
HAL Id: hal-01161006
https://hal.science/hal-01161006v1

Submitted on 13 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proceedings of the Int. Workshop on Spatial Computing
(SCW 2012)

Jean-Louis Giavitto, Jacob Beal, Stefan O. Dulman, Antoine Spicher

To cite this version:
Jean-Louis Giavitto, Jacob Beal, Stefan O. Dulman, Antoine Spicher. Proceedings of the Int. Work-
shop on Spatial Computing (SCW 2012). IFAMAAS (International Foundation for Autonomous
Agents and Multiagent Systems). pp.1-1, 2012. �hal-01161006�

https://hal.science/hal-01161006v1
https://hal.archives-ouvertes.fr

Spatial Computing 2012
colocated with AAMAS

Valencia, 5 june 2012

Dr. Jacob Beal (BBN Technologies)
Dr. Stefan Dulman (Delft University)

Dr. Jean-Louis Giavitto (CNRS & IRCAM)
Prof. Antoine Spicher (LACL - Univ. Paris-Est Créteil)

Contents

Foreword . iii

Program Committee . vi

Schedule . viii

Lightweight Simulation Scripting with Proto . 1

Jacob Beal, Kyle Usbeck and Brian Krisler

Spatial Structures Programming for Music . 7

Jean Bresson

Decentralized spatial algorithm design . 13

Matt Duckham

The Evolution of Controller-Free Molecular Motors from Spatial Constraints 19

Jose-David Fernández, René Doursat and Francisco J. Vico

Arbitrary Nesting of Spatial Computations . 25

Antoine Spicher, Olivier Michel and Jean-Louis Giavitto

Spatial computing for non-IT specialists . 33

Steffan Karger, Agostino Di Figlia, Maurice Bos, Andrei Pruteanu and Stefan Dulman

Recursivity in Field-Based Programming: the Firing Squad Example 39

Luidnel Maignan and Jean-Baptiste Yunès

Towards a Robust Spatial Computing Language for Modular Robots (Position Paper) 45

Ulrik Pagh Schultz

On the Space-time Situation of Pervasive Service Ecosystems 53

Mirko Viroli and Graeme Stevenson

ii

Foreword

Many multiagent systems are spatial computers – collections of local computational devices
distributed through a physical space, in which:

• the interaction between localized agents is strongly dependent on the distance be-
tween them, and

• the “functional goals” of the system are generally defined in terms of the system’s
spatial structure.

For example, spatial relationships are often used to organize the interactions between
agents, at least in applications in which the problem and the space are intertwined. Fur-
thermore, multiagent-based systems and their behaviors can be specified and analyzed
relying on spatial notions like: location, region, frontier, neighborhood, obstruction, field,
basin, communication, diffusion, propagation, etc.

Systems that can be viewed as spatial computers are abundant, both natural and man-
made. For example, in wireless sensor networks and animal or robot swarms, inter-agent
communication network topologies are determined by the distance between devices, while
the agent collectives as a whole solve spatially-defined problems like “analyze and react
to spatial temperature variance” or “surround and destroy an enemy.”

On the other hand, not all spatially distributed systems are spatial computers. The
Internet and peer-to-peer overlay networks may not in general best be considered as spatial
computers, both because their communication graphs have little relation to the Euclidean
geometry in which the participating devices are embedded, and because most applications
for them are explicitly defined independent of the network structure. Spatial computers,
in contrast, tend to have more structure, with specific constraints and capabilities that
can be used in the design, analysis and optimization of algorithms.

The goal of the 5th Spatial Computing Workshop is to serve as an inclusive forum
for the discussion of ongoing or completed work focusing on the theoretical and practical
issues of explicitly using space in the design process of multiagent or multiactor systems.

Indeed, the handling of space often remains implicit and elementary in general, reflected
also in its limited adoption in the myriad of domain-specific programming languages. We
believe that progress towards identifying common principles, techniques, and research
directions—and consolidating the substantial progress that is already being made—will

iii

benefit all of the fields in which spatial computing takes place. And, as the impact of
spatial computing is recognized in many areas, we hope to set up frameworks to ensure
portability and cross-fertilization between solutions in the various domains.

The Spatial Computing Workshop provides a premier forum for sharing both research
and engineering results, as well as potential challenges and prospects.

Workshop History

The domain of spatial computing is young but the last 6 years have shown a constant
interest of researchers from various communities: parallelism, self-organization, complex
systems, systems biology, swarm robotics, autonomic systems, amorphous computing, and
at last but not least, multiagent systems.

The Spatial Computing Workshop (SCW) series has been established in 2008 after an
initial Dagsthul seminar Computing Media and Languages for Space-Oriented Computa-
tion1 in 2006 and a followup in Paris in 2008 From Amorphous Computing to Spatial
Computing where the decision was made to begin the workshop. Since 2008, SCW has
been a satellite workshop of the SASO conference2. This year, SCW is colocated with
AAMAS. The past SCW have been held in:

• Venice3 (2008)

• San Francisco4 (2009)

• Budapest5 (2010)

• Ann Arbor6 (2011)

In 2009, a special issue of the ACM Transactions on Autonomous and Adaptive Systems
(TAAS) were organized, where SCW participants and other researchers were invited to
contribute.

In 2011, a special issue of The Computer Journal has been launched following the same
open scheme.

1http://www.dagstuhl.de/06361/
2http://www.saso-conference.org/
3http://projects.csail.mit.edu/scw08/
4http://radlab.cs.berkeley.edu/saso2009/workshops.html

and http://scw09.spatial-computing.org/
5http://www.inf.u-szeged.hu/saso10/index.php?menu=workshop

and http://scw10.spatial-computing.org/
6http://www.cscs.umich.edu/SASO2011/index.php?menu=workshop

and http://scw11.spatial-computing.org/

iv

Current Trends in Spatial Computing

The papers presented at this workshop give a sampling of the current work in Spatial
Computing. In the past editions of SCW, the following topics were discussed:

• Relationships between agent interaction and spatial organizations, self-organization,
self-assemblies, collective motions;

• Characterization of spatial self-organization phenomena as algorithmic building blocks;

• Control theory approaches for designing dynamic spatial computing applications;

• Theoretical and practical limitations arising from spatial properties, understand-
ing and characterization of spatial computing specific errors, analysis of tradeoffs
between system parameters;

• Studies of the relationship between space and time - propagation of information
through the spatial computer, and computational complexity;

• Languages for programming spatial computers and describing spatial tasks and
space/time patterns;

• Methods for compiling global programs to local rules for specific platforms (so called
global-to-local compilers);

• Suitable design methodologies and tools, such as novel domain-specific languages,
for implementing, validating and evaluating spatial applications;

• Application of spatial computing principles to novel areas, or generalization of area-
specific techniques;

• Device motion and control in spatial computing algorithms (e.g. relationship be-
tween robot speed and gradient accuracy in robotic swarms);

• Novel spatial applications, emphasizing parallel, mobile, pervasive, P2P, amorphous
and autonomic systems;

• Testbeds and use-studies of spatial applications;

• . . .

This year also, the papers selected for SCW reflect the diversity of spatial computing.
They investigate a wide range of spatial programming features and applications, from
distributed computing to ambient computing, from robotic and artificial life to design and
music.

v

Without the help of the program committee, the workshop would not have come about
and we would like to thank them for their involvement in SCW. Grateful acknowledgments
are also due to the efficient logistic of the AAMAS organizers and especially Elizabeth
Sklar, the AAMAS workshop chair, and to our supporting institutions: BBN Technolo-
gies, CNRS, Delft University, Inria MuSync team, Ircam and the RepMus team, UPMC,
University of Paris-Est Créteil and the LACL lab.

We hope you will have as much fun and interest as us, in the reading of these proceed-
ings.

April 2012
Dr. Jacob Beal (BBN Technologies)
Dr. Stefan Dulman (Delft University)
Dr. Jean-Louis Giavitto (CNRS & IRCAM)
Prof. Antoine Spicher (LACL - Univ. Paris-Est Créteil)

vi

Program Committee

- Dr. Jonathan Bachrach (Other Lab, USA)

- Dr. Jacob Beal (BBN Technologies)

- Dr. Michel Banatre (Inria, France)

- Prof. Daniel Coore (University of West Indies, Mona)

- Prof. David De Roure (University of Southampton)

- Prof. Shlomi Dolev (Ben-Gurion University of the Negev)

- Dr. Rene Doursat (Institut des Systemes Complexes)

- Dr. Stefan Dulman (Delft University)

- Prof. Chris Dwyer (Duke)

- Prof. Amal El Fallah Seghrouchni (UPMC)

- Dr. Nazim Fates (INRIA)

- Dr. Jean-Louis Giavitto (CNRS & IRCAM)

- Prof. Erol Gelembe (Imperial College)

- Prof. Frederic Gruau (University Paris Sud)

- Prof. Guillaume Hutzler (University of Evry)

- Dr. Luidnel Maignan (INRIA Saclay, France)

- Prof. Mark Jelasity (Hungarian Academy of Sciences and Univ. of Szeged)

- Prof. Olivier Michel (LACL - Univ. Paris-Est, Créteil)

- Ulrik Pagh Schultz (University of Southern Denmark)

- Prof. Antoine Spicher (Univ. Paris 12)

- Prof. Christof Teuscher (Portland State University)

- Dr. Danny Weyns (K.U.Leuven, Belgium)

- Dr. Eiko Yoneki (University of Cambridge, UK)

Organizing Committee

- Dr. Jacob Beal (BBN Technologies)

- Dr. Stefan Dulman (Delft University)

- Dr. Jean-Louis Giavitto (CNRS & IRCAM)

- Prof. Antoine Spicher (LACL - Univ. Paris-Est, Créteil)

vii

Schedule

09:00 Welcome

09:10-9:20 Introduction

09:20-09:50 Lightweight Simulation Scripting with Proto
Jacob Beal, Kyle Usbeck and Brian Krisler

09:50-10:20 Arbitrary Nesting of Spatial Computations
Antoine Spicher, Olivier Michel and Jean-Louis Giavitto

10:20-10:50 Morning coffee break

10:50-11:20 Recursivity in Field-Based Programming: the Firing Squad Example
Luidnel Maignan and jean-Baptiste Yunès

11:20-11:50 Spatial computing for non-IT specialists Steffan Karger, Agostino Di Figlia,
Maurice Bos, Andrei Pruteanu and Stefan Dulman

11:50-12:20 Spatial Structures Programming for Music
Jean Bresson

12:20-13:00 Demonstrations

13:00-14:30 Lunch

14:30-15:00 Decentralized spatial algorithm design
Matt Duckham

15:00-15:30 On the Space-time Situation of Pervasive Service Ecosystems
Mirko Viroli and Graeme Stevenson

15:30-16:00 Evolution of Controller-Free Molecular Motors from Spatial Constraints
Jose-David Fernández, René Doursat and Francisco J. Vico

16:00-16:30 Afternoon coffee break

16:30-17:00 Towards a Robust Spatial Computing Language for Modular Robots
Ulrik Schultz

17:00-18:00 Demonstrations (continued) and Farewell

viii

Lightweight Simulation Scripting with Proto
Jacob Beal

Raytheon BBN Technologies
Cambridge, MA, USA, 02138
Email: jakebeal@bbn.com

Kyle Usbeck
Raytheon BBN Technologies
Cambridge, MA, USA, 02138
Email: kusbeck@bbn.com

Brian Krisler
Raytheon BBN Technologies
Cambridge, MA, USA, 02138
Email: bkrisler@bbn.com

Abstract—Modern game engines make it easy to create com-
plex realistic environments for entertainment or for training, but
scripting the behavior of agents in these environments is still a
major challenge. Spatial computing languages such as Proto [1]
provide a possible solution, but need to be adapted for practical
scripting use. We have begun to address this problem by linking
Proto with the Unity game engine and by creating a Proto library
for scripting the behavior of groups of agents. We validate our
approach by demonstrating compact scripting of three complex
agent interaction scenarios.

I. INTRODUCTION

Modern game engines [2], provide the core components
necessary to quickly produce simulations that just a few years
ago required complex, custom solutions. The proliferation of
these generic engines has led to the emergence of a new
category of games, referred to as serious games [3]. The main
focus area for serious games is training, where systems such as
the US Navy VESSEL trainer [4] are used to reduce classroom
lecture times and promote active learning.

Every game engine has a scripting environment that pro-
vides a language and core API for customizing interactions
with and within the game. While these APIs are typically
robust and allow for complete control of all objects within
the game world, they are seriously limited in their support for
quickly scripting behaviors for large groups of autonomous
agents. For example, in the creation of a training game where
a trainee would have to function in a large crowd, providing
the movement flow and heterogeneous interactions typical of a
realistic crowd would require many complex pieces of custom
code, perhaps down to the level of individual agents. This
requirement limits the inclusion of many autonomous agents
in a training scenario.

In this paper, we address this problem by linking the
Proto spatial computing language to Unity [5], a widely used
modern game engine. We then create a library for scripting
the behavior of groups of agents and demonstrate how our
approach allows compact scripting for large groups of agents
in a realistic simulation environment.

II. BACKGROUND

Although there has been much previous work on agent be-
havior programming and simulation, there are significant gaps

Work partially sponsored by DARPA; the views and conclusions contained
in this document are those of the authors and not DARPA or the U.S.
Government.

in the capabilities of existing solutions. These current solutions
can be classified into three categories: single-agent behavioral
models, multi-agent toolkits, and spatial computing platforms.
A detailed review discussing many of the approaches described
in this section can be found in [6].

Many game engines simply use conventional programming
languages (or their own domain-specific variants) for their
scripting languages. For example, Unity uses scripts written
in JavaScript, C#, and Boo. More sophisticated single-agent
behavioral models include conceptual models of agent be-
havior and agent frameworks (for implementing agent behav-
iors). Conceptual behavior models, such as the Belief-Desire-
Intent (BDI) agent model [7], offer high-level descriptions
of agent internals. Agent frameworks (often called “agent
architectures”) described thoroughly in [8] and [9], provide
tools (e.g., agent administration, messaging, mobility, logging,
etc.) for implementing agent behaviors. These frameworks
and behavioral models, however, rarely provide aggregate
programming/modeling tools that are useful for MAS control.

Multi-agent System (MAS) modeling and simulation tool-
kits tend to focus on interactions: both inter-agent interactions
and interactions between agents and their environment. MAS
modeling and simulation toolkits include languages for mod-
eling the MAS, and tools for simulating the running agent
system. For example, NetLogo [10] extends the Logo language
to allow agent coordination and provides a graphical tool for
simulating the agent behaviors. Most existing MAS model-
ing and simulation toolkits lack realism in their simulation
environments, and therefore do not provide language features
for realistic behavior. Furthermore, most MAS toolkits lack
features for spatial aggregate programming, which we describe
next, which enable scalable descriptions of aggregate behavior
(i.e., the number of agents don’t need to be specified a priori).

A more-recent approach is spatial computing, which as-
sumes communication is constrained to agents near one an-
other in space. The implication of this assumption is that it be-
comes necessary to consider the spatial structure of the system
in planning the solution. Proto [1] is a purely-functional LISP-
like language that is designed with spatial constructs (i.e.,
operations to measure and manipulate space-time, compute
spatial patterns, and evolve dynamically). General purpose
spatial languages such as Proto or MGS [11] are capable of
elegantly and concisely describing aggregate MAS behavior
(sometimes labeled “emergent behavior”) [12], but often have
unusual programming models. For example, Proto is a purely

1

functional language and does not offer the imperative-style
MAS scripting that is familiar to game-based agent behavior
developers. Furthermore, the simulators used for running and
testing spatial languages tend to lack the realism that is
available from recent physics simulators and game engines.

III. APPROACH

Our approach for creating a scalable aggregate scripting
language for realistic simulation environment has three com-
ponents: (1) the Unity game engine [5] provides realism in
the simulation environment (e.g., terrain modeling, realistic
physics simulation, entity modeling), (2) the Proto spatial
computing language provides constructs for scalable aggregate
programming, and (3) agent behavior scripting is facilitated by
a novel Proto library comprising group behavior primitives and
a novel macro library for imperative-style scripting.

A. Connecting Proto and Unity

Proto has three main components: (1) the spatial language,
(2) a global-to-local compiler which accepts a global behavior
description (in Proto language) and outputs a virtual machine
(VM) binary for the Proto VM, and (3) the VM that interprets
Proto VM instructions on each device. In order to be able to
execute global Proto programs from within the realistic Unity
simulation environment, we first make the Proto compiler in-
vokable from within Unity. Next, we create an implementation
of the Proto VM for reading information from and performing
operations upon Unity agents. Finally, we create an interface
for developers to control parameters of the Proto-Unity plugin.

1) Invoking the Proto Compiler: Proto uses a global-to-
local compiler to convert global behavior descriptions into
local (i.e., per-device) programs. It is important that this
compiler be integrated into the final solution so that end-users
can write programs for groups of agents within the modeling
and simulation toolkit.

The reference implementation of the Proto compiler is
written in C++ and Unity has a C/C++ API for its plugins, so
one option would be to directly integrate the Proto compiler
into a Unity plugin. This would have required maintaining a
branch of the Proto compiler with a Unity-friendly interface,
however. Instead, we created a simpler plugin that invokes
an external installation of the standard Proto compiler. Thus,
Unity, supplied with a Proto program, invokes the external
Proto compiler on that program and receives in return the Proto
VM instructions (a.k.a., Proto opcodes) that specify how each
agent should act.

2) A Proto VM Implementation for Unity: Next, we need
a mechanism for controlling agents within Unity according to
the behaviors described by the local Proto VM instructions.
The Proto reference implementation already contains a VM
suitable for most environments—requiring the developer to
implement only a small set of platform-specific functions (e.g.,
how the machine allocates memory, broadcasts messages to
other devices, etc.). Likewise, the continuous time model of
Proto programs means there is no problem matching simula-
tion rates: the VM execution rate can simply be derived from

its Unity environment. Importing the Proto VM to Unity was
not significantly different or more difficult than prior imports
on various embedded platforms: to do so, we constructed a
Unity plugin that implements the required platform-specific
functions using tools from the Unity API. For example, one
such function uses the Unity utility for computing the distance
between Unity agents to implement a unit-disc communication
model. Of course, this model could be extended to incorporate
other information available from Unity (e.g., line-of-sight) for
improved realism.

3) An Interface to the Proto-Unity Plugin: Finally, we
created an interface for controlling the Proto-Unity plugin.
This engineering interface is not meant for end-users, but
instead is designed to help agent script developers by providing
functionality similar to that of the reference implementation
of the Proto simulator. For example, the interface can show
the network topology of the Unity agents by drawing lines
between the agents within communication range and allows the
developer to change the devices’ communication radii on-the-
fly. This allows a developer to “tweak” simulation parameters
during development, then set them and remove the interface
when the simulation is finished and provided to users.

