
HAL Id: hal-01161014
https://hal.science/hal-01161014

Submitted on 13 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gardening Cyber-Physical Systems
Susan Stepney, Ada Diaconescu, René Doursat, Jean-Louis Giavitto, Taras

Kowaliw, Ottoline Leyser, Bruce Maclennan, Olivier Michel, Julian F. Miller,
Igor Nikolic, et al.

To cite this version:
Susan Stepney, Ada Diaconescu, René Doursat, Jean-Louis Giavitto, Taras Kowaliw, et al.. Gardening
Cyber-Physical Systems. Unconventionnal Computation and Natural Computation (UCNC’2012), Sep
2012, Orléans, France. pp.1-1. �hal-01161014�

https://hal.science/hal-01161014
https://hal.archives-ouvertes.fr


Gardening Cyber-Physical Systems

Susan Stepney1, Ada Diaconescu2, René Doursat3,4, Jean-Louis Giavitto5,
Taras Kowaliw4, Ottoline Leyser6, Bruce MacLennan7, Olivier Michel8,
Julian F. Miller9, Igor Nikolic10, Antoine Spicher8, Christof Teuscher11,

Gunnar Tufte12, Francisco J. Vico3, Lidia Yamamoto13

Depts of 1 Computer Science and 9 Electronics, University of York, UK
2CNRS LTCI, Télécom-ParisTech, France

3Research Group in Biomimetics (GEB), Universidad de Málaga, Spain
4Institut des Systèmes Complexes (ISC-PIF), CNRS, Paris, France

5UMR STMS 9912, IRCAM - CNRS, France
6Sainsbury Laboratory, University of Cambridge, UK

7Electrical Engineering and Computer Science, University of Tennessee, Knoxville,
USA

8LACL, Université Paris-Est Créteil, France
10Faculty of Technology, Policy and Management, Technical University of Delft,

Netherlands
11Dept Electrical and Computer Engineering, Portland State University, USA

12Dept Computer and Information Science, NTNU, Trondheim, Norway
13University of Strasbourg, France

Abstract. Today’s artefacts, from small devices to buildings and cities,
are, or are becoming, cyber-physical socio-technical systems, with tightly
interwoven material and computational parts. Currently, we have to la-
boriously build such systems, component by component, and the results
are often difficult to maintain, adapt, and reconfigure. Even “soft”ware
is brittle and non-trivial to adapt and change. If we look to nature, how-
ever, large complex organisms grow, adapt to their environment, and
repair themselves when damaged.

In this position paper, we present Gro-CyPhy, an unconventional
computational framework for growing cyber-physical systems from com-
putational seeds, and gardening the growing systems, in order to adapt
them to specific needs.

The Gro-CyPhy architecture comprises: a Seed Factory, a process
for designing specific computational seeds to meet cyber-physical system
requirements; a Growth Engine, providing the computational processes
that grow seeds in simulation; and a Computational Garden, where mul-
tiple seeds can be planted and grown in concert, and where a high-level
gardener can shape them into complex cyber-physical systems.

We outline how the Gro-CyPhy architecture might be applied to
a significant exemplar application: a (simulated) skyscraper, comprising
several mutually interdependent physical and virtual subsystems, such
as the shell of exterior and interior walls, electrical power and data net-
works, plumbing and rain-water harvesting, heating and air-conditioning
systems, and building management control systems.



1 Introduction

Our artefacts, from small devices to buildings and cities, are, or are becoming,
cyber-physical socio-technical systems, with tightly interwoven physical material
and computational parts. We build such systems, laboriously placing material
components, laboriously programming computational ones, laboriously integrat-
ing the parts, laboriously maintaining the resulting structures. In contrast, trees
grow, adapting their form and function to the environmental conditions, and
trees self-repair, using the same mechanisms as for growth. These properties al-
low trees to be gardened—planted, fed, pruned, trained—to meet human needs.

Our vision is of construction by directed growth, through gardening macro-
scopic cyber-physical artefacts formed from a growing, integrated combination
of material and virtual subsystems. This is a novel approach to designing, imple-
menting, and maintaining the wealth of cyber-physical artefacts that comprise
our “built environment”, including: housing, schools, hospitals, shops, and fac-
tories; transport, power, and communication infrastructures. The objective is an
unconventional embodied computational process that will produce autonomous,
adaptive, robust systems in a controllable and cost-effective manner.

