, one can see that the PDD of pressed voice is
smaller than of breathy voice, below 5 kHz. This can be ex-
plained by the quantity of noise, which is more important in the
breathy voice, thus, resulting in a higher variance. The PDM
of the creaky voice seems close to zero in most regions, which
means that the frequency components are phase synchronous,
like those of a Dirac delta function. This supports the idea that
a glottal cycle in creaky voice mainly contains a simple impulse
concentrated at a single time instant. However, even though
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Figure 1: Examples of Phase Distortion’s Mean (PDM) and Phase Distortion’s Deviation (PDD) for 4 voice qualities. Whereas Breathy and Hoarse
voices show substantial phase variance through PDD, the pressed voice has low PDD values below 5kHz in voiced segments. Also, Creaky’s PDM has
many time-frequency regions with values around zero. This suggests a phase synchronous frequency content, similarly to Dirac delta functions.

a hoarse voice is made of erratic glottal pulses and a breathy
voice contains a substantial amount of additive noise, they look
similar in Fig. 1. This can be explained by the fact that nois-
iness is described by PDD as a random variation of the source
pulses’ shape, like in a hoarse voice. Therefore, future works
should complete the suggested features with a measurement of
additive noise.

2.3.1. Compression
For this work, PDM and PDD features are used in a classifi-
cation System. Thus, the dimensionality of the features (512
bins each 5ms) has to be reduced. PDD values are defined in
[0,∞), like an amplitude spectral envelope. For this reason,
we suggest to compress PDD, as if it was an amplitude enve-
lope, using a Mel-CEPstral compression (MCEP) [37] of order
24. Because of the wrapped support of PDM, its compression
is less straightforward. We suggest to compress it in a simi-
lar way to Mel-Frequency Cepstral Coefficients (MFCC). The
first step of the traditional MFCC computation consists in en-
ergy measurement in mel-scale triangular frequency windows.
Instead, because we are interested in compressing µi[k] and not
in its absolute value (i.e. its ”energy”), we compute the average
µi[k], using Eq. (4), weighted by the mel-scale triangular win-
dows. Finally, the resulting averaged µi[k] values are converted
to cepstral coefficients (of order 24), similarly to the MFCC or
MCEP computations.

3. Experiment
3.1. Speech Database
The speech database used in this study is the French version
of the MASS EFFECT 3 video game containing 20,000 speech
recordings of professional actors, around 500 roles, around 50
speakers, and a total of 20 hours of expressive speech. Each
speech recording was recorded in professional conditions, and
encoded into a 48 kHz-16 bits uncompressed format. A subset
of 4,000 speech recordings was used for the manual labelling of
speech into a large variety of classes in the context of automatic
voice casting: from age/gender, voice quality, to emotions. The
final representation includes: 6 dimensions, 14 classes, and 68
labels (see [9] for details). Among the number of classes, four
voice quality classes were selected for this preliminary study:
breathy, creaky, hoarse, and pressed.

3.2. Classification System
This section summarizes the main paradigms of the speech
classification system used for the experiment. First, short-
term speech characteristics are extracted from a speech record-
ing. Then, statistical processing (UNIVERSAL BACKGROUND
MODEL, TOTAL VARIABILITY SPACE) are used to summarize
the statistical information of a speech recording (GMM SUPER-
VECTOR, I-VECTOR). Finally, a classifier (SUPPORT VECTOR
MACHINE) is used for the classification of a speech recording.
The remaining of this section details the paradigms of the clas-
sification system. The classification system is based on the IR-
CAMCLASSIFIER [38], which includes the ALIZÉE 3.0 [39] and
the LIBSVM [40] libraries.

3.2.1. Acoustic Space Modeling: Universal Background Model
and GMM supervector
The Universal Background Model (UBM) is used to model
the distribution of the entire acoustic space, which is usually
achieved with a standard Gaussian Mixture Model (GMM-UBM)
[41]. Then, the means parameters of the UBM are adapted to
each speech recording by using maximum a posteriori (MAP)
adaptation [41]. Finally, each speech recording is represented
by the mean vectors of the adapted mixture components:

µ = [µ1, . . . ,µM ]T (6)

where µ - referred to as a GMM SUPERVECTOR - is the concate-
nation of all the mean vectors of the M mixture components.

3.2.2. Factor Analysis: Total Variability Space and i-vector
An i-vector is the compact representation of a high-dimensional
representation of speech recording (GMM SUPERVECTOR) into
a low-dimensional space called Total Variability space [42]
(TV) - assuming an affine linear model (i.e., factor analysis):

µ = mµ + Tx (7)
where µ is the adapted GMM-supervector of a speech record-
ing, mµ is the GMM-supervector corresponding to the UBM
mean parameters, T is the (M × p) total variability ma-
trix, and x is a p normally-distributed vector - referred to
as an I-VECTOR. The total variability matrix T is modelled
by Maximum-Likelihood (ML) and Expectation-Maximization
(EM). The i-vector of a speech recording is determined by MAP
adaptation [42].