B. Group Behavior Primitives

We next need a library of “primitives” for group behaviors—
simple ways of describing what we want a collection of agents
to do. These will be the basis for the agent scripts that we
build. We build this library after the fashion of [13], as Proto
functions that compute vector fields for the desired motion of
agents. We can then produce complex behaviors by mixing
these vector fields together in various ways.

We have created an initial library of eight behaviors. Fig-
ure 1 shows examples of these behaviors being applied to
agents in Unity using the Proto/Unity bridge. Here we present
only the API for the behaviors; their implementation is similar
(or in some cases identical) to code presented in [13].

(random-walk)
Parameter Type Description

RETURN TUPLE Vector direction for agent to move

Random-walk moves each agent in a random direction. This
is like brownian in [13], except that speed is also randomized.

(flock DIRECTION)
Parameter Type Description

DIRECTION TUPLE Preferred direction to flock toward
RETURN TUPLE Vector direction for agent to move

The flock behavior, also from [13], moves agent groups
by repelling the closest agents, aligning with moderately-
proximate agents, and weakly attracting distant agents. This
allows a group of agents to “flock” together in partially-
coherent group motion. The DIRECTION argument guides the
motion of the flock with a preferred direction supplied to some
or all members, as investigated in [14].

(flock-to LOCATION)
Parameter Type Description

LOCATION TUPLE Coordinates to flock to
RETURN TUPLE Vector direction for agent to move

2

(a) Random-Walk (b) Flock/Flock-To (c) Disperse/Scatter (d) Toward (e) Cluster-By

Fig. 1. Examples of agents being controlled by group behavior primitives written in Proto.

The flock-to behavior is like flock, except the agents
move coherently to a location, rather than toward a direction.

(disperse)
Parameter Type Description

RETURN TUPLE Vector direction for agent to move

The disperse behavior, our last adaptation from [13],
repels agents away from one another with a force proportional
to the inverse square of the distance separating them.

(scatter DIRECTION)
Parameter Type Description

DIRECTION TUPLE Vector biasing scatter direction
RETURN TUPLE Vector direction for agent to move

The scatter behavior is much like disperse, except that
agents do not slow down when they start getting far apart and
they have a directional bias, DIRECTION.

(toward TARGET)
Parameter Type Description

TARGET BOOLEAN Boolean indicator that is
true if an agent is a target

RETURN TUPLE Vector direction for agent to move

The toward behavior finds the direction toward the mean
location of all neighbors with a TARGET property.

(away-from TARGET)
Parameter Type Description

TARGET BOOLEAN Boolean indicator that is
true if an agent is a target

RETURN TUPLE Vector direction for agent to move

The away-from behavior is the inverse of toward.
(cluster-by GROUP-ID)

Parameter Type Description
GROUP-ID INTEGER Identifier for an agent group

RETURN TUPLE Vector direction for agent to move

Finally, cluster-by, sorts agents into groups: all agents
repel each other weakly and are strongly attracted to others
with the same GROUP-ID identifier. This will tend to separate
the group into clusters by identifier, though if the agents are
widely scattered, there may be more than one cluster for any
given identifier.

C. Agent Scripting Library

The last ingredient needed is a means of composing to-
gether these group behavior primitives to form useful agent
behavior scripts, which will typically be much more com-
plicated. Proto’s native approach is one of purely functional
composition—mathematically elegant, but not well suited for
the way that simulation designers often like to think. Instead,
we would like to be able to talk about a script in terms
of concepts like particular groups being assigned particular

behaviors, responding to triggers, or progressing through a
planned sequence one stage at a time.

Technically, Proto’s functional model can already provide
all of these capabilities. The problem is that the code to do so is
often awkward and does not “look” like the kind of state-based
programming that is more familiar for this sort of scripting.
Fortunately, Proto has recently been extended with a capability
for syntactic macros. We use this macro programming facility
to create new syntactic constructs suitable for agent scripting.
The macros transform these new syntactic constructs into
implementation in terms of standard Proto primitives.

Our initial agent scripting library comprises five constructs,
selected as examples of group and individual behavior se-
lection and sequencing; other important categories not yet
included are behavior planning, collective decision making,
etc. In our initial library, group-case and where assign
behaviors to groups of agents, on-trigger sets up a trig-
gered action for a group of agents, priority-list assigns
behavior based on the relative importance of competing pri-
orities, and sequence moves a group of agents through a
planned sequence of actions. All of these are defined with the
assumption that the return value is intended to be a vector field
specifying the movement of agents. We will now detail each
of these constructs in turn, then demonstrate their use with the
examples in the next section.

The syntax of the group-case construct is:
(group-case
(behavior-of MEMBERSHIP-TEST BEHAVIOR
(behavior-of MEMBERSHIP-TEST BEHAVIOR
...
(default BEHAVIOR)...)))

This operates much like an ordinary case statement: each
MEMBERSHIP-TEST must be a boolean-value expression, and
agents use the BEHAVIOR of the first behavior-of case they
match. If an agent is not a member of any group, then it uses
the default group’s BEHAVIOR.

Within each behavior-of construct, there is a special vari-
able in-group defined. Computations for a group’s behavior
normally extend over both agents in the group and agents
outside of the group, allowing agents to react to information
from others outside of their group. The in-group variable is
true only for those agents in the group, and can thus be used
to restrict computation to only within the group.

The where construct is a good way to do such a restriction:
(where TEST BEHAVIOR)

3

This computes BEHAVIOR over the set of agents where TEST

is true, much like the standard Proto if construct, except that
all other devices default to a tuple of zeros.

The on-trigger construct has identical syntactic structure:
(on-trigger TRIGGER BEHAVIOR)

Its function, however, is to enable a BEHAVIOR in a dormant
group of agents as soon as TRIGGER becomes true for at
least one member of the group. Once enabled, the group stays
enabled and continues to act.

The syntax of the priority-list construct is:
(priority-list
(priority NAME TEST BEHAVIOR
(priority NAME TEST BEHAVIOR
...)))

Each agent walks the list of priorities in descending order,
treating the first entry as highest priority. When a TEST

evalutes to true, the agent executes the associated BEHAVIOR.
If no priority holds, then the agent does nothing.

Finally, the sequence construct, which moves agents
through a sequence of actions over time, is:
(sequence
([stage|group-stage] NAME ACTION TERMINATION
([stage|group-stage] NAME ACTION TERMINATION
...
[end-sequence|repeat])...))

Agents transition individually through stage constructs and
transition collectively out of group-stage constructs. The
sequence begins with the first stage, executing ACTION until
the TERMINATION condition is met. When an agent finishes a
stage, it just moves on and begins executing the next stage’s
ACTION. For a group-stage, on the other hand, the agent
also informs all neighboring agents, which move on to the
next stage and inform their neighbors as well, and so on until
all agents with reach of communication have changed stages.
Thus, a group-stage terminates when any agent in the group
reaches its TERMINATION condition.

When agents reach the final action in the sequence, their
behavior depends on the final keyword. If the keyword is
end-sequence, the agents stop moving; if it is repeat, the
sequence begins again. Optionally, the keyword ongoing may
be substituted for the last stage’s TERMINATION, in which case
the last stage continues indefinitely instead.

Although these five constructs are just a beginning of the
type of constructs that are necessary to make up a full-fledged
agent scripting library, they demonstrate that Proto macros can
allow more “natural” scripting for agent behaviors.

IV. VALIDATION

We now have an agent scripting library written in Proto and
the ability to execute Proto programs in Unity—all of the in-
gredients necessary for validating our approach to lightweight
simulation scripting. In this section, we demonstrate the power
of our approach by constructing three simulations where
groups of agents need to interact and to coordinate their
behaviors with one another.

(a) Red team advances on Blue team

(b) Blue team notices incoming Red team

(c) Blue team scatters

Fig. 2. The red-advance script running on 30 agents.

For these simulations, we consider environments with two
teams of agents: “Red team” aggressors and “Blue team”
defenders. In each simulation, agents from both teams are
placed onto a geo-typical terrain where they can then execute
their group behaviors within the physics and terrain based
constraints of the environment. We run these simulations with
10 to 30 agents; since the code is written in Proto, however, the
same simulations can be executed on any number of agents.

A. Red Advances on Blue

We begin with a simple scenario where Red team advances
on Blue team and Blue scatters and flees when Red gets close:
(def red-advance (red-team blue-team)

(group-case
(behavior-of red-team ;; Red team behavior:
(where in-group
(flock-to (tup 0 0))) ;; go to Blue starting location

(behavior-of blue-team ;; Blue team behavior:
(on-trigger (can-see red-team) ;; when Red is near...
(scatter (away-from red-team))) ;; flee from Red!

(default (tup 0 0))))))

We do this by using the group-case construct to specify
behavior by team. For Red team, we use flock-to to advance
coherently towards the starting location of Blue team. For Blue
team, we use on-trigger to scatter when any Blue agent
notices an advancing Red, using the bias argument to making
sure that the Blue agents move away-from Red. If any agent
is not on either Red or Blue team, it does nothing. Figure 2
shows agents executing this scenario in Unity.

4

(a) Team moving as a group

(b) Team breaking up into three sub-groups

(c) Sub-groups moving to different destinations

Fig. 3. The deploy script running on 10 agents.

B. Red Deploys from a Vehicle

The next scenario has Red team deploying out of an armored
transport vehicle into three squads:

(def deploy (squadID)
(sequence
(stage leave-vehicle ;; First stage:
(flock (tup -1 0 0)) ;; move left...
(timeout 20) ;; ... for twenty seconds.
(stage group-by-squad ;; Second stage:
(cluster-by squadID) ;; group into squads...
(timeout 50) ;; ... for fifty seconds.
(stage deploy-to-destination ;; Third stage:
(group-case ;; Each squad goes to a different location:
(behavior-of (= squadID 0) ;; First squad ...
(flock-to (tup 50 100)) ;; ... goes to (50, 100)

(behavior-of (= squadID 1) ;; Second squad ...
(flock-to (tup -200 0)) ;; ... goes to (-200, 0)

(behavior-of (= squadID 2) ;; Third squad ...
(flock-to (tup -100 -100)) ;; ... goes to (-100, -100)

(default (tup 0 0))))))
ongoing ;; Sequence doesn’t end or repeat
end-sequence)))))

Here, we use the sequence construct to break the deployment
into three phases. First, the agents all flock for 20 seconds to
leave the vehicle together. Next, the agents use cluster-by

to sort themselves out into squads, giving 50 seconds for the
squads to organize themselves. Finally, we use group-case to
have each of the three squads flock-to its own destination.
Figure 3 shows agents executing this scenario in Unity.

(a) Blue team on patrol — looking for Red team.

(b) Blue team members break off to chase Red team.

Fig. 4. The patrol-encounter script running on 30 agents.

C. Red Tries to Sneak Past a Blue Patrol

Our third scenario is the most complex: Blue team is trying
to defend against Red team while patrolling a regular pattern.
Meanwhile, Red team is trying to pass through the area that
Blue team is guarding without being caught.

We first define the patrol pattern to be used by Blue team:
(def patrol ()

(sequence
(group-stage checkpoint-1 ;; First stage:
(flock-to (tup 100 50)) ;; Go toward (100, 50) ...
;; ... until somebody in the patrol is within 5 meters of the place ...
(< (vlen (- (coord) (tup 100 50))) 5)

(group-stage checkpoint-2 ;; Second stage:
(flock-to (tup 0 50)) ;; ... now go to (0, 50) ...
(< (vlen (- (coord) (tup 0 50))) 5)

(group-stage checkpoint-3 ;; Third stage:
(flock-to (tup 50 -50)) ;; ... and then to (50, -50) ...
(< (vlen (- (coord) (tup 50 -50))) 5)

repeat))))) ;; ... and repeat

Here, we use a repeating sequence construct to define a cyclic
patrol around three checkpoints. For each checkpoint, the
agents use flock-to to move as a group to that checkpoint.
Once any agent in the group reaches the checkpoint, the
group-stage construct means its information will spread,
causing the whole group to head for the next checkpoint even
if some members have not yet reached the current checkpoint.

We then use this script as a behavior in the scripts for the
overall encounter between Red team and Blue team:
(def patrol-encounter (red-team blue-team)

(group-case
(behavior-of red-team ;; Red team behaviors
(priority-list
(priority defend-self
(can-see blue-team) ;; if Blue shows up...
(scatter (away-from blue-team));; ... then run away
(priority invade ;; otherwise,
(timeout 500) ;; when the script says start
(flock-to (tup 200 0))))) ;; try to pass by Blue team

5

(behavior-of blue-team ;; Blue team behaviors
(priority-list
(priority attack-red
(can-see red-team) ;; if Red shows up...
(let ((dir (toward red-team))) ;; ... then track ...
(where in-group (flock dir)));; ... and chase them

(default ;; otherwise,
(where in-group (patrol)))));; walk your patrol route.

(default (tup 0 0))))))

As before, we use group-case to specify a behavior for each
team. We now also use priority-list to give each team
multiple possible behaviors, depending on circumstances. Red
team begins to invade the area 500 seconds after the simulation
starts, attempting to flock-to its target. If a Red team agent
encounters Blue team, however, this goal will be pre-empted
by the goal of defending itself, and it will scatter, fleeing
away-from Blue team.

The Blue team has a complementary priority-list

script: when there are no Red team agents nearby, they default
to patrolling on the three-checkpoint pattern that we defined
above. If a Red team agent is nearby, though, they will break
off to attack, using flock to move toward nearby red-team
agents. Figure 4 shows agents executing this scenario in Unity.

Taken together, these demonstrate the power of our ap-
proach to scripting of agent-based simulations. Unity provides
realistic physics simulation, while Proto and our new agent
scripting library allow for compact scripting of scenarios in
which groups of agents engage in many types of interactions.

The scenarios presented are remarkably compact in code,
requiring only 8 lines, 19 lines, and 31 lines respectively. The
same scenarios written in a conventional scripting language
would typically take at least an order of magnitude more
code. We can measure this in some cases by comparing
against similar scripts available on the Unity community site,
http://www.unifycommunity.com/. For example, the
Proto flock code presented above takes only 12 lines, while a
Unity JavaScript version takes 77 lines, yet must “cheat” in its
calculations and can only run a single flock. Similarly, a single-
agent waypoint following Program in Unity is implemented
with 65 lines of JavaScript code, while it takes only 7 lines of
Proto code to script coherent waypoint following for groups
of agents. Even single agent functions are often much simpler
in Proto: a Unity C# script for a wandering agent requires 40
lines, while the equivalent Proto function dither (part of the
standard Proto library) requires only 5 lines.

Also of note is the relatively light computational burden
of Proto; in the scenarios presented, the limiting factor on
Unity simulation speed appears to be the cost of rendering the
agents, with the cost of Proto computation and communication
insignificant.

While not yet a definitive study, these results do clearly
indicate that it is reasonable to expect large benefits from
scripting agent-based simulations in Proto. We believe such a
drastic reduction in size is likely to be due to two factors. First,
as a functional programming language, Proto tends to produce
more compact code. More importantly, however, Proto’s ability

to program aggregates and to execute routines on subgroups
makes it just as easy to script a group behavior as a behavior
for a single individual. The relative importance of these two
factors, however, is not yet established.

V. CONTRIBUTIONS

We have presented a novel approach to construction of
agent-based simulation, based on the integration of the Unity
simulation engine with the Proto spatial computing program-
ming language. We have developed a library of agent group
behaviors and scripting constructs aimed at programming this
environment, and have demonstrated that the combination
allows succinct specification of complex simulation scenarios
with large numbers of interacting agents.

While the results presented in this paper demonstrate the
potential for major improvements in agent-based simulation
programming, there is much more that can be accomplished.
Future work includes better integration between Proto and
Unity, refinement and extension of the behavior library and
scripting constructs, and construction of virtual sensors to
allow Proto-controlled agents access to more information
available from the Unity simulator, such as terrain properties,
physical contact and line-of-sight.

REFERENCES

[1] J. Beal and J. Bachrach, “Infrastructure for engineered emergence on
sensor/actuator networks,” IEEE Intelligent Systems, 2006.

[2] M. Lewis, J. Jacobson, and C. based Games, “Game engines in scientific
research,” 2002.

[3] T. Susi, M. Johannesson, and P. Backlund, “Serious games – an
overview,” 2007.

[4] T. Hussain, B. Roberts, C. Bowers, J. Cannon-Bowers, E. Menaker,
S. Coleman, C. Murphy, K. Pounds, A. Koenig, R. Wainess, and
J. Lee, “Designing and developing effective training games for the US
Navy,” in 2009 Interservice/Industry Training, Simulation and Education
Conference., 2009.

[5] “Unity — 3D game engine,” Available: http://unity3d.com/,
Retrieved March 4, 2012.

[6] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Orga-
nizing the aggregate: Languages for spatial computing,” CoRR, vol.
abs/1202.5509, 2012.

[7] A. Rao and M. Georgeff, “BDI agents: From theory to practice,” in
Proceedings of the first international conference on multi-agent systems
(ICMAS-95). San Francisco, 1995, pp. 312–319.

[8] W. C. Regli, I. Mayk, C. J. Dugan, J. B. Kopena, R. N. Lass, P. J. Modi,
W. M. Mongan, J. K. Salvage, and E. A. Sultanik, “Development and
specification of a reference model for agent-based systems,” Trans. Sys.
Man Cyber Part C, vol. 39, pp. 572–596, September 2009. [Online].
Available: http://portal.acm.org/citation.cfm?id=1656816.1656823

[9] D. N. Nguyen, K. Usbeck, W. M. Mongan, C. T. Cannon, R. N.
Lass, J. Salvage, and W. C. Regli, “A methodology for developing an
agent systems reference architecture,” in 11th International Workshop
on Agent-oriented Software Engineering, Toronto, ON, May 2010.

[10] E. Sklar, “Netlogo, a multi-agent simulation environment,” Artificial life,
vol. 13, no. 3, pp. 303–311, 2007.

[11] J.-L. Giavitto, O. Michel, J. Cohen, and A. Spicher, “Computation in
space and space in computation,” Univerite d’Evry, LaMI, Tech. Rep.
103-2004, 2004.

[12] K. Usbeck and J. Beal, “An agent framework for agent societies,”
Systems, Programming, Languages and Applications: Software for Hu-
manity, 2011.

[13] J. Bachrach, J. Beal, and J. McLurkin, “Composable continuous space
programs for robotic swarms,” Neural Computing and Applications,
vol. 19, no. 6, pp. 825–847, 2010.