The overall objective of computational growth is to be able to “grow” macro-
scopic objects that comprise both physical and computational aspects (cyber-
physical systems, “smart” materials, etc). The related field of physical self-
assembly focuses on the material side: designing nano- and micro-scale assem-
blers, or micro-scale artificial cells, that can manipulate and position matter.
The computational control of such devices (how and where to position the rel-
evant material; how and when to divide and replicate) is typically assumed to
be a relatively trivial matter of programming. Little consideration is given to
scalability, adaptability, correctness, or other computer science issues relating to
the macro scale of cyber-physical artefacts. Here we consider the matters in the
context of an unconventional computational framework.

The structure of rest of the paper is as follows. In §2 we introduce our
Gro-CyPhy architecture for designing, growing, and gardening complex cyber-
physical systems. In §3 we outline how this process would work for a substantial
application: a skyscraper. In §4 we conclude with a discussion of how the Gro-
CyPhy approach changes our ideas about artefact construction.

2 Gro-CyPhy Architecture

2.1 Overview

There are several visions of assembling or growing macroscopic artefacts from the
bottom up. These include nanoscale robots manipulating material at the molec-
ular level [7], which are an artificial analogue of termite and other social insect
construction processes, and synthetic protocells dividing and differentiating [29],
which are an artificial analogue of plant and animal growth processes.



Past work on exploiting growth metaphors has tended to concentrate on ei-
ther purely virtual or purely physical structures. Concentrating on only the vir-
tual loses the advantages of embodied physical reality [33,34], and allows issues
of reality constraints, such as the cost of replication and other such operations,
to be neglected. Concentrating on only the physical ignores the computational
issues of programming the desired growth, and the necessity of integrating phys-
ical and virtual subsystems.

Here we take the software perspective, and outline a computational growth
process that, given the necessary physical assembly devices (nanobots or pro-
tocells), can program these to construct macroscopic cyber-physical structures.
Additionally, the resulting growth process technology will be able to grow purely
virtual computational structures in virtual environments, such as those running
on computer networks and clouds.

In the current absence of such physical assembly devices, initial work is nec-
essarily in simulation. However, the aim is for a process where a given program
could either be embodied in a physical constructor that would provide the growth
mechanisms, or placed in a virtual “growth engine” that would simulate the
growth process. This dual approach also allows close integration and co-growth
of purely virtual software components such as software control systems.

The focus of our approach is on the design and growth of a complex arte-
fact with several interrelated subsystems. These subsystems must co-develop to
produce an integrated whole. Additionally, we want our cyber-physical artefacts
to be responsive and adaptive to their environments. For a growth approach, it
makes sense to consider parallels with plants rather than with animals: plants
are more “plastic” in their morphological responses. There is evidence that this
sort of plasticity can be exploited in artificial developmental systems [16,17,35].
This plasticity admits a new possibility: deliberately and selectively applying
environmental stimuli to direct growth in a desired direction—or gardening the
growing artefact. To this end, we have designed the Gro-CyPhy architecture,
which comprises three major components (figure 1):

– a Seed Factory, a process for designing specific computational seeds to meet
cyber-physical system requirements

– a Growth Engine, providing the computational processes that grow physical
seeds in simulation, and grow virtual seeds into software

– a Computational Garden, where multiple seeds can be planted and grown in
concert, where virtual seeds can be interfaced with embodied growth pro-
cesses, and where a high-level gardener can shape the whole into complex
cyber-physical systems.

The gardening metaphor guiding this approach is an attempt at drastically
changing the way we build cyber-physical systems. Traditionally, such systems
are produced by a tightly coupled team of engineers following a life cycle that
separates phases of design, production and use. In contrast, plants develop con-
tinuously. As a “product”, a plant already has an innate ability to seamlessly
adapt to its environmental conditions (within reasonable limits). Additionally,



Fig. 1. Conceptual overview of the Gro-CyPhy architecture in application (here,
a skyscraper): application-specific subsystem seed specifications are developed (wall,
windows, plumbing, etc); the Seed Factory develops the relevant seeds (subsystem
genomes); Growth Engines grow these seeds in the Computational Garden where the
application specific gardening takes place, delivering the cyber-physical system end
product. See following text for a full explanation of the various components and their
relationships.