BREATHY CREAKY HOARSE PRESSED TOTAL
MFCC 76.2 73.6 82.9 77.4 77.5
RD 66.3 67.2 64.3 66.5 66.0
∆GCI 70.0 71.0 75.1 67.4 71.0
PDM 77.9 71.6 81.2 79.2 77.5
PDD 75.0 72.0 82.3 76.0 76.5
MFCC+RD 77.7 75.2 83.5 77.8 78.6
MFCC+∆GCI 77.4 74.8 85.0 76.7 78.4
MFCC+RD+∆GCI 77.8 75.2 84.6 77.9 78.9
MFCC+PDM 78.7 75.7 84.7 81.1 80.0
MFCC+PDD 79.2 76.3 85.1 79.1 79.9
MFCC+PDM+PDD 80.2 76.7 85.4 81.8 81.0

Table 1: Average balanced accuracy obtained for the classification of voice qualities.

3.2.3. Classifier: Support Vector Machine
Among the number of existing classifiers, the Support Vector
Machine (SVM) is a standard for speaker recognition and speech
classification [43]. For each class (creaky, breathy, hoarse,
pressed), the classification of a vector x (e.g., supervector, i-
vector) corresponding to a speech recording is obtained with
regard to the decision function:

f(x) =

N∑
i=1

ωiK(x,xi) + b , f ∈ [−1, 1] (8)

where: < wi,xi, b >
N
i=1 are the parameters of the maximum-

margin hyperplane determined during training (respectively:
weights, support vectors, and offset), and K(., .) the SVM ker-
nel [44].

In this study, a multi-label classification system is used to
process each class separately. The multi-label system is con-
structed by converting the classification of multiple classes into
multiple binary classifications [45]. First, each class is turned
into a binary representation (i.e., yes/no). Then, a classifier is
trained for each class separately, which results into C indepen-
dent classifiers. This assumes that a speech recording can be
simultaneously assigned to multiple classes (e.g., breathy and
creaky) instead of a single exclusive class (e.g., breathy vs. all).

3.3. Experimental Setups
The front-end processing consisted in the extraction of short-
term acoustic features: Mel-frequency cepstral coefficients
(MFCC using 20ms Hanning window with 50% overlapping
and 13 cepstral coefficients determined on 25 Mel-frequency
bands); theRd parameter and its confidence value (thus, 2 coef-
ficients for the Rd feature, as summarized in Sec. 2.2); the jitter
of Glottal Closure Instants (GCI) [6](a single coefficient); and
our suggested glottal source representation derived from phase
distortion (PDM and PDD, 25 coefficients determined on 25
Mel-frequency bands, each).

The classification system setups were defined as follows:
NGMM = 8 to 2048 (GMM-UBM) with diagonal covariance ma-
trices, and p = 10 to 400 (Total Variability Space). For the clas-
sification, a standard SVM system with a Gaussian kernel [46]
was used. During the training, each feature set is considered as a
separate stream for the determination of the GMM-supervector,
the i-vector, and the SVM parameters. During the classifica-
tion, the decision is made by fusing the score obtained for each
stream using average decision fusion.

The experiment was conducted in the form of a 10-fold
cross validation. The balanced accuracy [47] was chosen for
the classification performance, which is an alternative to the F-
measure in the context of binary classification.

4. Results and Discussion
Table 1 reports the average recognition score for the four voice
qualities. From the comparison of the single contribution of
each acoustic feature: the standard GS representation (Rd and
∆GCI) presents recognition scores that are substantially lower
(66.0% and 71.0%, respectively) than the baseline MFCC
(77.5%). Conversely, the suggested PDM and PDD present
recognition scores that are comparable (PDM, 77.5%, PDD,
76.5%) with MFCC (77.5%). This shows the efficiency of the
phase distortion to capture the GS characteristics that convey
voice qualities. Also, this supports the idea that PDM and PDD
overcome the limitations of the glottal model and offer a more
flexible representation of the GS properties.

From the comparison of the combination of the acoustic
features: the standard GS representation combined with the
MFCC (MFCC+Rd+∆GCI) presents a recognition score that
is slightly higher (78.9%) than MFCC (77.5%). However,
the suggested GS representation derived from phase distortion
(MFCC+PDM+PDD) presents a recognition score that is sub-
stantially higher (81.0%) than MFCC (77.5%). This shows
the following two points. Firstly, this confirms that PDM and
PDD better represent the voice properties than Rd (MFCC+Rd
vs. MFCC+PDM+PDD) as mentionned above. Secondly, this
shows that the phase distortion provides complementary infor-
mation to that contained in the MFCC.

One may expect that PDD better describes the breathiness
than PDM. On the contrary, Tab. 1 shows the opposite for the
breathy (PDM:77.9%, PDD 75.0%) and the pressed qualities
(PDM:79.2%, PDD 76.0%). This can be explained by the fact
that the noisiness is implicitely represented in PDM through
its variation between time-frequency regions, as shown in Fig.
1. Thus, PDM can partly encompass information measured by
PDD and, in addition, it carries the average pulse’s shape which
is removed in PDD.

5. Conclusion
This paper presented a flexible representation of the glottal
source based on the short-term statistics of the phase distortion
(PD). This representation presents the advantage of not being
constrained by a specific analytical model of the glottal source,
and thus can be used to describe a large variety of voices. The
efficiency of this representation has been proved for the recog-
nition of various voice qualities. Further studies will address
the use of PD information from para-linguistic information ex-
traction (e.g., age/gender, emotions), voice casting, voice con-
version and speech synthesis.
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