[14] I. Couzin, J. Krause, N. Franks, and S. Levin, “Effective leadership and
decision-making in animal groups on the move,” Nature, vol. 433, no.
7025, pp. 513–516, 2005.

6

Spatial Structures Programming for Music
Jean Bresson

UMR STMS: Ircam-CNRS-UPMC
Paris, France

Email: jean.bresson@ircam.fr

Abstract—We survey works and applications of visual pro-
gramming for the control of sound spatialization in the Open-
Music computer-aided composition environment. Several salient
aspects of the control and spatialization processes are described,
such as the high-level description of spatial sound scenes, their
unfolding in musical or computational time flows, as well as the
concept of spatial sound synthesis.

I. INTRODUCTION

Considering space in music is an long-lasting concern which
has been particularly put forward during the last 50 years with
the development of computer and audio technologies [19].
After pioneering works on early analogue systems by com-
posers such as K. Stockhausen or E. Varèse, the interest
for composers to integrate sound spatialization in their work
significantly increased as digital technologies for spatial audio
progressed and made it more accessible [27], [30]. With this
technology, instrumental music performances can be enhanced
by new techniques for sound diffusion in concert halls, and
sounds in electro-acoustic works can be spatially composed in
real or virtual rooms.

With the term spatialization we refer to the localisation and
movements of sound sources, but also to their orientation or
directivity patterns, to the acoustic properties of a room, or
to any other more or less abstract elements related to the
diffusion of sound sources and the inclusion of space as a
musical parameter in a compositional context [5]. Examples
of spatial audio technologies available today range from multi-
speakers amplitude panning [33], which can now be con-
trolled at high rate and resolution for large numbers of sound
sources and channels, to more advanced systems and hardware
equipments such as higher-order ambisonics [14] or wave-field
synthesis [6].

Our interest here, however, is not exactly in spatial audio
but in its control and integration in compositional frameworks.

Digital audio workstation plug-ins for sound spatialization
are commonplace today, and are used to control the virtual
localisation of sounds during sound mixing or montages.
Powerful spatialization tools are available as well for music
and sound processing environments like Max/MSP [21], [34].
Interestingly, recent efforts are also being done to provide
high-level interfaces independent from the low-level rendering
technologies [18], thereby permitting users to focus on control
(and further, compositional) issues. However, systems for
creating (composing) spatial structures, possibly used in a
subsequent phase to parametrize the aforementioned control
tools, are fewer (see for instance [23], [31], [41]).

The works we present take place in the OpenMusic vi-
sual programming environment and in the general context of
computer-aided music composition. After a quick presentation
of this background, we will try to underline the interest and
possibilities offered by the integration of sound spatialization
in high-level compositional frameworks, and describe some
tools and concepts developed recently for this purpose.

II. OPENMUSIC, VISUAL PROGRAMMING AND
COMPUTER-AIDED MUSIC COMPOSITION

Visual programming is a relatively widespread approach
to computer-aided composition in contemporary music [3].
OpenMusic (OM) is a visual programming language designed
for music and used by composers, musicologists or computer
music researchers to create or transform musical material [4],
[11]. Programs in OM (also called patches) are represented
and manipulated as directed acyclic graphs made of boxes
and connections. A patch represents a functional expression
which can be constructed and evaluated on-demand in order
to produce or transform musical material (Figures 1 and 3 are
examples of OM patches). OM is implemented in Common
Lisp and OM patches have therefore a direct correspondence to
Lisp expressions. Conversely, any Lisp code or process can be
integrated in an OM patch in a straightforward way. The main
programming paradigm in OM is therefore functional (most of
the functional constructs available in Lisp can be implemented
in visual programs, such as higher-order, recursive function,
etc. [10]) although object-oriented features are also available
in the visual language.

OM also contains a number of domain-specific data struc-
tures and associated graphical editors, allowing to visualize
and manipulate the data involved in the visual programs and
thereby providing an important input and feedback between
the user/programmer and the program being created. It may
be important, however, to differentiate functional environments
such as OM from real-time (highly interactive) environments
more commonly used in music (e.g. [32]). In OM in principle,
no temporal control or external clock influences the patch
execution, which is a static (declarative), and globally “out-of-
time” description of a musical structure, generally including
time as an autonomous and unconstrained dimension.

Advanced formalisms and compositional processes can
therefore be carried out in OM in order to generate material
or experiment with computation and computer modelling in
diverse musical contexts [1], [9].

7

III. SPATIAL CONCEPTS IN COMPUTER-AIDED
COMPOSITION

There exist several and varied ways in which spatial at-
tributes can be linked to musical aspects of a work in a musical
programming environment like OpenMusic. A first example,
which actually does not deal with spatialization, is for instance
given in [20] where the author uses spatial relations coming
from the transcription and processing of architectural sketches
and maps to produce musical parameters.

Conversely, and more related to our present concern, any
kind of musical or extra-musical data can be processed in
OpenMusic and generate attributes or parameters for a spatial-
ization process. This approach has been experimented in the
late nineties for instance to control the MusicSpace constraint-
based spatialization system [16] with the OpenSpace project
[17], or the Ircam Spatialisateur [21] with OMSpat [26]. The
main interest here is that spatialization parameters (mostly, the
position and movements of the sound sources in space) can
be precisely controlled and set in accordance and relation to
the other parameters of a compositional process, and therefore
of the created musical material. A pioneering work in this
respect, carried out in OpenMusic, was B. Ferneyhough’s piece
Stellæ for failed times [25].

Usually two different approaches can be observed in the
control of sound spatialization. The first one focuses on the
sound sources distribution among the different channels or
speakers. This approach is adapted (and generally specific) to
particular rooms and speaker set-ups: the composer “thinks”
in terms of these speakers and devises how sound sources
are allocated, and possibly move among them [40]. A second
approach rather focuses on perception, that is, on positions
where sound sources shall be located, and spatialization pro-
cessors work at rendering this perceptual idea in the actual
room and with a given speakers set-up. In this case, composers
think in term of absolute positions and trajectories. In principle
(but rarely in fact) this approach in the compositional domain
can be independent of the room and set-up. The recent works
carried out in OM, presented in the following sections, mostly
focus on the latter approach, describing spatial sound scenes
and processes in terms of positions and trajectories (although
they do not invalidate the former one).1 This idea has also
been extended to the micro-level of sounds with the concept
of spatial sound synthesis described in Section VIII.

IV. SPATIAL SCENE DESCRIPTION IN VISUAL PROGRAMS

Spatial sound scenes2 are represented in OM visual pro-
grams by matrices, where one dimension stands for the
different sources, and the orthogonal dimension represents
the parameters used for a given spatialization process (these
parameters may change depending on the application and

1These two approaches are not completely incompatible, and most observed
applications and practices actually partly involve both the “abstract” spatial
thinking and a consideration of particular targeted spatialization systems.

2We call “spatial sound scene” a set of sound sources associated to
positions, trajectories, directivity patterns and other space- or acoustic-related
features.

spatialization technique, although they often include at least
2D or 3D position information). These matrices are included
and instantiated in functional programs as described in section
II (see Figure 1–a). The generative processes can be arbitrarily
complex and involve varied formalisms and programming
concepts (iterative processing, randomization, higher-order,
etc.—see Figure 1–b).

V. TIME AND TRAJECTORIES

Time is a fundamental parameter in music and therefore
needs a specific consideration in spatialization processes as
well. Every parameter is subject to possible changes or con-
tinuous evolution. In particular, positions of the sound sources
are often rather considered in terms of such evolution: in this
case, spatial coordinates will not be represented by values but
with sampled curves (determined in the generative processes
either point-wise or as functional specification), or contained
at a higher level as “trajectory” objects.

The trajectory objects in OM aim at providing self-
contained representations for the evolution of spatial (3D) po-
sitions, as well as visualization and editing features. Each point
of a trajectory has 3 Cartesian coordinates and an optional
time-tag allowing to map the position to a temporal referential.
These time-tags do not necessarily represent absolute time
values and can possibly be modified (or generated) by addi-
tional processing (scaling, delays, sampling...) The trajectories
generated in Figure 1–b, for instance, do not include specific
time information and will be unfolded depending on the onsets
and durations specified for their respective sources in the
matrix scene representation. The trajectories also have some
lazy properties through a number of parameters allowing to
define how time unfolding is to be computed, given the explicit
timed-points and some rules, for instance respecting a constant
speed (hence depending on the distance between successive
points), or assuming a constant time interval between the
same successive points (and independently of their relative
distance). Late sampling (or re-sampling) is also often useful
in order to keep compositional specifications relatively small
and easily controllable (using reduced sets of “control points”)
and to convert them to smoother movements and evolutions at
rendering time.3

VI. CONTROL OF SPATIAL RENDERING: OM-SPAT

Due to a certain level of abstraction maintained in the
specification of the spatial sound scenes during the early com-
positional stages, in principle no excessive specific knowledge
is required about the rendering process, which is most often
carried out using external software systems.4

The SDIF file format [39] is used as a standard to encode
the spatial scene descriptions created in OM and transfer them

3The path object in [23] provides similar features for the specification of
trajectories in Common Lisp Music [36].

4This “stratified” vision [29] is not always completely realistic in fact,
since elements of the rendering techniques often need to be specified and
incorporated at the control level.

8

Fig. 1. Representation and rendering of a spatial sound scene in OpenMusic.
The matrix representation of the scene (a) is instantiated from a set of
sound sources and spatialization parameters provided either “literally” (e.g.
durations, onsets...) or as functional specification (e.g. the trajectory generation
process (b) provided as higher-order function). It is eventually encoded as an
SDIF file (c), and here rendered to a multi-channel audio file (d).

to external software and rendering environments.5 SDIF is a
“polyphonic”, stream-based format allowing to encode timed
frames containing any kind of data structured as matrices. Each
matrix (identified by a type) contains a number of components
described at the time of the containing frame by a set of field
values (e.g. x, y, z in the case of spatial positions). Several
matrices of different types can coexist in common frames, and
several frame streams can coexist in a same SDIF description
file. SDIF is therefore quite well adapted to render the OM
spatial sound scenes (see Figure 1–c): source descriptions
can be can be interpreted in terms of such flat and precisely
timed streams describing the evolution of their different spatial
parameters (see [12]).

Specific matrix types have been defined in SDIF correspond-
ing to the main control parameters of the Ircam Spatialisateur.
A command line rendering tool developed from this software
(Spat renderer6) allows to generate spatialized multichannel
audio files from the SDIF descriptions created in OM (see
Figure 1–d).

As shown in Figure 1, room descriptions can also be ad-
dressed in the compositional and spatialization processes: the
Spatialisateur provides powerful perceptual room modelling
features, to which can be “attached” the different sources.78

Both SDIF file conversion and Spat rendering features
described in this section are available in the OpenMusic OM-
Spat library.

VII. DATA STREAMING AND REAL-TIME INTEGRATION

In the present musical and technological context, sound
spatialization is either performed as a completely off-line
process (most often, in the case of pure electronic music),
or in real time during concerts and performances. In the latter
case a lower degree of abstraction and complexity is affordable
for the description, control and rendering of spatial sounds.

The streaming of the SDIF-formatted data generated in OM
(hence already “flattened”, timed and ordered) is envisaged
as one solution in the integration of spatial data, prepared
beforehand in the computer-aided composition environment,
in external real-time processes.

Spat-SDIF-Player is a standalone application developed for
this purpose (see Figure 2–a). Implemented in Max/MSP [32]
using the MuBu buffering library [35], this application loads
SDIF spatial description files and provides standard playback
controls as well as additional features such as stream (i.e.
source) selection, looping or speed control. Note that this
player does not produce any sound but broadcasts control
messages via UDP. The messages are formatted in OSC
[44] and respect the SpatDIF specification [28] so that any

5SDIF is also used to interchange data between the OM compositional
environment and external sound rendering or other lower-level processing
tools [8].

6Spat renderer by Thibaut Carpentier, Ircam.
7Several simultaneous “virtual rooms” can coexist and be superimposed in

a same spatial sound scene, attached to different sound sources.
8In the SDIF description, separate frame streams are used for the room

parameters and their possible evolution through time, and a “room ID”
attribute allow to match the sources to one of the (possibly multiple) rooms.

9

Fig. 2. Streaming of SDIF spatial descriptions using Spat-SDIF-Player (a). Control messages are be received and interpreted by the SpatDIF-Viewer 3D
renderer (b) and by the Spat library tools in Max/MSP (c).

rendering system compliant with this format can interpret and
eventually render the spatial descriptions accordingly. Figure
2 shows two such examples: one (SpatDIF-Viewer, Figure 2–
b) is a visualization tool rendering SpatDIF messages in a 3D
display, and the second one is a Max/MSP patch receiving the
same data and converting them into control messages for the
spat.oper object in the Spat 4 library (Figure 2–c).

This networking protocol provides interesting flexibility and
inter-operability between applications and tools for spatializa-
tion. It is however limited as messages may be numerous (for
instance in case of high sample rates and/or when numerous
spatialization parameters are involved), and are necessarily
sent sequentially. In these cases, the simultaneous control of
multiple sound sources (which is not a limitation at the level
of the specification of the spatial sound scenes in OM, for
instance) can raise synchronization issues, delays, or other
undesired behaviours.

VIII. SPATIAL SOUND SYNTHESIS

An interesting concept developed and implemented in the
context of these works on sound spatialization is the one
of spatial sound synthesis [37]. Generalizing similar ideas
developed with the spatialization of spectral or sinusoidal
decompositions [22], [42], or with granular and swarm-based
models [24], [43], the concept of spatial sound synthesis
consists in addressing spatial issues at the very same level
as the sound synthesis itself.

Sound synthesis processes can be represented and controlled
in OpenMusic using matrix objects (in a similar way as
is done with spatial sound scenes—see Section IV). In the
OMChroma library [2], these matrices describe parameter
values corresponding to a given sound synthesis “instrument”,
for a number of synthesis components (or virtual instances

of this instrument). This representation in OM visual pro-
grams is eventually converted to textual code compiled into
a sound file by the Csound synthesizer [7]. Typically, from
a simple digital oscillator implemented in Csound and used
as the “synthesis instrument”, an OMChroma matrix would
allow to describe and store the frequency, amplitude, duration
and possible additional parameters of this instrument for an
arbitrary (and possibly important) number of components,
hence implementing a powerful “additive synthesis” control
and rendering process (see Figure 3–a).

Synthesis processes in OMChroma can be extended to sound
spatialization by devising appropriate Csound instruments con-
sidering sound sources as one of the inputs of the synthesis,
and the multichannel output as its result. As with the matrices
described in section IV, spatialization processes developed
using OMChroma can therefore make for unlimited polyphony
(number of sources), and provide an important diversity in
the rendering techniques thanks to the numerous spatialization
tools and programming possibilities available in the Csound
language. The OMPrisma library, developed by Marlon Schu-
macher at CIRMMT (McGill University) is an extension of
OMChroma providing a rich set of such spatialization options
to be used in complement (or combination—see below) to the
OMChroma synthesis objects [38].

More interestingly, it is possible to develop both the syn-
thesis and spatialization processes in a same DSP instrument,
and thereby to build arbitrarily complex sound structures
including spatial descriptions for every single component of
the sound synthesis. In the “additive synthesis” example given
above, for instance, one could imagine to assign a specific
trajectory to every single “partial” of the sound (or atomic si-
nusoidal component, hence considered as an individual sound

10

source). Unique and innovative sound textures can therefore
be designed establishing strong relations between the sound
synthesis parameters and corresponding spatial morphologies.

In order to allow for unconstrained combination between the
different sound synthesis techniques provided in OMChroma
with the spatial rendering tools implemented in OMPrisma, a
“merging” protocol has been defined between synthesis and
spatialization objects (and subsequently between correspond-
ing Csound source code). This dynamic integration provides
a high degree of flexibility for the experimentation on the
different spatialization and synthesis techniques combinations;
Any sound synthesis object can be connected and merged to
any spatialization object in order to perform a spatial sound
synthesis process integrating both parameters and attributes
(see Figure 3).

Fig. 3. Spatial sound synthesis in OM with OMChroma/OMPrisma.

IX. CONCLUSION: TOWARD EXTENDED COMPUTATIONAL
PARADIGMS FOR SPATIALIZATION ?

Sound spatialization is now a widespread concern in electro-
acoustic and contemporary music, and a major issue in
computer music research and development. The technological
advanced of the recent years opened a world of possibilities,
and many musical venues and research institutions are now
equipped with high-quality spatial rendering facilities.9

Compositional concerns and research currently emerge on
top of these technologies, as show for instance the different

9Notable example of concert venues and research facilities providing high-
quality spatialization environments include Ircam’s Espace de projection
with its WFS and higher-order ambisonics systems, the Acousmonium at the
GRM (Paris), the Birmingham ElectroAcoustic Sound Theatre (BEAST), the
Allosphere at UC Santa Barbara, the ZKM Klangdom in Karlsruhe, the Sonic
Lab in Belfast, and many others.

tools and projects presented in this article, in OpenMusic and
more generally in the computer-aided composition domain.
An interesting point here is the fact that the spatialization
processes can now be thought and carried out inside or in a
close relation to the compositional processes and correspond-
ing formalized approaches.

In this regard, the connection to real-time frameworks is
probably still a critical—and interesting—aspect: while most
of the signal processing tools render spatial sounds in real-
time, their integration with compositional inputs and specifi-
cations is not straightforward (the works presented in Section
VII are preliminary attempts in this direction). More and more
frequently as high-resolution systems get developed and avail-
able, the integration of relatively complex sound structures and
spatial control can raise computational issues which can be
solved by merging off-line generation of compositional inputs,
using dedicated computational paradigms and environments, to
reactive (real-time) spatial sound rendering systems.

In this respect and in the continuation of the different
past projects dealing with spatial concerns in computer-aided
composition, interesting new directions could involve extended
constraint-based approaches to spatial structures, or specific
formal frameworks such as qualitative spatial reasoning [13].
By including spatial concepts in the programs generating
and processing data, spatial computing [15] could also be a
promising approach to the control of spatialization processes
and to cope with the general issue of composing spatial
structures using computer processes.

ACKNOWLEDGEMENTS

Significant parts of the works presented in this paper have
been carried out in collaboration with Marlon Schumacher
at Ircam and at CIRMMT, McGill University. The author
would also like to acknowledge Thibaut Carpentier for his
collaboration on the Spat rendering and on the definition the
interchange formats used in this project.

REFERENCES

[1] C. Agon, G. Assayag and J. Bresson (Eds.), The OM Composers Book.
1, Editions Delatour/Ircam, 2006.