the shape and metabolism of a plant—its “purpose”—can be artificially adjusted
and tailored at various stages:

1. before the growth phase, by choosing an adequate genome: this genome is
typically programmed or designed by directed evolution (in the Seed Fac-
tory) which does not require an understanding of the lower-level processes
(implemented in the Growth Engine)

2. at the beginning of the growth phase, by configuring the initial conditions
of the seed, including the internal “metabolism” (growth preferences and
parameter values), and possibly by introducing a pre-configured collection
of initial components (a “seedling”)

3. during the growth phase, by taking into account the various actions of the
gardener and the interactions with the environment.

Even if the organism reaches a steady state, the growth phase never stops: there
is no distinction between the “building phase” of the artefact, the “functional
phase”, or the “repair and maintenance” phase.



2.2 Seed Factory

The Seed Factory develops the seeds (genomes, programs) that are implanted
either in physical devices (nanobots, protocells) or in virtual Growth Engines,
to grow into the desired artefacts.

Seeds are tightly packed data structures that contain the necessary instruc-
tions (genome G) and initial conditions (internal state S) needed to grow a given
target structure (the organism phenotype P ). By “tightly packed” we mean that
the actual phenotypic shape adopted after growth is not explicitly represented
in the seed, but will unfold and reveal itself as the seed develops.

Several underlying technologies for defining and implementing seeds could
be supported simultaneously in a Gro-CyPhy system, and should be cho-
sen as appropriate for growing different kinds of structures. Those for phys-
ical technologies such as nanobots or protocells need to be tailored for the
physical capabilities of the embodying systems. Example of virtual technolo-
gies include Morphogenetic Engineering (ME) [5, 6, 26], Developmental Cellu-
lar Automata (DCA) [20, 22], Generative Systems (GS) [11–13, 23, 24, 27], Self-
Modifying Cartesian Genetic Programming (SMCGP) [8,21], and Spatial Com-
puting (SC) [4, 30,31].

Several seed design methodologies are applicable to various types of compu-
tational cyber-physical structures. For example, simple to moderately sophisti-
cated structures could grow out of simple seeds produced by a composition of
elementary “rules of thumb” for seed design [1, 36]. More elaborate organisms
could be difficult to engineer “by hand” in this way, and would require automatic
search and optimisation methods to sweep a potentially vast space of possible
seeds, in search of good ones able to grow into the desired structures (figure 2).

When “planted” in the computational garden and grown by the relevant
Growth Engine, seeds should reliably provide the intended functionality, in a
sufficiently flexible and fault-tolerant way such that a gardener can steer their
growth towards customised organisms. The resulting organisms should have the
features of genuinely adaptable components, which can be used at a higher level
in large-scale systems, such as a building’s physical architecture, technical net-
works, or distributed software.

Designing seeds deals with the mapping from a genome to a phenotype,
G → P . Although the growth of a given genotype into a fixed phenotype is
already a stimulating challenge in itself, a greater goal is to design genomes that
can support adaptable growth on multiple different levels, corresponding to the
forms of interaction present in the growing models.

One form of adaptability involves modification of the phenotype via envi-
ronmental influence; for an environment Ei we have (G, Ei) → Pi. That is, on
the ontogenetic timescale, and under a given genotype-phenotype mapping, the
development process should be sensitive to, and modifiable by, environmental
conditions in the garden. External conditions or stimuli encountered by one in-
dividual during its growth, whether of a mechanical or signalling type, should
be able to influence the outcome. This is the level of P , or rather the genotype-
phenotype mapping, for which natural analogies can be found more readily in the



Fig. 2. Conceptual overview of the search process in the Seed Factory: high-level phe-
notype (grown) specifications are input; the search process develops the relevant seeds
(subsystem genomes); it uses the Growth Engine to grow candidate seeds into pheno-
types, which it evaluates against the specification, and feeds the information back into
its search process.

plant kingdom than the animal kingdom. Plants and trees can be pruned, bent,
arranged, sculpted, etc., whether intentionally by a human gardener (bonsais,
espaliers, topiaries) or spontaneously when faced with adverse or favourable con-
ditions (wind strength, rocky obstacles, soil composition, light intensity). This is
precisely what computational gardeners expect to be doing. Therefore, the seeds
that they “order” from the Seed Factory’s species engineers should provide ap-
propriately workable material.