[2] C. Agon, J. Bresson and M. Stroppa, “OMChroma: Compositional
Control of Sound Synthesis.” Computer Music Journal, 35(2), 2011.

[3] G. Assayag, “Visual Programming in Music.” Proceedings of the Inter-
national Computer Music Conference, Banff Canada, 1995.

[4] G. Assayag, C. Rueda, M. Laurson, C. Agon and O. Delerue, “Computer
Assisted Composition at IRCAM: From PatchWork to OpenMusic.”
Computer Music Journal, 23(3), 1999.

[5] M. A.J. Baalman, “Spatial Composition Techniques and Sound Spatial-
ization Technologies.” Organised Sound, 15(3), 2010.

[6] A. J. Berkhout, D. de Vries, D. and P. Vogel, “Acoustic Control by
Wave Field Synthesis.” Journal of the Acoustical Society of America,
93, 1993.

[7] R. Boulanger (Ed.) The Csound Book: Perspectives in Software Synthe-
sis, Sound Design, Signal Processing,and Programming, The MIT Press,
2000.

[8] J. Bresson and C. Agon, “SDIF Sound Description Data Representation
and Manipulation in Computer-Assisted Composition.” Proceedings of
the International Computer Music Conference, Miami, USA, 2004.

[9] J. Bresson, C. Agon and G. Assayag (Eds.), The OM Composers Book.
2, Editions Delatour/Ircam, 2008.

[10] J. Bresson, C. Agon and G. Assayag, “Visual Lisp/CLOS Programming
in OpenMusic.” Higher-Order and Symbolic Computation, 22(1), 2009.

11

[11] J. Bresson, C. Agon and G. Assayag, “OpenMusic. Visual Programming
Environment for Music Composition, Analysis and Research.” Proceed-
ings of ACM MultiMedia, Scottsdale, USA, 2011.

[12] J. Bresson and M. Schumacher, “Representation and Interchange of
Sound Spatialization Data for Compositional Applications.” Proceedings
of the Inter- national Computer Music Conference, Huddersfield, UK,
2011.

[13] A. G. Cohn and J. Renz, “Qualitative Spatial Reasoning,” in F. Harmelen,
V. Lifschitz and B. Porter (Eds.), Handbook of Knowledge Representa-
tion, Elsevier, 2007.

[14] J. Daniel, Représentation de champs acoustiques, applications à la
transmission et à la reproduction de scènes sonores complexes dans
un contexte multimedia, PhD Thesis, Université Pierre et Marie Curie,
Paris 6, France.

[15] A. De Hon, J.-L. Giavitto and F. Gruau, Computing Media and Lan-
guages for Space-Oriented Computation, Dagsthul Seminar Proceedings,
Dagsthul, 2006.

[16] O. Delerue, Spatialisation du son et programmation par contraintes :
Le système MusicSpace. PhD Thesis, Université Pierre et Marie Curie,
Paris 6, France, 2004.

[17] O. Delerue and C. Agon, “OpenMusic + MusicSpace = OpenSpace.”
Actes des Journées d’Informatique Musicale, Issy-les-moulineaux,
France, 1999.

[18] M. Geier, M., J. Ahrens and S. Spors, “The SoundScape Renderer: A
Unified Spatial Audio Reproduction Framework for Arbitrary Rendering
Methods.” AES 124th Convention, Amsterdam, The Netherlands, 2008.

[19] M. A. Harley, Space and Spatialization in Contemporary Music: History
and Analysis, Ideas and Implementations. PhD Thesis, McGill Univer-
sity, Montreal, Canada, 1994.

[20] C. Jaksjø, “Architecture as Virtual Music (Re-Actualizing Zonnestraal),”
in J. Bresson, C. Agon and G. Assayag (Eds.), The OM Composers Book.
2, Editions Delatour/Ircam, 2008.

[21] L.-M. Jot and O. Warusfel, “A Real-Time Spatial Sound Processor for
Music and Virtual Reality Applications.” Proceedings of International
Computer Music Conference, Banff, Canada, 1995.

[22] D. Kim-Boyle, “Spectral Spatialization - An Overview.” Proceedings of
the International Computer Music Conference, Belfast, Ireland, 2008.

[23] F. Lopez-Lezcano, “A Dynamic Spatial Locator ugen for CLM.” Pro-
ceedings of the Sound and Music Computing Conference, Berlin, Ger-
many, 2008.

[24] A. McLeran, C. Roads, B. L. Sturm, J. J. Shynk, “Granular Sound
Spatialization Using Dictionary-Based Methods.” Proceedings of the
Sound and Music Computing Conference, Berlin, Germany, 2008.

[25] G. Nouno, “Some Considerations on Brian Ferneyhough’s Musical
Language through His Use of CAC. Part II – Spatialization as a Musical
Parameter,” in J. Bresson, C. Agon and G. Assayag (Eds.), The OM
Composers Book. 2, Editions Delatour/Ircam, 2008.

[26] G. Nouno and C. Agon, “Contrôle de la spatialisation comme paramètre
musical.” Actes des Journées dInformatique Musicale, Marseille, France,
2002.

[27] F. Otondo, “Contemporary Trends in the Use of Space in Electroacoustic
Music.” Organised Sound, 13(1), 2008.

[28] N. Peters, S. Ferguson and S. McAdams, “Towards a Spatial Sound
Description Interchange Format (SpatDIF).” Canadian Acoustics, 35(3),
2007.

[29] N. Peters, T. Lossius, J. Schacher, P. Baltazar, C. Bascou and T. Place,
“A Stratified Approach for Sound Spatialization.” Proceedings of the
Sound and Music Computing Conference, Porto, Portugal, 2009.

[30] N. Peters, G. Marentakis, S. McAdams, “Current Technologies and
Compositional Practices for Spatialization: A Qualitative and Quanti-
tative Analysis.” Computer Music Journal, 35(1), 2011.

[31] L. Pottier, “Dynamical Spatialisation of sound. HOLOPHON: a graph-
ical and algorithmical editor for Σ1. Proceedings of the International
Conference on Digital Audio Effects, Barcelona, Spain, 2008.

[32] M. Puckette, “Combining Event and Signal in the MAX Graphical
Programming Environment.” Computer Music Journal, 15(3), 1991.

[33] V. Pulkki, “Virtual sound source positioning using vector base amplitude
panning.” Journal of the Audio Engineering Society, 45(6), 1997.

[34] J. C. Schacher and P. Kocher, “Ambisonics spatialisation Tools for
Max/MSP.” Proceedings of the International Computer Music Confer-
ence, New Orleans, USA, 2006.

[35] N. Schnell, A. Röbel, D. Schwarz, G. Peeters and R. Borghesi, “MuBu
& Friends - Assembling Tools for Content Based Real-Time Interac-
tive Audio Processing in Max/MSP.” Proceedings of the International
Computer Music Conference, Montreal, QC, Canada, 2009.

[36] B. Schottstaedt, “CLM: Music V Meets Common Lisp.” Computer
Music Journal, 18(2), 1994.

[37] M. Schumacher and J. Bresson, “Spatial Sound Synthesis in Computer-
Aided Composition.” Organised Sound, 15(3), 2010.

[38] M. Schumacher and J. Bresson, “Compositional Control of Periphonic
Sound Spatialization.” 2nd International Symposium on Ambisonics and
Spherical Acoustics, Paris, France, 2010.

[39] D. Schwartz and M. Wright, “Extensions and Applications of the SDIF
Sound Description Interchange Format.” Proceedings of the Interna-
tional Computer Music Conference, Berlin, Germany, 2000.

[40] E. Stefani and K. Lauke, “Music, Space and Theatre: Site-Specific
Approaches to Multichannel Spatialization.” Organised Sound, 15(3),
2010.

[41] T. Todoroff, C. Traube and J.M. Ledent, “NeXTSTEP Graphical In-
terfaces to Control Sound Processing and Spatialization Instruments.”
Proceedings of the International Computer Music Conference, Thessa-
loniki, Greece, 1997.

[42] D. Topper, M. Burtner and S. Serafin, “Spatio-Operational Spectral
(S.O.S.) Synthesis.” Proceedings of the International Conference on
Digital Audio Effects, Hamburg, Germany, 2002.

[43] S. Wilson, “Spatial Swarm Granulation.” Proceedings of the Interna-
tional Computer Music Conference, Belfast, Ireland, 2008.

[44] M. Wright, “Open Sound Control: An Enabling Technology for Musical
Networking.” Organised Sound, 10(3), 2005.

12

1

Decentralized spatial algorithm design
Matt Duckham

Abstract—Spatial computers present challenges to conventional
distributed algorithm design. Substantive progress is being made
in developing new algorithm design tools and techniques, for
example in the development of the Proto language. This paper
summarizes an alternative but complementary technique tar-
geted at the specification of decentralized algorithms for spatial
computing. The approach focuses on abstract, implementation-
independent specification of designs, as opposed to more practical
programming constructs. The aim is to speed the development
and ease the communication of algorithms designs. This is
achieved augmenting an established distributed algorithm design
technique with the minimal additional constructs required to
compute with diverse spatiotemporal objects and relationships.
The paper illustrates the additional spatial and temporal struc-
tures using the running example of decentralized algorithms for
spatial region boundary detection.

I. INTRODUCTION

Spatial computing can be characterized as a special case
of distributed computing, where additional geographic con-
straints to the generation and communication of information
exist. The challenge set in [1] is “to conceive of how to re-
formulate [distributed systems] applications for a continuous
geometric world.”

This paper describes an approach to designing decentralized
spatial algorithms. A decentralized system is a distributed
system where no single system element possesses global
knowledge of the system state [2]. Consequently, decentral-
ized spatial algorithms are well-suited to spatial computing
environments, which present geographic constraints to both
the generation and movement of information. Our approach
is complementary to, but distinct from related approaches in
spatial computing, in particular [1], [3], [4]. In comparison
with [1], [3], [4], our approach focuses more strongly on the
algorithm design and specification. We augment an established
distributed algorithm design procedure with the spatiotemporal
structures required for decentralized computing with many
different types of spatiotemporal objects, references, and re-
lations. As a consequence, however, our approach does not
focus so strongly on practical programming architectures and
implementation—something that is an important focus and
contribution of [1], [3], [4].

Following a brief review of related work, the established
distributed algorithm design technique upon which our ap-
proach is founded is introduced (Section III, after [5]). We then
identify, with examples, the fundamental spatial and temporal
structures required for decentralized spatial algorithm design
(Sections IV and V). Finally, before concluding (Section VII)
the paper looks briefly at the role of agent-based simulation
in algorithm design (Section VI).

M. Duckham is with the Department of Infrastructure Engineering, Univer-
sity of Melbourne, VIC 3010, Australia. E-mail: matt@duckham.org

II. RELATED WORK

As already highlighted, this work shares similar aims to
research on the definition of languages for spatial computing,
including the development of the Proto language [1], [3], [4],
[6] as well as more broadly (see [7] for a survey). The design
process summarized in this paper is, we believe, complemen-
tary to these efforts. Our approach favors assisting designers
with the construction and communication of algorithms; but
places less emphasis on practical implementation of these
algorithms within spatial computers.

In attempting to construct an implementation-independent
decentralized spatial algorithm design framework, it is essen-
tial to draw on established design tools and techniques. Hoare’s
CSP (communicating sequential processes [8]) and Robin
Milner’s CCS (calculus of communicating systems, [9]) are
two examples of influential formal models that deal explicitly
with the interactions between processes, and so are highly
relevant. More recently, Milner’s CCS has been extended with
additional structure in the pi-calculus and bigraphs [10], [11].

These formalisms are being applied to fundamental prob-
lems in geographic information science (e.g., [12]), but are
relatively complex to apply to higher-level domains, like
algorithm design. Similarly, related models like IOA (input-
output automata, [2]), have been applied to decentralized
spatial algorithms (e.g., [13], [14]), but have a strong focus
on proving formal properties, like fairness and liveness, rather
than ease of construction or communication of designs.

So, while alternative models have the advantage of more
formal rigor, their substantial additional complexity makes
them less well-adapted to supporting the algorithm design
process. Hence, in this paper we argue that the less formal
but more intuitive technique of Nicola Santoro [5] provides a
practical compromise between complexity and rigor.

III. SANTORO’S DISTRIBUTED ALGORITHM DESIGN

The distributed algorithm design approach of [5] is founded
on four key structures:

1) Restrictions on the environment in which the algo-
rithm is designed to operate, such as restrictions on
the network structure and connectivity, communication
reliability and synchronization, and so forth.

2) System events that occur to nodes, specifically receipt of
a message; triggered events (such as a scheduled alarm
or periodic sensor reading); and a spontaneous impulse,
external to the system.

3) Actions that a node can perform in response to the
different events that occur—actions must be atomic
sequences of operations that cannot be interrupted by
other events.

13

2

4) States for nodes, which allow nodes to retain knowledge
of previous interactions, and respond in different ways
to the same event depending on the context.

For example, Algorithm 1 provides a simple decentralized
algorithm in the style of [5] for identifying nodes at the
boundary of a spatial region. With reference to the four key
structures identified above:

Algorithm 1: Determining the (inner) region boundary
Restrictions: Reliable, fully asynchronous communication;

undirected communication graph, G = (V,E); sensor
function s : V → {0, 1}

State Trans. Sys.:
({INIT, IDLE, BNDY}, {(INIT, IDLE), (IDLE, BNDY)})

Initialization: All nodes in state INIT

INIT
Spontaneously

broadcast (ping, s̊) {Broadcast sensed value}
become IDLE

Receiving (ping, s′)
defer until IDLE

IDLE
Receiving (ping, s′)

if s′ 6= s̊ and s̊ = 1 then
become BNDY

• Restrictions: The algorithm makes no restrictions on syn-
chronization between nodes (communication may be fully
asynchronous), but does require reliable communication
(messages sent will be received within some finite amount
of time). Communication is assumed to be mediated
through a bidirected communication graph G, but again
no further restrictions on the communication graph struc-
ture are required. Finally, the algorithm does require a
Boolean sensor on each node (capable of sensing either
1 or 0, e.g., in or out of a region of interest, “hot” or
“cold,” presence or absence of pollutant), represented as
a sensor function s : V → {0, 1}.

• States: The state transition system specifies at the begin-
ning of the algorithm the defined states (INIT, IDLE, and
BNDY) and allowable transitions (INIT to IDLE to BNDY).
The initial states for all nodes are also specified in the
algorithm header. The algorithm proper then defines for
each state a (possibly empty) set of events and associated
actions.

• Events and actions: Three events are defined in the
algorithm. Nodes in the INIT state can spontaneously
perform an action to broadcast a ping message, before
transitioning to an IDLE state. Nodes in the IDLE state
respond to ping messages received by checking if ad-
jacent nodes sense a different value. If so, IDLE nodes
transition into a BNDY state. Nodes in the INIT state
receiving a ping message defer this event until the node
is in the IDLE state (i.e., received message is placed on
a stack and treated as received only after the node has
transitioned into a IDLE state). Other possible events (e.g.,

receiving a ping message in the BNDY state) are by
default associated with the empty action (“do nothing”).

The intuition behind Algorithm 1 is that even without
geometric information, based purely on communication neigh-
borhoods, nodes can locally determine whether they are at a
region boundary by comparing their local sensed data with
that of their immediate one-hop neighbors.

While Algorithm 1 is kept deliberately simple, it does illus-
trate several key features of the approach. Most importantly,
although the algorithm header specifies the global restrictions
and states, the algorithm body only specifies local rules that
each individual node executes in parallel. To enforce the rigid
separation between local and global knowledge, we use the
overdot notation to distinguish between a globally defined
function, and an individual node’s local knowledge about that
function. For example, in the algorithm body, we write s̊
(read “my” s or “local” s) in place of s(◦), where ◦ ∈ V
is the local node currently under consideration. A failure to
adequately distinguish between the local information available
to an individual node, and the global information available
across the network is a major source of design errors in
decentralized algorithms (e.g., writing an action for node v
that attempts to access information that is not local to v, like
s(v′)).

In summary, the algorithm specification procedure adopted
in this paper offers three main features:
• an established and standard toolkit for abstract and

implementation-independent specification of decentral-
ized algorithms, supporting improved communication be-
tween designers;

• an unambiguous specification of the computational and
sensed environment in which the algorithm is designed
to operate; and

• a rigid separation of local and global knowledge, helping
to protect against design errors arising from incorrectly
referring to inaccessible global information in a local
protocol.

IV. SPATIAL EXTENSIONS

The key question underpinning all of spatial information
science is “What makes spatial special?” Similarly, extending
the general distributed algorithm design technique in Section
III to the special case of decentralized spatial algorithms
requires the identification and selection of those characteristics
that are “special” to spatial information.

Clearly, the most important spatial structure is location.
However, “location” does not necessarily imply the coordinate
location (usually termed position). Location may also involve
a diversity of less detailed quantitative information about,
for example, the relative distances or directions (bearings)
between nodes, or even qualitative information about a node’s
proximity to other nodes or known locations.

Figure 1 summarizes six of the most common forms of
location information. The six examples include: a. coordinate
position with reference to some external coordinate frame-
work, such as derived from GPS or virtual coordinate systems;
b. relative anchor location, like proximity to some external

14

3

(,)x y

a

b
α3
c

d

e
f

α1

a

α2 α4

α5
α6

a. Absolute coordinate b. Anchor location
p(a) = (x, y) anch(a) = α2

a

b

c

f

d

e

a

b

c

f
e

d
8

13

12

6

10

c. Relative neighborhood d. Relative distance
nbr(a) = {b, c, d, e, f} dist(a, b) = 8, ...

a

b

c

f

d

e

52

96

135
254

329 a

b

c

f

d

e

e. Relative bearing f. Relative cyclic ordering
bear(a, b) = 329, ... cyc(a, b) = f , ...

Fig. 1. Summary of six common types of location information available to
a node.

“anchors” at known locations, such as might be derived from
proximity-based RFID localization; c. relative neighborhood,
such as knowledge of one-hop neighbors in a physical or over-
lay communication network; d. relative distance to neighbors,
such as derived from range-finding technologies; e. relative
bearing; and f. cyclic ordering, such as may be derived from
direction-finding technologies.

The diversity of ways in which geographic location can be
represented and related (e.g., cyclic ordering can be computed
from bearings; coordinate position can be used to compute
any of the other types of location information) is typical
of problems in the spatial domain. Further information on
localization techniques and technologies may be found in a
range of literature on the topic, including [15]–[17].

Algorithm 2 provides an example extension to Algorithm
1 with more sophisticated spatial capabilities. The algorithm
identifies not simply boundary nodes, but also a unique cycle
of nodes around the region boundary. In practice, this requires
each boundary node determine its next neighbor in the cycle,
stored as local (i.e., to each node) data in the wind variable.
Being able to cycle around a region boundary is a fundamental
operation for a range of higher-level algorithms, such as com-
puting the area or centroid of a region [18], testing containment
between regions, efficient leader election for regions [19], or
simply updating information stored at the region boundary
[20]. Organizing communication around the boundary in this

way is significantly more scalable than communicating over
an entire spatial region [19].

Algorithm 2: Determining the (inner) boundary nodes and
cycle for a region (cf. Algorithm 1).

Restrictions: Reliable, fully asynchronous communication;
undirected planar communication graph, G = (V,E);
relative neighborhood, nbr : V → 2V ; s : V → {0, 1};
identifier function id : V → N; cyclic ordering
cyc : E′ → id∗, where E′ = {(v, id(v′))|(v, v′) ∈ E}

State Trans. Sys.:
({INIT, IDLE, BNDY}, {(INIT, IDLE), (IDLE, BNDY)})

Initialization: All nodes in state INIT
Local data: wind : V → V ∪ {∅}, initialized ˚wind := ∅;

relation D ⊂ N× {0, 1}
INIT

Spontaneously
broadcast (ping, i̊d, s̊)
become IDLE

Receiving (ping, i, d)
defer until IDLE

IDLE
Receiving (ping, i, d)

set D := D ∪ (i, d) {Store id and sensed value}
if |D| = |n̊br| then {Check if all ping received}

Create function data : I → {0, 1}, where
I = {i′|(i′, d′) ∈ D} and data : i′ 7→ d′

if s̊ = 1 and 0 ∈ data∗ then
set ˚wind := c̊yc(i′′), where data(c̊yc(i′′)) = s̊ and
data(c̊yc(i′′)) 6= data(i′′)
become BNDY

Ensuring a unique boundary cycle exists, and can be com-
puted, requires: a. that the (overlay) network is planar1; and
b. that nodes have access to local spatial information about
the cyclic ordering of neighbors (listed in the restrictions
to Algorithm 2). Information about the cyclic ordering of
neighbors may be computed from geometric information, like
absolute coordinates, or deduced via other means, such as
direction finding. Irrespective of the details of the localization
technology, it is possible to provide an abstract representation
of the cyclic ordering as a function cyc : E′ → id∗, where
E′ = {(v, id(v′))|(v, v′) ∈ E}. The function id : V → N
maps to an identifier for each node (such as hardware address),
while id∗ is the image of the id function (the set of identifiers
mapped to by nodes). Making a clear distinction between
a node itself, v ∈ V (which cannot be communicated to
neighbors), and the identifier of that node id(v) (which can)
is again important to accurate designs. It is never assumed
that nodes have access even to immediate neighbors’ states—

1Although simply stated, establishing and maintaining a planar network is
often difficult in practice, for example due to positioning inaccuracies and
environmental and energy fluctuations that affect network connectivity. Nev-
ertheless, stating such restrictions in the algorithm header makes explicit and
accessible those assumptions underlying an algorithm, assisting in subsequent
comparison of different alternatives or in the context of specific deployment
scenarios.

15

4

a dcb e

j
o
t
y

t3

t2

t1

t3

t2

t1

n1 n2 n3 n4 n5

n10

n
15

n20

n25

v1

v2

v2

v2

v1

v1

a. b.

Fig. 2. Examples of spatiotemporal model of a. environmental dynamism
(s : V × T → {black,white}) and b. node mobility (anch : V × T → A,
where A is some set of known anchor locations, for example intersections in
a transportation network).

all information that is not local to a node must be explicitly
communicated to it by the algorithm before it can be used.

In summary, “spatial” involves more than coordinate po-
sition. Using a diversity of types of location information to
efficiently construct higher-level spatial objects and relations,
like boundaries and regions, groups and clusters, is a major
challenge faced by decentralized spatial computing.

V. TEMPORAL EXTENSIONS

In a purely structural sense, time is a straightforward exten-
sion to our algorithm designs. Those functions that describe
global restrictions to the algorithm can be easily augmented
with an ordered set of discrete times T as part of their domain.
For example, the atemporal positioning function p : V → R2

can be extended to have time-varying positions as its domain,
p : V × T → R2. Extensions to time-varying communication
graphs can be similarly defined. In this way, both environmen-
tal dynamism and node mobility and volatility can be modeled
(see Figure 2).

Algorithm 3 completes our boundary tracking example,
showing an extension of the simple neighborhood-based
boundary determination in Algorithm 1 to ongoing tracking of
boundary status (this time through Boolean thresholding of a
continuous sensor value, rather than a truly Boolean sensor).
Currying allows time-varying functions to still be accessed
locally. We adopt the database terminology now to indicate the
current sensed value for a node (i.e., in Curried form s̊(now)).

Despite this apparent simplicity, dealing with time does
introduce additional conceptual complexity into algorithms.
A basic philosophical distinction is made usually between
things that endure through time (called endurants or contin-
uants), and things that happen in time (called perdurants or
occurrents) [12]. Boundaries and regions are typical examples
of geospatial endurants; the appearance, splitting, merging,
and disappearance of regions are all examples of geospatial
perdurants.

The distinction between endurants and perdurants maps
directly to two fundamentally different types of information
that may be generated by a decentralized spatiotemporal
algorithm: histories and chronicles [21]. A history provides

Algorithm 3: Tracking the (inner) boundary of a region,
with state maintenance.

Restrictions: Reliable, fully asynchronous communication;
undirected planar communication graph G = (V,E);
s : V × T → R; id : V → N; region threshold r

State Trans. Sys.:
({INIT, IDLE, BNDY}, {(INIT, IDLE), (IDLE, BNDY),
(BNDY, IDLE), (IDLE, INIT), (BNDY, INIT)})

Initialization: All nodes in state INIT
Local data: sensor reading at time of state change sl;

neighbor data d : n̊br→ {−1, 0, 1}, initialized to
d(v) := −1

INIT
Spontaneously

set sl := s̊(now) {Store last sensed value}
broadcast (ping, s̊(now), i̊d)
become IDLE

IDLE, BNDY
Spontaneously

if s̊(now) = 1 and 0 ∈ d∗ then
become BNDY

else
become IDLE

Receiving (ping, s′, i)
set d(i) := s′{Store neighbor’s sensed values}

When s̊(now) < r ≤ sl or sl < r ≤ s̊(now)
become INIT

a spatiotemporal record of the states of monitored endurants
(e.g., point locations, regions, boundaries, moving objects)
through time. A chronicle provides a record of the occurrences
(perdurants) that happened through time.

For example, imagine a spatial computer, like a sensor
network, tasked with monitoring the spread of an oil spill
(see Figure 3). We might wish the system to generate an alert
when parts of the oil spill appear or break up (a chronicle).
Alternatively, we might (also) wish the system to report on
the connectivity of the oil spill every ten minutes over the
course of a day (a history). We can expect to need to design
decentralized spatiotemporal algorithms to monitor histories
in some cases, and to monitor chronicles in other cases.

Thus, just as “spatial” involves more than simply coordinate
location, so “temporal” involves more than simply timestamps;
it means identifying and tracking salient spatial events.

VI. ALGORITHM SIMULATION

Although our design approach aims to be implementation
independent, we have developed a simulation system for
implementing and evaluating decentralized spatial algorithm
designs (see Figure 4), based on a popular agent-based simula-
tion system called NetLogo [22]. A small number of additional
keywords have been implemented as a NetLogo library, which
make it possible to rapidly and directly translate pen-and-
paper algorithm specifications into simulation models. A key
advantage of using NetLogo is in its ability to simulate both
decentralized spatial computing environments and dynamic

16

5

Day 17

Day 18

Day 19

Day 20

Day 21

Day 22

Split

Split

Split

Split

Disappear,

Split

Fig. 3. Histories and chronicles: Two views of the changes in the extent of
Deepwater Horizon Disaster oil slick, Gulf of Mexico, from Day 17, 7 May
2010. (Source: Times-Picayune).

geographic environments, supported by NetLogo’s large and
diverse community of domain scientist users (for example in
ecology, biology, geography, and social sciences).

The ability to simulate algorithms can greatly assist the
designer, by generating rapid feedback on algorithm behavior
and as a basis for adversarial analysis to identify design
flaws. As well as providing for empirical evaluation of the
global behavior of decentralized spatial algorithms, such as
scalability, simulations also can also help to explore exper-
imentally the robustness of decentralized spatial algorithms.
Spatial information is inherently uncertain, subject to inac-
curacy (lack of correctness), imprecision (lack of detail), and
vagueness (existence of borderline cases). In the case of spatial
computing technologies, like sensor networks, inaccuracy and
imprecision are especially important. Low cost, poorly cali-
brated sensors typically have relatively low accuracy; sensor
observations are inevitably discrete in both space and time, the
source of imprecision. Further, many of the application-level
geographic objects and events of interest, like “hot spots” or
“traffic jams,” are vague (e.g., some location may be definitely

A	 range	 of	 further	 functions	 have	 also	 been	 implemented	 for	 higher-‐level	
algorithm	 analysis,	 including:	

• the	 ability	 to	 store	 automatically	 system	 data	 about	 the	 number,	 type,	 and	
length	 of	 messages	 sent,	 for	 scalability	 analysis;	 	

• the	 ability	 to	 randomly	 perturb	 sensors,	 introducing	 inaccuracy	 into	
node’s	 knowledge	 of	 its	 environment,	 for	 robustness	 analysis;	 and	 	

• a	 range	 of	 utility	 functions	 for	 simulating	 urban	 and	 other	 geographic	
environments,	 including	 simulating	 dynamic	 geographic	 regions,	 fields,	
transportation	 networks,	 and	 so	 forth.	 	

Figure	 2	 provides	 an	 example	 of	 the	 full	 interface	 for	 a	 decentralized	 algorithm,	
simulating	 the	 monitoring	 salient	 events	 in	 a	 geographic	 field,	 such	 as	
temperature	 or	 air	 pollution,	 by	 a	 geosensor	 network.	 	

Figure	 2:	 Example	 framework	 interface	 for	 sensor	 network	 monitoring	 dynamic	 field	

Summary	
The	 fundamental	 problem	 facing	 the	 decentralized	 spatial	 algorithm	 designer	 is	
to	 arrive	 at	 desirable	 global	 system	 behavior	 through	 the	 specification	 of	 local	
Fig. 4. Example NetLogo interface for decentralized spatial algorithm
simulation

in a hot spot, others definitely not, but typically there will
be borderline locations, for which it is indeterminate whether
or not they are in or out of the hot spot). Decentralized
spatial algorithms frequently need to demonstrate robustness
to imprecision and inaccuracy in sensed information, and an
ability to generate useful knowledge about vague geographic
phenomena. Spatial computing under uncertainty is a key
focus for current research.

VII. SUMMARY

This paper has demonstrated how established distributed
algorithm design techniques can be adapted to decentralized
spatial algorithm design. The approach identifies a small
number of spatial and temporal structures from which more
sophisticated spatial computing algorithms can be constructed.
Our approach complements and contrasts with existing re-
search in [1], [3], [4], [6], and aims to help human designers in
specifying local protocols that will exhibit the desired global
behaviors. By contrast, [1], [3], [4], [6] target the (auto-
mated) transformation of global constructs into local protocols.
Further, our approach emphasizes abstract, implementation-
independent algorithm specifications, but does not explicitly
address practical implementation and programming languages.

REFERENCES

[1] J. Beal and R. Schantz, “A spatial computing approach to distributed
algorithms,” in 45th Asilomar Conference on Signals, Systems, and
Computers, 2010.

[2] N. Lynch, Distributed Algorithms. San Mateo, CA: Morgan Kaufmann,
1996.

[3] J. Bachrach, J. Beal, and J. McLurkin, “Composable continuous-
space programs for robotic swarms,” Neural computing & applications,
vol. 19, no. 6, pp. 825–847, 2010.

[4] J. Bacharach and J. Beal, “Building spatial computers,” Tech. Rep. 2007-
017, MIT CSAIL, March 2007.

17

6

[5] N. Santoro, Design and Analysis of Distributed Algorithms. New Jersey:
Wiley, 2007.

[6] J. Beal and J. Bachrach, “Infrastructure for engineered emergence in
sensor/actuator networks,” IEEE Intelligent Systems, pp. 10—19, 2006.

[7] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Organiz-
ing the aggregate: Languages for spatial computing,” in Formal and
Practical Aspects of Domain-Specific Languages: Recent Developments
(M. Mernik, ed.), IGI Global, 2012, to appear. http://arxiv.org/abs/1202.
5509.

[8] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666—677, 1978.

[9] R. Milner, A Calculus of Communicating Systems, vol. 92 of Lecture
Notes in Computer Science. Springer Verlag, 1980.

[10] R. Milner, Communicating and Mobile Systems: The π-calculus. Cam-
bridge University Press, 1999.

[11] R. Milner, “Pure bigraphs: Structure and dynamics,” Information and
Computation, vol. 204, pp. 60–122, 2006.

[12] M. Worboys, “Event-oriented aproaches to geographic phenomena,”
International Journal of Geographic Information Science, vol. 19, no. 1,
pp. 1–28, 2005.

[13] M. Duckham and F. Reitsma, “Decentralized environmental simulation
and feedback in robust geosensor networks,” Computers, Environment,
and Urban Systems, vol. 33, pp. 256–268, 2009.

[14] S. Dolev and N. Tzachar, “Empire of colonies: Self-stabilizing and
self-organizing distributed algorithm,” Theoretical Computer Science,
vol. 410, pp. 514–532, 2009.

[15] J. Hightower and G. Boriello, “Location systems for ubiquitous com-
puting,” IEEE Computer, vol. 34, no. 8, pp. 57–66, 2001.

[16] M. Worboys and M. Duckham, GIS: A Computing Perspective. Boca
Raton, FL: CRC Press, 2nd ed., 2004.

[17] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor
Networks. Chichester, England: Wiley, 2005.

[18] M. Sadeq and M. Duckham, “Decentralized area computation for spatial
regions,” in Proc. SIGSPATIAL ACMGIS, (New York), pp. 432–435,
ACM, 2009.

[19] M. Duckham, D. Nussbaum, J.-R. Sack, and N. Santoro, “Efficient,
decentralized computation of the topology of spatial regions,” IEEE
Transactions on Computers, vol. 60, no. 8, pp. 1100–1113, 2011.

[20] M. J. Sadeq and M. Duckham, “Effect of neighborhood on in-network
processing in sensor networks,” in Geographic Information Science
(T. Cova, K. Beard, M. Goodchild, and A. U. Frank, eds.), no. 5266
in Lecture Notes in Computer Science, pp. 133–150, Berlin: Springer,
2008. (Conference accepted 31% of submitted papers).

[21] A. Galton, “Fields and objects in space, time, and space-time,” Spatial
Cognition and Computation, vol. 4, no. 1, pp. 39–68, 2004.

[22] U. Willensky, “Netlogo.” Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL., 1999.
http://ccl.northwestern.edu/netlogo/.

18

The Evolution of Controller-Free Molecular Motors
from Spatial Constraints

Jose David Fernández
Grupo de Estudios en Biomimética,

Departamento de Lenguajes y
Ciencias de la Computación,

Universidad de Málaga,
Málaga, Spain

josedavid@geb.uma.es

René Doursat
Grupo de Estudios en Biomimética,

Departamento de Lenguajes y
Ciencias de la Computación,

Universidad de Málaga,
Málaga, Spain

doursat@geb.uma.es

Francisco J. Vico
Grupo de Estudios en Biomimética,

Departamento de Lenguajes y
Ciencias de la Computación,

Universidad de Málaga,
Málaga, Spain

fjv@geb.uma.es

Abstract—Locomotion of robotic and virtual agents is a
challenging task requiring the control of several degrees of
freedom as well as the coordination of multiple subsystems.
Traditionally, it is engineered by top-down design and fine-
tuning of the agent’s morphology and controller. A relatively
recent trend in fields such as evolutionary robotics, computer
animation and artificial life has been the coevolution and mutual
adaptation of the morphology and controller in computational
agent models. However, the controller is generally modeled as a
complex system, often a neural or gene regulatory network. In the
present study, inspired by molecular biology and based on normal
modal analysis, we formulate a behavior-finding framework for
the design of bipedal agents that are able to walk along a
filament and have no explicit control system. Instead, agents
interact with their environment in a purely reactive way. A simple
mutation operator, based on physical relaxation, is used to drive
the evolutionary search. Results show that gait patterns can be
evolutionarily engineered from the spatial interaction between
precisely tuned morphologies and the environment.

Index Terms—morphological computation, elastic network
model, behavior-finding

I. INTRODUCTION

Engineers have made remarkable progress in their ability to
design complex products. However, current engineering prac-
tice still favors a top-down approach, where the main problem
is manually divided into smaller ones in order to maintain the
overall complexity reasonably manageable. This procedure is
rather loosely defined and ultimately relies on human expertise
and creativity, which are skills that typically involve high
costs, are unreliable and are difficult to formalize. Moreover,
the ever increasing complexity of current engineered systems
and robustness requirements is reaching the feasibility limits
of the current paradigm, forcing the implementation of new
engineering methodologies.

Inspired by the biological evolution and morphogenesis of
organisms, recent advances in the discipline of evolution-
ary computation propose a radically different approach. Ge-
netic algorithms combined with artificial development mech-
anisms operate over a population of individuals encoded by
genomes that govern a morphogenetic process producing self-
constructed designs [1]. That is, the genome is not a blueprint
of the design, but the set of instructions that indirectly build

it. The evolutionary operations (mutations and crossover) are
applied to the developmental generative process that build
the design, not to the design itself. This approach has been
shown to overcome the issues of scalability, adaptability,
and evolvability present in traditional evolutionary algorithms
(based on a genomic representation that encodes the design in
a explicit way) when applied to complex problems [2]. As a
result, evolutionary developmental algorithms have been tried
in a wide range of design problems, including the structure
and controller of robots [3], digital creatures in Artificial Life
studies [4, 5, 6, 7, 8], and computer animated characters [9]. In
almost all models, however, the control system is fairly com-
plex (often based on some kind of recurrent neural network),
and in many cases, we believe, unnecessarily so.

In a seminal work [10], Chandana Paul demonstrated that a
whole body-control system is able to perform more complex
computations than the control system alone. This observation
spawned the concept of morphological computation—a design
methodology for robotic-like agents to exploit the dynamics
of interaction between the body and the control system,
resulting in minimal control systems. Several applications
have been proposed in the field of robotics, including the
design of semipassive bipedal robots [11], tensegrity robots
whose complex, coupled non-linear dynamics are harnessed
to generate a gait pattern with minimal control [10], path-
following agents [12], and robots with open-loop control
systems and minimal numbers of degrees of freedom that
can self-stabilize into fast gait patterns and generate diverse
behaviors through the interaction between body and control
system [13].