A second form of adaptability involves symbiosis, or the growing of differ-
ent phenotypes or individuals together. This includes both individuals from the
same “species”, but also individuals from different species as well (ecosystemic
interactions). We may denote this (Gi + Gj , E)→ (Pi, Pj).

To qualify as true “components”, grown organisms must also be literally
“symbiotic” with each other. Whether they belong to the same breed or species,
or to different species, their shape and physiology should offer certain anchor
points to be able to attach and function together into a larger architecture.
Think of interfaces and method-calling in software objects; prefabricated walls
and rooms in trailer homes; clusters and routing in networks. A cyber-physical
system such as a skyscraper needs several different species of seeds to grow
together: walls, plumbing, power, control systems, etc.

2.3 Growth Engine

A Growth Engine provides the computational mechanisms to grow a seed. This
might be required to grow in simulation a seed intended for a physical device,



or to grow the seed of a virtual component such as a software control system.
There are several types of growth engine, corresponding to the several types of
seeds, based on different underlying physical technologies such as nanobots or
protocells, or on the virtual technologies such as ME, DCA, GS, SMCGP, SC
mentioned earlier. For example, a seed defined as a set of rewrite grammar rules
would require a growth engine that could implement the grammar rewriting
system (among other things, discussed below).

The Gro-CyPhy approach contains a conceptual switch from the notion of
“machine” to the notion of “organism”. An organism is an organised ensemble
of components. This ensemble is derived from one generic component, the seed
(or fertilised egg in animals), by duplication and differentiation, or alternatively
by the self-assembly of components produced elsewhere. Each component has
some autonomy, but it is also coupled and interacts with the other components
and with the environment. Contrary to the relations between parts of a machine,
the coupling between components of an organism is not the result of deliberate
design: two components interact because they are neighbours (e.g. in physical
space), not because these components have been pre-made to interact. This new
type of relationship, natural and spatially explicit, requires the components to
be generic: they are not designed for one specific and dedicated purpose but must
be able to react to a wide variety of interactions. Furthermore, a complete arte-
fact, classically several “machines”, is now seen as several “organisms”, grown
together cooperatively in a garden, from several seeds.

The Growth Engine executes a programmable and reproducible indirect map-
ping from “genotypes” G (the local rules of growth and self-assembly followed by
the components at the microscopic level) to “phenotypes” P (the global structure
and function of the emergent systems at the macroscopic level), in the context of
an environment E. Calculating the transformation from a given G to a resulting
P corresponds to developing an organism. Solving the inverse problem, of finding
an appropriate G (or family of Gs) given a desired P , is the challenge of search-
ing and designing useful species, which occurs in the Seed Factory. The growing
organism interacts with co-growing subsystems and environmental influences, in
the Computational Garden.

The generic component that grows, reacts, and interacts has two parts:

1. an internal state S that develops over time
2. a program (genome) G that specifies the internal dynamics and the results

of the potential interactions with the other components and with the envi-
ronment.

Program G is inherited from the (components in the) seed through its succes-
sive division steps or during self-assembly. State S includes the physical charac-
teristics of the component (size, shape, position, etc.) as well as a set of internal
variables corresponding to some gene-regulatory and metabolic activity.

The development of the whole organism is implemented by the Growth En-
gine. This engine:

– takes care of the interactions between components and with the environment



– updates the state of each component of an organism in accordance with their
Genome

– manages the organism as a whole.

Several organisms co-develop in interaction in a garden, achieving an ecosys-
tem of developmental artefacts. Each organism is under the control of its own
Growth Engine instance, and these individual Growth Engines interact with each
other and with the wider environment.

2.4 Computational Garden

The computational garden is where the various seeds are planted and grow to-
gether, responding to their environment, into the resultant artefact. The idea of
several “plastic” organisms growing together and adapting to their environment
is one path to our gardening metaphor. Another path that also leads us to the
garden springs from a disappointment with progress in software development.
Programming still essentially occurs at the individual statement level: there is
the necessity of managing an overwhelming amount of low-level detail. Moreover,
the resulting software is very brittle: the smallest change or error can have a dev-
astating effect. The garden provides us with a higher-level metaphor: high-level
guiding of a robust complex growing system, rather than low-level engineering
of the precise placement of every cell or particle.