We present here a framework to generate bipedal agents that
can walk along a filament, taking inspiration from biological
molecular motors. Toward this goal, we apply a simple evolu-
tionary heuristic based on normal modal analysis [14] and a
behavior-finding strategy [12]. Our work can be construed as
“morphological computation” in two ways. First, the behavior
of the agents is not driven by a complex, network-based
control system, but emerges from their spatial characteristics.
Second, we use a simple and explicit genetic representation,
combined with a physics-based mutation operator able to

19

Figure 1. Working cycle of a motor template.

induce coordinated changes in the agents’ structure. In this
way, we take full advantage of the spatial and geometric nature
of the genotype.

II. METHODS

The model is motivated by biological molecular motors,
such as the enzymes myosin, kinesin and dynein, capable of
transforming chemical energy into mechanical work. Break-
ing down ATP molecules for power, these molecular motors
can effectively walk along cellular filaments [15]. They are
composed of one or two motor heads, each comprising a
catalytic core (the site where ATP molecules attach) and a
docking site (the site where the motor attaches to the filament).
Each motor head undergoes a cycle (working cycle) of shape
changes (conformational changes), powered by the energy
stored in ATP molecules. The docking site cyclically attaches
and detaches from the filament in a coordinated way, allowing
the motor to advance through the filament.

Molecular motors can be construed as nanoscale robotic
agents. The control system is implicitly defined in the spe-
cific biochemical interactions between the molecular motor,
the ATP molecules, and the filament; in this way, their
morphologies canalize the movements and the function of
the motors [16]. Indeed, molecular motors represent a clear
example of morphological computation. Taking inspiration
from this observation, we have built a framework based
on evolutionary optimization to design robotic agents that
function in a way similar to molecular motors. We call these
agents motor templates, following our earlier work on this
topic [17]. A motor template represents the structure of a
plausible protein. It is modeled by a folded chain of vertices,
in which elastic links are established between two vertices if
and only if their distance is less than a given threshold [18].
Thus the whole object constitutes a 3D mass-spring network.
While modeling molecular motors with mass-spring networks
may seem simplistic, it can be justified theoretically: for most

proteins, including many molecular motors, the dynamics is
mainly dictated by their overall structure rather than their
specific biochemical compositions [19].

A. Motor templates
A template has two motor heads, each one endowed with a

catalytic core and a docking site. The catalytic core is defined
as a set of two nodes in the network. When an ATP molecule
binds to the core, it is placed exactly in the middle of the two
vertices, connected by a spring to each vertex in the pair. These
springs are stretched to model the change in potential energy
brought by the ATP molecule (this mechanism has been used
in other studies, as [18]). The docking site is modeled as a
set of nodes that can attach and detach from the filament. The
working cycle of a motor head can be described as a reactive
finite-state machine with four states:

1) Sticky state: The docking site is not in contact with the
filament, and the catalytic core is empty (Figure 1a).
This state ends when any node of the docking site
touches the filament: the node becomes fixed to the
filament, and an ATP molecule is bound to the catalytic
core with stretched springs (Figure 1b). Then, the motor
head transitions to the next state.

2) Bound state: The stretched springs introduced in the
transition to this state induce a conformational change
(Figure 1c), while the docking site remains firmly at-
tached to the filament, resulting in a conformational
change. After a fixed amount of time passes, the motor
head transitions to the next state.

3) Nonsticky state: the nodes of the docking site detach
from the filament, but remain in contact with it. If the
activity of the other motor head or residual elastic forces
drive the docking site out of contact with the filament
(Figure 1d), the ATP is expulsed from the catalytic core,
deleting the associated springs (Figure 1e). Then, the
motor head transitions to the next state.

20

Figure 2. A mass-spring network (a) is processed to determine its catalytic
cores and docking sites. The normal mode associated to the third eigenvector
of its Kirchhoff matrix is shown (b). Each vertex is associated to a component
of the eigenvector, whose magnitude (size) and sign (white positive, gray
negative) conveys information about the vibration of the vertex in that normal
mode, splitting the structure into three clusters. A motor head (c) is then
composed of a catalytic core (ATP and connecting springs shown in black)
placed between a distal cluster and the central one, and a docking site (in
white). Finally, a motor template (d) is defined by joining two structures that
are mirror images of each other.

4) Relaxing state: When the catalytic core becomes empty,
the absence of the associated springs triggers another
conformational change. After a fixed amount of time
passes, the vertices of the docking site regain the ability
to get fixed to the filament, and the motor head transi-
tions to the initial state (Figure 1f), completing the cycle.
A motor head has completed a working cycle when it
has passed through all states and is back to the initial
one: 1-2-3-4-1.

Simple and elegant theoretical tools that consider proteins
as mass-spring networks, such as the Gaussian Network Model
(GNM), use normal mode analysis to predict their structural
and dynamical properties, and can do so to a surprising

extent, including their unfolding pathways [20], their domain
decomposition [21], and, in particular, their conformational
changes and the position of their catalytic cores [22]. We use
a heuristic based in GNM to determine the placement of the
docking sites and catalytic cores, which are indirectly encoded
in the morphology of the structure. Specifically, to define a
motor head (with a catalytic core and a docking site) in the
mass-spring network of a template (Figure 2a), we segment the
network using the normal mode associated to the third eigen-
vector of its Kirchhoff matrix [22]. This eigenvector assigns
a vibrational amplitude to each node in the network, which
can be either positive or negative. In Figure 2b, each node’s
size and color represent the amplitude and sign, respectively
(white is positive, gray is negative). Grouping neighboring
nodes with same-sign vibrational amplitudes, three clusters
can be defined in most mass-spring networks. There are two
interfaces (hinges) between the clusters, such that two of the
clusters are distal while the other one is central. As the third
eigenvector is associated to a low-frequency normal mode, the
interfaces heuristically indicate the places where the structure
may bend easily in a conformational change [22]. In one of
the interfaces, we introduce a catalytic core defined as a pair
of nodes where ATP can bind (in Figure 2c, the ATP and its
binding springs to the nodes of the core are shown in black),
one node in a distal cluster and the other in the central one.
As many pairs of vertices may exist, a heuristic is applied to
select one of them. The docking site associated to the catalytic
core is defined as the nodes of the associated distal cluster
(Figure 2c, white nodes). Finally, the template is constructed
by joining two instances of the structure (one of them the
mirror image of the other) at the level of the first vertex in
the chain of vertices, and setting a motor head at the opposite
end of the structure (Figure 2d). This is inspired in the fact
that many molecular motors function as dimers [15], i.e., they
are composed of two joined identical proteins, each equipped
with a motor head at their other extremity.

B. Evolutionary search

The genotype-phenotype mapping is direct at the mor-
phological level: the genome is the 3D structure. At the
functional level, however, the configuration of the motor heads
is indirectly encoded by the structure, as described in the
previous subsection.

To start an evolutionary optimization, the agents in the
initial generation are generated as randomly folded chains of
50 nodes, defining relaxed springs between all neighboring
nodes. Then, agents are evaluated in the following simulation:
they are placed above a straight filament (made of nodes of
the same size as the nodes of the structure), such that both
docking sites touch it. One of the motor heads is set in the
sticky state, while the other is set in the beginning of the
relaxing state. If the structure and the configuration of the
motor heads is adequate, coordinated working cycles (that is to
say, their states change in a coordinated and cyclic way). After
a preset amount of time passes, the simulation is stopped and
the fitness is calculated to be the displacement of the agent’s

21

Figure 3. A mass-spring network structure is mutated (a) by enlarging the
rest length of a spring (dark gray). The resulting structure after relaxation
is shown (b) along with the original structure, in dark gray. Arrows point
towards the main direction of displacement in each part of the structure.

center of mass in the direction of the filament, plus the number
of completed working cycles by both motor heads.

For some structures, the heuristic cannot properly define the
configuration of the motor heads (docking sites and catalytic
cores). In this case, they are tagged as nonevaluable and
are not subject to selection (they are eliminated from the
evolutionary competition).

After the evaluation is done, a new population of agents
is generated from the previous one by preferentially selecting
agents with higher fitness. Finally, the mutation operator is
applied (Figure 3). As the genotype-phenotype mapping is
direct at the morphological level, the mutation operator must
be able to bring many coordinated changes to the structure,
in order to be effective. This can be accomplished by using a
physics-based mutation: as each network is a spatial configura-
tion of vertices connected by springs in resting state (neither
compressed nor stretched), a mutation consists of changing
the rest length of one or several springs, each one by an
independent, random amount. These perturbations introduce
potential energy in the mass-spring network. If it is allowed
to relax through a physics simulation, the relative positions of
many vertices will change in a coordinated manner (just as
originally intended) to relieve the stress. After the relaxation
process, the rest lengths of the springs are set to the new
distances between nodes, and springs may be added (resp.
deleted) if nodes become (resp. cease to be) neighbors. In each
evolutionary run, a population of 100 templates undergoes the
evaluation-selection-mutation cycle for 200 generations.

III. RESULTS

The model has been tested in 38 evolutionary runs. In
each run, 100 random mass-spring networks were generated
to compose the corresponding initial population, 3800 in total.
Almost all of them either walked a negligible distance or were
nonevaluable (Figure 4). However, taking as a reference the
distance walked by the best individual in each evolutionary
run, significantly improved individuals have evolved, too. In

Figure 4. Histograms comparing the performance of 3800 randomly
generated templates and the best evolved templates in 38 evolutionary runs.
In the first histogram, a significant fraction of the templates (' 1600) are
nonevaluable.

many cases, relatively minor modifications to the mass-spring
network triggered a significant increase in the distance covered
by the corresponding motor templates, suggesting that good
templates needed to be precisely tuned to the working cycle
and the details of the simulation.

The evolved bipedal templates feature a range of shapes and
gaits:

• Walking pseudo-legs (Figure 5a) take short and secure
alternate steps. The example shown here presents the
peculiarity that the legs get attached to the filament at
different angles, yet they still produce a steady gait.

• Slow, well-secured pullers (Figure 5b) keep a firm grip
on the filament. Note that the limbs grasp the filament
from below, while they join above it. This example rotates
around the filament as it moves along it.

• Hoppers (Figure 5c) thrust themselves with both motor
heads in an alternate way, only occasionally attaching
both legs simultaneously to the filament. In the example
provided here, the greater parts of the limbs are entan-

22

(a) (b)

(c) (d)
Figure 5. Sequences of snapshots illustrating the gait patterns of four evolved motor templates (in each case from left to right and from top to bottom). A
node in the filament is marked in red to provide a point of reference.

gled into a single mass, effectively acting as cargo, and
transported by comparatively small actuating limbs.

• Short but fast pulling pseudo-limbs (Figure 5d) are the
fastest bipedal templates evolved in these experiments.
This example has the peculiarity that the phase difference
between both legs drifts in time.

IV. DISCUSSION

In this study, we have presented a framework to generate
motor templates (walking bipedal agents) inspired by biolog-
ical molecular motors. The methodology consists of deriving
the function of the agents from their structures (based on
normal modal analysis), via a simple evolutionary algorithm
and a physics-based mutation operator. The resulting struc-
tures can be interpreted as models of robotic agents made
of elastic materials, suspended in a viscous fluid, while the
“ATP molecules” that power the agents can be interpreted as
simple actuators modifying the length of isolated parts of the
structure.

As the structures are optimized to solve a functional prob-

lem (move forward as fast as possible) without morphological
specifications, the problem can be described as behavior-
finding [12] structure or morphology according to a set of
constraints. The application of evolutionary optimization to
behavior-finding tasks often yields diverse and sometimes
unexpected solutions [12].

Many aspects of the model were specifically designed to
be as simple as possible. The genome is minimal: it is only
a fixed-width sequence of nodes in 3D space with springs
between neighboring nodes, and the evolutionary algorithm is
also very simple, including a single mutation operator and no
crossover. Viable gait patterns could still be found in a high-
dimensional space because the search was canalized in two
ways:

• The working cycle (a simple reactive model) is hard-
wired, and the configuration of the motor heads is in-
directly encoded in the morphology of the agent.

• The mutation operator is based on physical relaxation
after the application of perturbations to the structure, so
it induces a fitness landscape that is more correlated to

23

the physical characteristics of the structure, which plays
a key role in the configuration of gait patterns.

However, these features of the model are relatively low-level
and did not constrain in any precise way the gait patterns of
the templates. Thus the diversity of shapes and gait patterns
was only enabled, not determined, by these characteristics
and by the fact that the individuals competed in a 3D
virtual world, coevolving their morphologies and behaviors
(gait patterns). Morphogenesis arose by repeated application
of a complex mutation operator through evolutionary time,
instead of leveraging a complex genotype-phenotype mapping.
As an example of morphological computation, gaits lacked
any specific control subsystem: gait patterns emerged from
the interaction between the properties, the physics, and the
geometry of the templates and filament.

The mutation operator can also be considered as a mode of
morphological computation. Instead of using heuristics based
on the analysis of the characteristics of the structures, the
mutation operator only perturbed the rest length of one or
more springs in the structure. The new structure was then
calculated by simulating physical relaxation, which naturally
induced many coordinated changes into the mutated structure.

REFERENCES

[1] K. Stanley and R. Miikkulainen, “A taxonomy for arti-
ficial embryogeny,” Artificial Life, vol. 9, no. 2, pp. 93–
130, 2003.

[2] G. S. Hornby and J. B. Pollack, “Creating high-level
components with a generative representation for body-
brain evolution,” Artificial Life, vol. 8, no. 3, pp. 223–
246, 2002.

[3] D. Floreano and L. Keller, “Evolution of adaptive be-
haviour in robots by means of Darwinian selection,”
PLoS Biology, vol. 8, no. 1, p. e1000292, 01 2010.

[4] J. C. Bongard and R. Pfeifer, “Repeated structure and
dissociation of genotypic and phenotypic complexity in
artificial ontogeny,” in Proceedings of the 3rd Genetic
and Evolutionary Computation Conference (GECCO).
Morgan Kaufmann, 2001, pp. 829–836.

[5] G. S. Hornby, H. Lipson, and J. B. Pollack, “Generative
representations for the automated design of modular
physical robots,” IEEE Transactions on Robotics and
Automation, vol. 19, no. 4, pp. 703–719, 2003.

[6] M. Komosinski and A. Rotaru-Varga, “Comparison of
different genotype encodings for simulated 3D agents,”
Artificial Life, vol. 7, no. 4, pp. 395–418, Fall 2001.

[7] J. B. Pollack, H. Lipson, G. Hornby, and P. Funes, “Three
generations of automatically designed robots,” Artificial
Life, vol. 7, pp. 215–223, June 2001.

[8] L. Spector, J. Klein, and M. Feinstein, “Division blocks
and the open-ended evolution of development, form, and
behavior,” in Proceedings of the 9th Genetic and Evo-
lutionary Computation Conference (GECCO). ACM,
2007, pp. 316–323.

[9] Y.-S. Shim and C.-H. Kim, “Generating flying creatures
using body-brain co-evolution,” in Proceedings of the

Symposium on Computer Animation (part of the 30th
SIGGRAPH), ser. SCA ’03. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2003, pp. 276–
285.

[10] C. Paul, “Morphological computation: a basis for the
analysis of morphology and control requirements,”
Robotics and Autonomous Systems, vol. 54, no. 8, pp.
619–630, 2006.

[11] K. Matsushita, M. Lungarella, C. Paul, and H. Yokoi,
“Locomoting with less computation but more morphol-
ogy,” in Proceedings of the 22nd IEEE International
Conference on Robotics and Automation., April 2005,
pp. 2008–2013.

[12] D. Lobo, “Evolutionary development based on genetic
regulatory models for behavior-finding,” Ph.D. disserta-
tion, Universidad de Malaga, 2010.

[13] R. Pfeifer, F. Iida, and G. Gomez, “Morphological com-
putation for adaptive behavior and cognition,” Interna-
tional Congress Series, vol. 1291, pp. 22–29, June 2006.

[14] A. J. Rader, C. Chennubhotla, L.-W. Yang, and I. Bahar,
The Gaussian Network Model: theory and applications.
Chapman & Hall/CRC, 2006, ch. 3, pp. 41–63.

[15] M. Schliwa and G. Woehlke, “Molecular motors,” Na-
ture, vol. 422, no. 6933, pp. 759–765, April 2003.

[16] R. D. Vale and R. A. Milligan, “The way things move:
looking under the hood of molecular motor proteins,”
Science, vol. 288, no. 5463, pp. 88–95, April 2000.

[17] J. D. Fernández and F. J. Vico, “Automating the search
of molecular motor templates by evolutionary methods,”
Biosystems, vol. 106, pp. 82–93, 2011.

[18] Y. Togashi and A. S. Mikhailov, “Nonlinear relax-
ation dynamics in elastic networks and design principles
of molecular machines,” Proceedings of the National
Academy of Sciences of the United States of America,
vol. 104, no. 21, pp. 8697–8702, May 2007.

[19] M. Lu, “The role of shape in determining molecular
motions,” Biophysical Journal, vol. 89, no. 4, pp. 2395–
2401, October 2005.

[20] J. Su, “Protein unfolding behavior studied by elastic
network model,” Biophysical Journal, vol. 94, no. 12,
pp. 4586–4596, June 2008.

[21] S. Kundu, D. C. Sorensen, G. N. Phillips, and Jr, “Au-
tomatic domain decomposition of proteins by a Gaus-
sian Network Model,” Proteins: Structure, Function, and
Bioinformatics, vol. 57, no. 4, pp. 725–733, December
2004.

[22] L.-W. W. Yang and I. Bahar, “Coupling between
catalytic site and collective dynamics: a requirement
for mechanochemical activity of enzymes.” Structure,
vol. 13, no. 6, pp. 893–904, June 2005.

24

Arbitrary Nesting of Spatial Computations
Antoine Spicher∗, Olivier Michel∗, Jean-Louis Giavitto†

∗LACL, Université Paris-Est Créteil,
61 av. du Général de Gaulle 94010 Créteil, France

Email: {olivier.micher,antoine.spicher}@u-pec.fr

†UMR 9912 STMS, Ircam & CNRS, UPMC, Inria
1 place Igor Stravinsky, 75004 Paris, France

Email: jean-louis.giavitto@ircam.fr

Abstract—Modern programming languages allow the definition
and the use of arbitrary nested data structures but this is not
generally considered in unconventional programming models. In
this paper, we present arbitrary nesting in MGS, a spatial comput-
ing language. By considering different classes of neighborhood
relationships, MGS can emulate several unconventional computing
models from a programming point of view. The use of arbitrary
nested spatial structures allows a hierarchical form of coupling
between them. We propose an extension of the MGS pattern-
matching facilities to handle directly nesting. This makes possible
the straightforward emulation of a larger class of unconventional
programming models.

I. INTRODUCTION

Modern programming languages allow data structure to be
nested so that a valid element of a structure can also be in
its turn another structure. Generally, this is not considered in
unconventional programming models. For instance, the state of
a cell in a cellular automata is not (the state of) another cellular
automata. Another example: the value labeling a symbol in
parametric Lindenmayer system is not (a string representing a
derivation in) another Lindenmayer system.

In chemical computing, as exemplified in Gamma [1],
chemical solutions are abstracted as multisets (a generalization
of the notion of set in which members are allowed to appear
more than once) and a molecule corresponds to an elementary
data and not another chemical solution. Nested multisets
are considered in membrane systems1 [4] but are studied
as a completely different computational model. Indeed, the
management of the nesting entails the introduction of new
mechanisms (transport rules in the case of membrane systems).

In this paper we consider arbitrary nesting in MGS, a spatial
computing language where space is managed through the
structure of the data. MGS relies on neighborhood relationships
to represent physical (spatial distribution, localization of the
resources) or logical constraints (inherent to the problem to be
solved) in a computation.

1Nested multisets are also considered in High Order Chemical Lan-
guage [2]. In Structured Gamma [3], elements of the multiset are linked
by relations defined by a graph grammar. It is then theoretically possible to
encode a given static nest of multisets using relations specified by a specific
graph grammar to implement membership test and to make a distinction
between elements and nested multisets.

By considering different classes of neighborhood relation-
ships, MGS can emulate several unconventional computing
models from the point of view of the programming. The
use of arbitrary nested spatial structures allows a hierarchical
form of coupling between them. Furthermore, we propose
an extension of the MGS pattern-matching facilities to handle
nesting explicitly. This makes possible the concise expression
of various algorithms as well as the straightforward emulation
of a larger class of unconventional programming models.

Outlines: This paper is organized as follows. The next
section introduces the emerging field of spatial computing and
the notions of topological collection and transformation devel-
oped in MGS. Section III discusses the relevance of nesting in
the context of spatial computing and section III-D proposes
a new pattern matching construct to make the handling of
nested structures mores easier. Section IV exemplifies the
use of nested spaces with three direct applications. The first
encodes terms used to represents boolean formulae with nested
sets. The computation of a disjunctive normal form on this
representation is explained. The second example computes
quadtrees, a recursive data structure for partitioning a two
dimensional space. The last one is dedicated to the informal
translation of the fraglet computational model into MGS.
Related and future work concludes this article.

II. BACKGROUND

A. Computing in Space, Space in Computation and Spatial
Computing

Spatial Computing is an emerging field of research [5]
where the computation is structured in term of spatial rela-
tionships where only “neighbor” elements may interact.

For example, the elements of a physical computing system
are spatially localized and when a locality property holds, only
elements that are neighbor in space can interact directly. So
the interactions between parts are structured by the spatial
relationships of the parts.

Even for non physical system, usually an element does not
interact with all other elements in the system. For instance,
from a given element in a data structure, only a limited number
of other elements can be accessed [6]: in a simply linked list,
the elements are accessed linearly (the second after the first,

25

the third after the second, etc.); from a node in a tree, we
can access the father or the sons; in arrays, the accessibility
relationships are left implicit and implemented through incre-
menting or decrementing indices (called “Von Neumann” or
“Moore” neighborhoods if one or several changes are allowed).

More generally, if an element e in a system interacts during
a computation with a subset E = {e1, . . . , en} of other
elements, it also interacts with any subset E′ included in
E. This closure property induces a topological organization:
the set of elements can be organized as an abstract cellular
complex which is a spatial representation of the interactions
in the computation [7]. This abstract space instantiates a
neighborhood relationship that represents physical (spatial
distribution, localization of the resources) or logical (inherent
to the problem to be solved) constraints.

In addition, space can be an input to computation or a key
part of the desired result of the computation, e.g. in com-
putational geometry applications, amorphous computing [8],
claytronics [9], distributed robotics or programmable matter...
to cite a few examples where notions like position and shape
are at the core of the application domain.

B. The MGS approach to Spatial Computing

The MGS project recognizes that space is not an issue to
abstract away but that computation is performed distributed
across space and that space, either physical or logical, serves
as a mean, a resource, an input and an output of a computation.

1) Topological Collections: In MGS, the notion of space is
handled through a slight generalization of the notion of field.
In physics, a field assigns a quantity to each point of a spatial
domain [10].

MGS handles spatial domains defined by abstract cellular
complex [11]. An abstract cellular complex is a formal con-
struction that builds a space in a combinatorial way through
more simple objects called topological cells. Each topological
cell abstractly represents a part of the whole space: points
are cells with dimension 0, lines are cells with dimension
1, surfaces are 2 dimensional cells, etc. The structure of the
whole space, corresponding to the partition into topological
cells, is considered through incidence relationships, relating a
cell and the cells in its boundary.

In this approach a field is a finite labeling of a cellular com-
plex: a cellular complex may count an infinite number of cells
but MGS restricts itself on fields labeling only a finite number
of these cells. Such fields are called topological collections
to stress the importance of the neighborhood relationships
induced by the incidence relationships. Topological collections
are a weakening of the notion of topological chain developed
in algebraic topology [12] and have been introduced in [13]
to describe arbitrary complex spatial structures that appear
in biological systems [14] and other dynamical systems with
a time varying structure [15], [16]. Topological collections
generalize fields because they associate a quantity with 0-cells
(points in space) but also with arbitrary n-cells.

Graphs are examples of one dimensional cellular complexes:
they are made of only 0- and 1-cells. In this paper, we will

stick to topological collections where the underlying complex
is a graph. In [6] it has been showed how usual data structures
(sets, multisets, lists, trees, arrays. . .) can be seen as one
dimensional topological collections: the elements in a data
structure are the quantities assigned by the field to the nodes
of a graph.

A specific neighborhood relationship has also a special
importance in the rest of this paper: the full relation. With
this relation, every node is neighbor of every other nodes.
This corresponds to a node-labeled complete graph and to the
multiset data structure.

2) Transformations: Usually in Physics, fields and their
evolution are specified using differential operators. MGS gen-
eralizes these operators in a rewriting mechanism, called
transformation. A transformation is the application of some
local rules following some strategy. The application of a local
rule a =⇒ b in a collection C:

1) selects a subcollection A that matches the pattern a;
2) computes a new subcollection B as the result of the

evaluation of the expression b instantiated with the
collection A;

3) and substitutes B for A in C.
A local rule specifies a local evolution of the field: the left hand
side (lhs) of the rule typically matches elements in interaction
and the right hand side (rhs) computes local updates of the
field.

Patterns pat are expressions defined inductively starting
from the pattern variables “x” (matching exactly one ele-
ment in a collection) and several operators used to compose
more complex patterns: the neighborhood between two sub-
collections “ pat, pat′ ”, the repetition “pat*”, the guard
“pat/exp” and the typing “pat:T ” (elements matched by pat
have to be of type T).

Transformations are a powerful means to define functions on
topological collections complying with the underlying spatial
structure. For instance, discrete analog of differential operators
can be defined using transformations [17]. For multisets, trans-
formations reduce simply to associative-commutative rewrit-
ing [18] also called multiset rewriting.

III. NESTED SPACES

In classical Physics, a field can be classified as a scalar field
or a vector field according to whether the value of the field at
each point is a scalar or a vector. However, it is not usual to
consider “field valued fields”. From the MGS perspective, this
notion simply corresponds to the idea of nested topological
collections. Such a feature is relevant and valuable in at least
three areas: for the representation of and the computation on
hierarchical or inductive data structures; in the modeling and
the simulation of multiscale systems; and in the emulation of
“stratified” computational models.

A. Inductive Data Structures

The possibility to nest arbitrarily data structures is now
pervasive in modern programming languages. Its usefulness to
represent hierarchical data (e.g., XML) or inductive structure

26

(e.g., list, trees) is well established. We give an example of
the use of nested spaces in an algorithmic application relying
on multisets in section IV-A.

B. Multiscale Systems

The modeling of a natural system often implies entities
appearing on distinct temporal and spatial scales: each level
addresses a phenomenon over a specific window of length and
time. These scales appear for logical reasons (at a particular
scale, the system exhibits uniform properties and can be
modeled by homogeneous rules acting on objects relevant
at this scale) or for efficiency reasons (e.g., the reductionist
simulation of the whole system from first principles is compu-
tationally not tractable while we are only interested in coarse-
grained description).

Multiscale models and simulations arise when interactions
between scales must be considered. For spatial scales, it means
that simultaneous spatial representations must be managed as
in adaptive mesh refinement [19]. This method relies on a
sequence of “nested rectangular grids” on which a PDE is
discretized. It is important to realize that these subgrids are not
patched into the coarse grid but overlaid to track the feature
of interest. A simplistic example is presented in section IV-B.
Another example, in the area of discrete modeling, is the
complex automata framework [20] corresponding to a “graph
of cellular automata”.

Sometimes scales can be separated, meaning that the cou-
pling between scales can be localized at some isolated interac-
tion points in space and time. Then, the resulting computation
corresponds to a hierarchical process with a directed flow of
information. This is not always the case and we will introduce
a dedicated pattern-matching mechanism in section III-D to
ease the reference between scales.

C. Stratified Computational Models

Some models of computation exhibit naturally an inductive
structure. For instance, the state of a membrane system is a
multiset of symbols and (inductively) membrane systems. This
structure leads directly to a nested organization of “multiset
of symbols and multisets”.

Some computational models are also best described as a
combination of two paradigms: the second being substituted
for some generic parts in the first. We list a few examples
issued from various compartmentalization devices introduced
over a basic chemical framework. In membrane systems,
strings have been considered instead of symbols [21]. This
leads obviously to “multiset of sequences of symbols and
multisets”. Nested multisets are restricted to the description of
membranes organized by inclusion only. Tissue P systems [22]
arrange the membranes and their interactions following an
arbitrary graph, calling for a “graph of multisets”. Spatial P
systems [23] are a variant of P systems which embodies the
concept of space and position inside a membrane. Membranes
and objects are positioned in a two-dimensional discrete space.
Hence, we have to consider “grids of multisets and grids and
symbols”.

In section IV-C, we will sketch the encoding of fraglets,
a molecular biology inspired execution model for computer
communications leading to “graph of multisets of sequences”.

D. Matching Nested Structures

In the next section, we give examples of the three usages of
nested spaces we have identified above section III. The use of
nested spaces does not require a priori new control structures.
For example, if the reactions between symbols of a P systems
are coded by a transformation EvalRule , then we can defines a
function Apply and an auxiliary transformation ApplyNested
to thread EvalRule over the nested structure:
fun Apply(x) = EvalRule(ApplyNested(x))
and trans ApplyNested = x:bag =⇒ Apply(x)

This piece of code is enough to trigger the chemical rules
specified by EvalRule through the entire structure. But the
transport rules, used for example to expel one molecule from
a membrane to the enclosing one, are a little bit heavier to
write because they imply the simultaneous matching of two
levels in the nested structure.

The usual MGS pattern constructions are “flat”: the pattern
variables of a transformation T refer to elements of the
collection on which T is applied [24]. To make easier the
handling of nested collections, we extend the current syntax
with a new construction allowing references to elements of a
nested collection. The pattern construct
[pat |x]

matches a collection C nested within the current one. The
pattern pat must match a subcollection C ′ in C and the
variable x is bound to the collection C deprived of C ′. For
example, the pattern
x, [2, 3| y] as z

matches only one occurrence in the sequence
(0, (1, 2, 3, 4), 5)

and binds x to 0, z to the nested sequence (1, 2, 3, 4)
and y to the sequence (1, 4). The notation [pat |...]
can be used to spare a variable if the rest of the subcollection
is not used elsewhere.

IV. COMPUTING WITH NESTED COLLECTIONS

A. Disjunctive Normal Form

Since the logical conjunction and disjunction operators are
associative, commutative and idempotent, a logical formula
can be encoded by nested sets. Let consider the following
type declaration:
type formula = string | Not | And | Or
and record Not = { f:formula }
and collection And = set[formula]
and collection Or = set[formula]

In this declaration, formula is a sum type: a formula is
either a boolean variable (represented by a string value), or
the negation of a formula nested in a record with one field
f, or the conjunction (resp. disjunction) of formulae nested
in a set with subtype And (resp. Or). With these types, the
formula ¬(p ∧ q) ∨ r can be represented as follows:

27

{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =⇒ x
x:And / size(x)==1 =⇒ choose(x)
x:Or / size(x)==1 =⇒ choose(x)

(* Flattening nested ops *)
[f:And| g]:And =⇒ join(f,g)
[f:Or| g]:Or =⇒ join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =⇒
fold(::, And:(), map(λf �{f= f }, x))

[x:And|...]:Not =⇒
fold(::, Or:(), map(λf �{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =⇒ map(λf � f::s, x)

(* Induction *)
x:And =⇒ DNF(x)
x:Or =⇒ DNF(x)
x:Not =⇒ DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
λf � f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n
points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2×2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =⇒

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(λp � p.x<g.x, c) in
let c00, c01 = split(λp � p.y<g.y, c0) in
let c10, c11 = split(λp � p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T
where the value vi is associated with the cell ci.

The process is illustrated on figure 1. There is no need of
the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree
that create the nested structure from a flat cloud of points.

28

C. Fraglet

Fraglets are tiny computation fragments or sequences of
tokens that flow and react through a computer network.
They have been introduced in [25] as an execution model
for computer communications inspired by molecular biology.
They have been designed to lay the ground for automatic
network adaption and optimization processes as well as the
synthesis and evolution of protocol implementations. Table I
sketches the core instructions.

For example, the fraglets below together with a fraglet
[length tail] located on the same node of the network,
will compute the length of tail by generating the fraglet
[total n] (where n is the size of tail):

[counter 0]
[matchp length empty stop cnt]
[matchp stop match counter total]
[matchp cnt pop cnt1]
[matchp cnt1 split match counter

incr counter * length]
[matchp incr exch sum 1]

In this program, the fraglets can be interpreted as follows:
fraglet [counter 0] defines a local variable with initial
value 0; fraglets starting with matchp define functions;
finally fraglet [length tail] is the application of function
length on the list tail.

In the following we encode the fraglet formalism by imple-
menting a fraglet interpreter in MGS. For the sake of simplicity,
we do not consider here the localization of the fraglets on the
nodes of a communication network and the communication
rules between nodes2. Let consider the following MGS type
declaration:

type Token = int | ‘nul | ‘exch | ...
and collection Fraglet = seq[Token]
and collection State = bag[Fraglet]

The state of the system is represented by a multiset inhabited
by a population of fraglets; fraglets are sequences of tokens
(symbols or integers). For each fraglet operator, Table I gives
the formal fraglet instruction, its informal semantics and its
translation into an MGS transformation rule. For example,
the split instruction consists in extracting the subsequence of
tokens in the fraglet located between the operator (the first
element in the sequence) and the first occurrence of the special
token *. This operation is straightforwardly translated in MGS:
the pattern matches in a fraglet the operator ‘split (the
syntactic construction @0 checks that the operator is located
at the first position in the sequence) followed by a subsequence
terminated by the special token ‘time. The subsequence is
specified by (x/x!=‘time)* that matches a repetition of
elements different from ‘time.

2Nevertheless the reader is invited to pay attention that this restriction is
done for the sake of the simplicity: the whole formalism can be specified in
MGS using an additional level of nesting by considering a graph labeled by
multisets of fraglets.

V. RELATED WORK

Topological collections are reminiscent of Data-fields, stud-
ied e.g. by B. Lisper [26]. Data-fields are a generalization of
the array data structure where the set of indices is extended to
all Zn (see also [27]). We have introduced the concept of group
based fields, or GBF [28], [29], to extend data-fields towards
more general regular data structures. Topological collections
emphasize data structures as a set of places independently of
their occupation by values. This approach is also shared by the
theory of species of structures [30]. Motivated by the devel-
opment of enumeration techniques for labeled structures, the
emphasis is put on the transport of structures along bijections
while spatial computing focuses on topological relationships.

Disentangling the elements in a data structure from their
organization has several advantages. In [31], B. Jay develops a
concept of shape polymorphism where a data structure is also a
pair (shape, set of data). The shape describes the organization
of the data structure (restricted to tabular organizations) and
the set of data describes the content of the data structure.
This separation allows the development of shape-polymorphic
functions and their typing: the shape of the result of a shape-
polymorphic function application depends only on the shape of
the argument, not of its content. The same line is developed in
the field of polytypic programming for algebraic data type [32].
MGS transformations are naturally polytypic and extend far
beyond arrays and algebraic data type. Polytypism in MGS
relies on a generic implementation of pattern matching [24]
not on overloading or ad-hoc polymorphism.

Transformations are a kind of rewriting that differs in many
ways from graph rewriting. Their formalization in [33] is
not based on the usual graph morphisms and pushouts like
in [34] but is inspired by the approach of J.-C. Raoult [35]
where graph rewriting based on a (multi-)set point of view
is developed. The proposed model is close to term rewriting
modulo associativity and commutativity (where the left hand
side of a rule is removed and the right hand side is added).
This kind of approach also allows to extend results from term
rewriting to topological rewriting (as we did for termination
in [36]). Note that the notions of topological collection and
topological rewriting are more general than labeled graphs and
graph rewriting, and may handle higher dimensional objects,
a feature relevant in a lot of application areas [37].