The majority of the computational components in a garden will be grow-
ing seeds; the remainder will be supplied by external software such as physics
engines, and (interfaces to) growing embodied physical systems. The gardener
needs to manipulate these components. Keeping with the gardening metaphor,
we require operations such as:

– planting seeds (starting the growth of a seed at a particular location)
– moving growing organisms (transplanting)
– feeding: applying nutrients, energy, and their virtual analogues, to affect

growth rates (enhance growth in a particular direction)
– pruning growing organisms (stop growth in a particular direction)
– training along a given direction (change the direction of growth)
– grafting physical and/or virtual organisms together
– manipulating environmental variables and other parameter values
– recording and rerunning gardening “scripts”.

In order to raise the level of the programming task, these operations need to be
controlled via some high-level, intuitive visual metaphor, including facilities for:

– various graphical views of the garden
• 3D graphical visualisation (for physical systems)
• other standard graphical visualisations (e.g. graphs), for virtual systems

(and for physical systems if desired)
• visual widgets indicating the state or desirability of the computational

output of the garden (since computation underlies the Garden, the graph-
ical elements need not be too sophisticated, as it is the computation they
perform that is most important)



• ability to create customised views, using “drag and drop” from the visual
widget library

– user navigation through the garden, to explore, view and manipulate the
various components growing there.

It should also be possible to embed user-defined entities into the garden, that
is, to place non-“living” but functional objects into the garden. This allows
a combination of traditionally engineered and growing parts within the final
artefact. For example, in some circumstances one might want to provide a “pre-
cast” shell for a building, and only grow the utilities and control systems within
it.

3 Illustrative Application – a Skyscraper

There is a sub-discipline of “morphogenetic architecture” [9, 10, 25], where re-
searchers attempt to “grow” the form of a building. However, these researchers
tend to focus on the aesthetic architecture of the physical shell, and tend not
to consider the simultaneous growth of the other physical subsystems such as
plumbing, or the virtual components such as the control systems.

The generation of useful architectural and related sub-system design is often
realized via parametrised geometries; these realisations are sometimes used in
real-world construction [3, 28]. There have been several successful approaches
to the generation of structural designs via developmental techniques, usually
cellular growth procedures [15, 18, 32, 37]. [14] argues in favour of such life-like
representations as a means of incorporating features such as scalability, robust-
ness, evolvability, and self-adaptation. Once such example of robustness has been
demonstrated in structural design: [17] shows the use of a developmental pro-
cedure in the creation of truss designs which led to self-adaptation to differing
scales and geometric environments, implying a sort of artificial polymorphism.

A skyscraper provides a good exemplar application, being a non-trivial cyber-
physical system with multiple physical (structural) and virtual (control) compo-
nents.

There are several issues to address in a skyscraper application. These include:

1. how various subsystems can be grown in concert such that they integrate ef-
fectively, and influence each other’s growth, for example: plumbing adapting
to the shell; plumbing and wiring adapting so as not to interfere)

2. how various subsystems can be grown in the context of a physical environ-
ment, allowing some of a system to be built conventionally and the remainder
to be grown through it, and an analysis of the tradeoffs

3. how much of the morphological requirements can be placed in the seed, and
how much in the subsequent gardening environment and regime (genericity
v specificity tradeoffs)

4. how to stop the systems growing where necessary [20], potentially based on
the mechanisms plants use to stop growing, which process can be triggered
either by environmental conditions, such as winter, or by internally regulated
developmental programmes [19]:



– A plant (or parts of it) can go into dormancy, for example, over winter,
or as a seed, or axillary buds.

– A plant (or parts of it) can senesce and die: leaves in winter, whole
plant for annual plants that only last a year. This involves active suicide
of tissues in a very regulated process, for example, remobilising all the
nutrients to the roots before shedding leaves.

– Plants grow mostly from meristems (root and shoot tips). These are
usually indeterminate: they can go on for ever maintaining themselves
while producing new cells to build the plant, but they can also become
determinate and use themselves up making things. For example, the
shoot apical meristem becomes a terminal flower, so the shoot stops
growing.

The next phase of work is to use the exemplar skyscraper application to drive
the implementation of a prototype Gro-CyPhy system conforming to the ar-
chitectural design described above.

4 Discussion and conclusions

Currently most of the research effort in growing software has been concentrated
either on growing structures or shapes with no obvious computational purpose,
or on growing programs from (grammar) rules. Gro-CyPhy is a process to
grow both aspects together in an integrated fashion: the shapes will be needed
to perform the functions, and programs will be embedded in the structure to
make it adaptable and responsive.

Visual programming has been around for a long time. For example, most
graphical user interfaces (GUIs) have some development toolkit that allows pro-
grammers to create GUI layouts in a visual and intuitive way. Furthermore,
complex programs can be specified with the help of UML diagrams. However,
such visual programming has mainly been used to build software in a static way,
following a traditional software development lifecycle: software is rarely manip-
ulated in this way while executing (model-driven software adaptation [2] is one
exception); growing software in this way is not yet a reality. Gro-CyPhy is
a radically new way of conceiving of software: as something that grows, and
therefore modifies itself during execution. Such software will naturally be able
to withstand external operations on itself during execution, such as pruning and
grafting by a “gardener”. The gardener will be a high-level programmer, and
ultimately can even be the user directly.

Gro-CyPhy is a vision of “programmed organisms”, software intensive em-
bodied systems or cyber-physical systems that are grown in a garden, where
they are autonomous and yet responsive and programmable at a high level. Such
programmed organisms help blur the artificial distinction between the abstract
software programs and the substrate where the software actuates (execution
hardware plus supporting physical structures).



References

1. Beal, J.: Functional blueprints: an approach to modularity in grown systems.
Swarm Intelligence 5, 257–281 (2011)

2. Bencomo, N., Blair, G., France, R.: Model-driven software adaptation. In: ECOOP
2007, LNCS, vol. 4906, pp. 132–141. Springer (2008)

3. von Buelow, P., Falk, A., Turrin, M.: Optimization of structural form using a
genetic algorithm to search associative parametric geometry. In: Proceedings of
the International Conference on Structures Architecture (ICSA 2010) (2010)

4. DeHon, A., Giavitto, J.L., Gruau, F.: 06361 executive report – computing me-
dia languages for space-oriented computation. In: DeHon, A., Giavitto, J.L.,
Gruau, F. (eds.) Computing Media and Languages for Space-Oriented Compu-
tation. No. 06361 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany (2007),
http://drops.dagstuhl.de/opus/volltexte/2007/1025

5. Doursat, R.: Organically grown architectures: Creating decentralized, autonomous
systems by embryomorphic engineering. In: Würtz, R.P. (ed.) Organic Computing.
pp. 167–200. Springer (2008)

6. Doursat, R., Sayama, H., Michel, O. (eds.): Morphogenetic Engineering: Toward
Programmable Complex Systems. Springer (2012), (to appear)

7. Drexler, K.E.: Engines of Creation. Doubleday (1986)
8. Harding, S., Miller, J.F., Banzhaf, W.: Developments in cartesian genetic program-

ming: self-modifying CGP. Genetic Programming and Evolvable Machines 11(3-4),
397–439 (2010)

9. Hensel, M., Menges, A., Weinstock, M. (eds.): Emergence: Morphogenetic Design
Strategies. Wiley (2004)

10. Hensel, M., Menges, A., Weinstock, M. (eds.): Techniques and Technologies in
Morphogenetic Design. Wiley (2006)

11. Hornby, G.S., Pollack, J.B.: The advantages of generative grammatical encodings
for physical design. In: CEC 2001, vol. 1. pp. 600–607. IEEE (2001)

12. Jacob, C.: Genetic L-system programming. In: PPSN III. LNCS, vol. 866, pp.
333–343. Springer (1994)

13. Jacob, C.: Evolving evolution programs: Genetic programming and L-systems. In:
Proceedings of the First Annual Conference on Genetic Programming. pp. 107–115.
MIT Press (1996)

14. Jin, Y., Sendhoff, B.: A systems approach to evolutionary multiobjective structural
optimization and beyond. IEEE Computational Intelligence Magazine 4, 62–76
(August 2009)

15. Kicinger, R., Arciszewski, T., Jong, K.D.: Evolutionary design of steel structures
in tall buildings. Journal of Computing in Civil Engineering 19(3), 223–238 (2005)

16. Kowaliw, T., Banzhaf, W.: Augmenting artificial development with local fitness.
In: CEC 2009. pp. 316–323. IEEE (2009)

17. Kowaliw, T., Grogono, P., Kharma, N.: Environment as a spatial constraint on the
growth of structural form. In: GECCO ’07. pp. 1037–1044. ACM (2007)

18. Kowaliw, T., Grogono, P., Kharma, N.: The evolution of structural form through
artificial embryogeny. In: IEEE Symposium Series on Computational Intelligence
(IEEE-ALIFE ’07). pp. 425–432 (2007)

19. Leyser, O., Day, S.: Mechanisms in Plant Development. Blackwell (2003)
20. Miller, J.F.: Evolving a self-repairing, self-regulating, French flag organism. In:

Proc. Genetic and Evolutionary Computation Conference. LNCS, vol. 3102, pp.
129–139. Springer (2004)



21. Miller, J.F. (ed.): Cartesian Genetic Programming. Springer (2011)
22. Miller, J.F., Thomson, P.: Beyond the complexity ceiling: Evolution, emergence and

regeneration. In: Proc. GECCO 2004 Workshop on Regeneration and Learning in
Developmental Systems (2004)

23. Mock, K.J.: Wildwood: The evolution of L-system plants for virtual environments.
In: Proceedings of the 1998 IEEE World Congress on Computational Intelligence.
pp. 476–480. IEEE Press (1998)

24. Monks, M., Oh, B.M., Dorsey, J.: Audioptimization: goal-based acoustic design.
IEEE Computer Graphics and Applications 20(3), 76–90 (2000)

25. Roudavski, S.: Towards morphogenesis in architecture. International Journal of
Architectural Computing 7(3), 345–374 (2009)

26. Sayama, H.: Swarm chemistry. Artificial Life 15, 105–114 (2009)
27. Shea, K., Smith, I.F.C.: Improving full-scale transmission tower design through

topology and shape optimization. Journal of Structural Engineering 132(5), 781–
790 (2006)

28. Shepherd, P.: Aviva stadium – the use of parametric modelling in structural design.
The Structural Engineer 89(23), 28–34 (2010)

29. Solé, R.V., Munteanu, A., Rodriguez-Caso, C., Maćıa, J.: Synthetic protocell bi-
ology: from reproduction to computation. Philos Trans R Soc Lond B Biol Sci
362(1486), 1727–1739 (2007)

30. Spicher, A., Michel, O.: Using rewriting techniques in the simulation of dynamical
systems: Application to the modeling of sperm crawling. In: ICCS’05, part I. LNCS,
vol. 3514, pp. 820–827. Springer (2005)

31. Spicher, A., Michel, O., Giavitto, J.L.: Declarative mesh subdivision using topo-
logical rewriting in MGS. In: ICGT 2010. LNCS, vol. 6372, pp. 298–313. Springer
(2010)

32. Steiner, T., Jin, Y., Sendhoff, B.: A cellular model for the evolutionary development
of lightweight material with an inner structure. In: GECCO ’08. pp. 851–858. ACM
(2008)

33. Stepney, S.: Embodiment. In: Flower, D., Timmis, J. (eds.) In Silico Immunology,
chap. 12, pp. 265–288. Springer (2007)

34. Stepney, S.: The neglected pillar of material computation. Physica D: Nonlinear
Phenomena 237(9), 1157–1164 (2008)

35. Tufte, G., Haddow, P.C.: Extending artificial development: Exploiting environmen-
tal information for the achievement of phenotypic plasticity. In: ICES 2007. LNCS,
vol. 4684, pp. 297–308. Springer (2007)

36. Werfel, J.: Biologically realistic primitives for engineered morphogenesis. In: ANTS
2010. LNCS, vol. 6234, pp. 131–142. Springer (2010)

37. Yogev, O., Shapiro, A.A., Antonsson, E.K.: Computational evolutionary embryo-
geny. IEEE Transactions on Evolutionary Computation 14(2), 301–325 (2010)