Nested data structure are now widespread in programming
languages but are less natural in the context of data bases.
The importance of organizing the accesses to the element in
a complex structure trough primitive operations related to the
type constructor is stressed in [38]. In MGS, accesses rely on
pattern matching, and the pattern matching constructs reflect
the spatial structure underlying a collection. Nevertheless,
structural recursion, advocated in [38], is straightforward as
showed by the programs in sections IV-A and IV-B.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the advantages of nesting
in a spatial model of computation, the MGS experimental
language. The language MGS, has been used in the context

29

Op Input Output
nul [nul tail] []

destroy a fraglet
[‘null@0| tail]:Fraglet =⇒ Fraglet:()

dup [dup t a tail] [t a a tail]
duplicate a single symbol
[‘dup@0, t, a| tail]:Fraglet =⇒ t::a::a::tail

exch [exch t a b tail] [t b a tail]
swap two tags
[‘exch@0, t, a, b| tail]:Fraglet =⇒ t::b::a::tail

split [split s1 * s2] [s1] [s2]
break a fraglet into two at the first occurrence of *
[‘split@0,(x/x!=‘time)* as s1,‘time| s2]:Fraglet =⇒ s1, s2

pop [pop h a tail] [h tail]
pop the “head” element of the list “a, tail”
[‘pop@0, h, a| tail]:Fraglet =⇒ h::tail

empty [empty yes no tail] [yes] or [no tail]
test for empty tail
[‘empty@0, y, n| tail]:Fraglet =⇒ if size(tail)==0 then y::Fraglet:() else n::tail

sum [sum t n1 n2 tail] [t (n1 + n2) tail]
arithmetic addition
[‘sum@0, t, n1, n2 | tail]:Fraglet =⇒ t::(n1+n2)::tail

match [match a tail1],[a tail2] [tail1 tail2]
two fraglets react, their tails are concatenated
[‘match@0, a| t1]:Fraglet, [b@0| t2]:Fraglet =⇒ join(t1,t2)

matchP [matchP a tail1],[a tail2] [tail1 tail2]
idem as match but the rule persists
[‘matchp@0, a| t1]:Fraglet as f, [b@0| t2]:Fraglet =⇒ f, join(t1,t2)

Table I
SUBSET OF THE FRAGLETS CORE INSTRUCTIONS (FROM [25]) AND THEIR MGS TRANSLATION.

of P systems [13] and in several large modeling projects in
systems biology [39], [14], [40].

One interest of the spatial paradigm à la MGS is its ability
to subsume several computational models in a single uniform
formalism, as long as one focuses on programming [41],
[42]. We showed the benefits of considering nested spatial
computing through three kind of examples: in algorithmic, in
simulation of multiscale phenomena and in the emulation of
other programming models.

The management of nested collections is achieved through
three kinds of devices:

1) collections are first-citizen values and can be used as the
values of another collection;

2) a specific pattern construction [p| . . .] makes possi-
ble, within the current pattern, to refer to the elements
matched by a pattern p in a nested collection;

3) recursive type declarations generate predicates used to
constrain the nesting and to control the pattern matching
facilities.

These three features together enable a very concise and
readable programming style, as exemplified in section III-D.
All the presented examples are actual MGS programs, at the
exception of some slight syntactic sugar.

The work presented in this paper may be enriched and
extended in several directions. The pattern matching we have
presented can be seen as operating at an “horizontal level”
on the elements of a collection and at a “vertical level” when
descending to match some elements of a nested collection.
The constructions dedicated to the horizontal level are very

expressive, allowing for example the matching of an unknown
number of elements. The handling of the vertical level is
actually restricted to the [pat| . . .] operator. Other construc-
tion can be designed, by analogy with the vertical level. For
example, an operator to allow references through an unknown
number of nesting, in a manner analog to the iteration operator
“*”, would be interesting to mimic path queries in XML.
Note however that the distinction between horizontal and
vertical level is questionable. An alternative approach would
be to unify the nested collection by looking for the spatial
relationships holding in the whole structure, irrespectively of
the horizontal or the vertical view. The topology of this “flat
whole structure” can be build as the topology of a fiber space
over the top collection. The investigation of this framework
remains to be done.

ACKNOWLEDGMENTS

The authors would like to thanks H. Klaudel, F. Pommereau,
F. Delaplace and J. Cohen for many questions, encouragements
and sweet cookies. This research is supported in part by the
ANR projects SynBioTIC.

REFERENCES

[1] J. Banâtre, P. Fradet, and D. Le Métayer, “Gamma and the chemical
reaction model: Fifteen years after,” Multiset processing: mathematical,
computer science, and molecular computing points of view, vol. 2235,
pp. 17–44, 2001.

[2] J. Banâtre, P. Fradet, and Y. Radenac, “Programming self-organizing
systems with the higher-order chemical language,” International Journal
of Unconventional Computing, vol. 3, no. 3, p. 161, 2007.

[3] P. Fradet and D. Le Métayer, “Structured gamma,” Science of Computer
Programming, vol. 31, no. 2-3, pp. 263–289, 1998.

30

[4] G. Paun, “Computing with membranes,” Journal of Computer and
System Sciences, vol. 1, no. 61, pp. 108–143, 2000.

[5] A. De Hon, J.-L. Giavitto, and F. Gruau, Eds., Computing Media
and Languages for Space-Oriented Computation, ser. Dagsthul Seminar
Proceedings, no. 06361. Dagsthul, http://www.dagstuhl.de/en/program/
calendar/semhp/?semnr=2006361, 3-8 sptember 2006.

[6] J.-L. Giavitto and O. Michel, “Data structure as topological spaces,”
in Proceedings of the 3nd International Conference on Unconventional
Models of Computation UMC02, vol. 2509, Himeji, Japan, Oct. 2002,
pp. 137–150, lecture Notes in Computer Science.

[7] J.-L. Giavitto, O. Michel, J. Cohen, and A. Spicher, “Computation
in space and space in computation,” in Unconventional Programming
Paradigms (UPP’04), ser. LNCS, vol. 3566. Le Mont Saint-Michel:
Spinger, Sep. 2005, pp. 137–152.

[8] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight,
R. Nagpal, E. Rauch, G. J. Sussman, and R. Weiss, “Amorphous
computing,” CACM: Communications of the ACM, vol. 43, 2000.

[9] B. Aksak, P. S. Bhat, J. Campbell, M. DeRosa, S. Funiak, P. B.
Gibbons, S. C. Goldstein, C. Guestrin, A. Gupta, C. Helfrich, J. F.
Hoburg, B. Kirby, J. Kuffner, P. Lee, T. C. Mowry, P. Pillai,
R. Ravichandran, B. D. Rister, S. Seshan, M. Sitti, and H. Yu,
“Claytronics: highly scalable communications, sensing, and actuation
networks,” in Proceedings of the 3rd International Conference on
Embedded Networked Sensor Systems, SenSys 2005, San Diego,
California, USA, November 2-4, 2005, J. Redi, H. Balakrishnan,
and F. Zhao, Eds. ACM, 2005, p. 299. [Online]. Available:
http://doi.acm.org/10.1145/1098918.1098964

[10] G. T. Leavens, “Fields in physics are like curried functions or physics
for functional programmers,” Iowa State University, Department of
Computer Science, Tech. Rep. TR94-06b, May 1994.

[11] A. Tucker, “An abstract approach to manifolds,” The Annals of Mathe-
matics, vol. 34, no. 2, pp. 191–243, 1933.

[12] J. Munkres, Elements of Algebraic Topology. Addison-Wesley, 1984.
[13] J.-L. Giavitto and O. Michel, “The topological structures of membrane

computing,” Fundamenta Informaticae, vol. 49, pp. 107–129, 2002.
[14] ——, “Modeling the topological organization of cellular processes,”

BioSystems, vol. 70, pp. 149–163, 2003.
[15] J.-L. Giavitto, “Topological collections, transformations and their appli-

cation to the modeling and the simulation of dynamical systems,” in
14th International Conference on Rewriting Technics and Applications
(RTA’03), ser. LNCS, vol. 2706. Valencia: Springer, Jun. 2003, pp.
208–233.

[16] J.-L. Giavitto and A. Spicher, “Topological rewriting and the geometriza-
tion of programming,” Physica D, vol. 237, no. 9, pp. 1302–1314, jully
2008.

[17] ——, “Topological rewriting and the geometrization of programming,”
Physica D, vol. 237, no. 9, pp. 1302–1314, jully 2008.

[18] N. Dershowitz, J. Hsiang, N. Josephson, and D. Plaisted, “Associative-
commutative rewriting,” in Proceedings of the Eighth international joint
conference on Artificial intelligence-Volume 2. Morgan Kaufmann
Publishers Inc., 1983, pp. 940–944.

[19] M. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic
partial differential equations,” Journal of computational Physics, vol. 53,
no. 3, pp. 484–512, 1984.

[20] A. Hoekstra, E. Lorenz, J. Falcone, and B. Chopard, “Towards a
complex automata framework for multi-scale modeling: Formalism and
the scale separation map,” Computational Science–ICCS 2007, pp. 922–
930, 2007.

[21] J. Castellanos, G. Paun, and A. Rodriguez-Paton, “Computing with
membranes: P systems with worm-objects,” in String Processing and
Information Retrieval, 2000. SPIRE 2000. Proceedings. Seventh Inter-
national Symposium on. IEEE, 2000, pp. 65–74.

[22] C. Martín-Vide, G. Paun, J. Pazos, and A. Rodríguez-Patón, “Tissue p
systems,” Theoretical Computer Science, vol. 296, no. 2, pp. 295–326,
2003.

[23] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, G. Pardini, and L. Tesei,
“Spatial p systems,” Natural Computing, vol. 10, no. 1, pp. 3–16, 2011.

[24] J.-L. Giavitto and O. Michel, “Pattern-matching and rewriting rules for
group indexed data structures,” in ACM Sigplan Workshop RULE’02.
Pittsburgh: ACM, Oct. 2002, pp. 55–66.

[25] C. Tschudin, “Fraglets-a metabolistic execution model for communi-
cation protocols,” in Proc. 2nd Annual Symposium on Autonomous
Intelligent Networks and Systems (AINS), Menlo Park, USA, 2003, pp.
1–6.

[26] B. Lisper, “On the relation between functional and data-parallel pro-
gramming languages,” in Proc. of the 6th. Int. Conf. on Functional
Languages and Computer Architectures, ACM. ACM Press, Jun. 1993.

[27] J.-L. Giavitto, D. De Vito, and J.-P. Sansonnet, “A data parallel Java
client-server architecture for data field computations over ZZn,” in
EuroPar’98 Parallel Processing, ser. LNCS, vol. 1470, Sep. 1998, pp.
742–??

[28] J.-L. Giavitto, O. Michel, and J.-P. Sansonnet, “Group based
fields,” in Parallel Symbolic Languages and Systems (International
Workshop PSLS’95), ser. LNCS, I. Takayasu, R. H. J. Halstead,
and C. Queinnec, Eds., vol. 1068. Beaune (France): Sprin-
ger-Verlag, 2–4 Oct. 1995, pp. 209–215. [Online]. Available:
ftp://ftp.lri.fr/LRI/articles/michel/psls95.ps.gz

[29] J.-L. Giavitto, “Rapport scientifique en vue d’obtenir l’habilitation à
diriger des recherches,” Ph.D. dissertation, Université de Paris-Sud,
centre d’Orsay, May 1998. [Online]. Available: http://www.lami.
univ-evry.fr/~giavitto/

[30] F. Bergeron, G. Labelle, and P. Leroux, Combinatorial species and tree-
like structures, ser. Encyclopedia of mathematics and its applications.
Cambridge University Press, 1997, vol. 67, isbn 0-521-57323-8.

[31] C. B. Jay, “A semantics for shape,” Science of Computer Programming,
vol. 25, no. 2–3, pp. 251–283, 1995.

[32] J. Jeuring and P. Jansson, “Polytypic programming,” Lecture Notes in
Computer Science, vol. 1129, pp. 68–114, 1996.

[33] A. Spicher, O. Michel, and J.-L. Giavitto, “Declarative mesh subdivision
using topological rewriting in mgs,” in Int. Conf. on Graph Transfor-
mations (ICGT) 2010, ser. LNCS, vol. 6372, Sep. 2010, pp. 298–313.

[34] H. Ehrig, M. Pfender, and H. J. Schneider, “Graph grammars: An
algebraic approach,” in FOCS: IEEE Symposium on Foundations of
Computer Science (FOCS), 1973.

[35] J.-C. Raoult and F. Voisin, “Set-theoretic graph rewriting,” in
Proceedings of the International Workshop on Graph Transformations
in Computer Science. London, UK: Springer-Verlag, 1994, pp. 312–
325. [Online]. Available: http://portal.acm.org/citation.cfm?id=647364.
725670

[36] J.-L. Giavitto, O. Michel, and A. Spicher, Software-Intensive Systems
and New Computing Paradigms, ser. LNCS. Springer, november
2008, vol. 5380, ch. Spatial Organization of the Chemical Paradigm
and the Specification of Autonomic Systems, pp. 235–254. [Online].
Available: http://www.springerlink.com/content/g1357n85j8301078/?p=
a5c6f79393724a9d88f508d110a8bfe2&pi=6

[37] E. Tonti, “On the mathematical structure of a large class of physicial
theories,” Rendidiconti della Academia Nazionale dei Lincei, vol. 52, no.
fasc. 1, pp. 48–56, Jan. 1972, scienze fisiche, matematiche et naturali,
Serie VIII.

[38] P. Buneman, S. Naqvi, V. Tannen, and L. Wong, “Principles of program-
ming with complex objects and collection types,” Theoretical Computer
Science, vol. 149, no. 1, pp. 3–48, 18 Sep. 1995.

[39] P. Barbier de Reuille, I. Bohn-Courseau, K. Ljung, H. Morin,
N. Carraro, C. Godin, and J. Traas, “Computer simulations reveal
properties of the cell-cell signaling network at the shoot apex in
Arabidopsis,” PNAS, vol. 103, no. 5, pp. 1627–1632, 2006. [Online].
Available: http://www.pnas.org/cgi/content/abstract/103/5/1627

[40] A. Spicher, O. Michel, and J.-L. Giavitto, Understanding the Dynamics
of Biological Systems: Lessons Learned from Integrative Systems Biol-
ogy. Springer Verlag, Feb. 2011, ch. Interaction-Based Simulations for
Integrative Spatial Systems Biology.

[41] O. Michel, A. Spicher, and J.-L. Giavitto, “Rule-based programming
for integrative biological modeling – application to the modeling of
the lambda phage genetic switch,” Natural Computing, vol. 8, no. 4,
pp. 865–889, december 2009, published online: 12 November 2008.
[Online]. Available: http://www.lacl.fr/~michel/PUBLIS/2009/naco09.
pdf

[42] A. Spicher, O. Michel, and J.-L. Giavitto, Understanding the
dynamics of biological systems. Springer, 2011, ch. Interaction-based
simulations for Integrative Spatial Systems Biology, pp. 195–231.
[Online]. Available: http://www.lacl.fr/~michel/PUBLIS/2010/ibss.pdf

31

32

Spatial Computing for non-IT Specialists

Steffan Karger, Agostino Di Figlia, Maurice Bos, Andrei Pruteanu, Stefan Dulman
Delft University of Technology, the Netherlands

{s.j.karger, a.difiglia, m.bos-1}@student.tudelft.nl, {a.s.pruteanu, s.o.dulman}@tudelft.nl

ABSTRACT
Designers and architects are showing an increasing interest
for intelligent and interactive building environments, em-
ploying large numbers of networked embedded devices, often
equipped with wireless communication capabilities. Build-
ing small prototypes is usually feasible with a central-control
approach. As soon as the prototype needs to be scaled up
in the commissioned buildings, complexity arises due to the
large number of interacting devices.

In this paper, we link the interactive environments appli-
cations with the field of spatial computing. As we will show,
the two are strongly correlated and spatial computing can
prove to be an elegant solution for the problem at hand.
Moreover, spatial computing has the potential of uncover-
ing new designs, based on the emergent behavior proper-
ties of large-scale networks. We propose a new framework,
called IDS (Interactive Design Studio), which allows for ex-
ploration of new design possibilities employing networked
embedded systems, without the expertise of IT-specialists.

The IDS framework is built on top of the Proto program-
ming language and targets the protoDeck interactive floor.
We showcase its capabilities via two application scenarios
and confirm its benefits by means of a survey involving ar-
chitecture students. Finally, we show implementation details
of the complete software stack and experimental results from
deployment on the embedded platform.

Keywords
spatial computing, distributed systems, interactive design,
embedded systems, software framework

1. INTRODUCTION
Recent years have seen an explosion in the number of net-

worked devices embedded into engineered systems. Wireless
sensor networks, swarming robots, mobile ad-hoc networks,
smart phones and smart appliances are just a few well-known
application domains where this has already become a reality.
Properties such as flexibility and ease of use make networked
systems attractive solutions for problems outside the infor-
mation technology domain.

Architects show an increasing interest for intelligent and

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

interactive building environments [7]. Current state-of-the-
art includes designs such as the Ada floor [8]. It is composed
of interconnected tiles capable of interacting with the users
stepping on it by means of light patterns. Another example
is the Healing pool by Brian Knep[15], consisting of a projec-
tion of organic patterns on the floor; the patterns self-heal
after being torn apart by people walking around. These
projects emphasize the growing trend of designing complex
interactive spaces in private or public buildings [11, 18].

Even though interactivity is achieved with different tech-
nologies, a common property is occurring in all applications:
computational elements are spread out and fill the design
space. They interact with each other and the users in var-
ious ways leading to complex behaviors. When surveying
the current deployments, we noticed that the current instal-
lations usually employ some form of centralized control. For
prototypes consisting of a small number of elements, that
is not an issue. When scaling up to large setups, central-
ized control becomes almost impossible and the distributed
interaction is simply dropped. When trying to mimic dis-
tributed systems, such as in the case of the healing pool
application [15], the technology used (projectors, cameras
and image recognition, a limited-sized deployment area) im-
plies the need of a specific, carefully controlled environment,
considerably limiting the design freedom.

At high level, we believe that the problem architects face
when designing interactive environments is very close to the
killer application for the field of spatial computing. The cor-
relation between the two topics is obvious and we can break
down the application scenario in two parts linked to the
bottom-up and top-down design of complex systems:

• With an ever increasing number of computing devices
equipped with sensing and actuation capabilities, there
is a quest for exploring feasible and interesting inter-
active designs that make use of embedded platforms.
Non-IT specialists need ways to fast prototype ideas
on large-scale systems, while abstracting from the un-
derlying technological complexity related to commu-
nication protocols, programming languages, operating
systems, embedded virtual machines, hardware plat-
forms etc.

• Secondly, the complexity that arises in such distributed
systems, in the form of top-down translation of specifi-
cations for system behavior into local rules (also called
global-to-local compiling) is a challenging research ques-
tion that has been addressed before for different appli-
cation domains [17].

33

Both problems are still open for research in the field of
complexity theory in general and spatial computing in par-
ticular. To the best of our knowledge, solutions to both
problems include human expertise [9]. We do not hold a
completely autonomous solution to these problems - we merely
attempt to provide a framework in the form of a software
tool chain that makes use of distributed computing, sensing
and actuation. The framework targets designers and archi-
tects - the non-IT specialists - and aims to help them explore
various interactive design ideas via spatial computing con-
structs.

Previous attempts of specifying global system behaviors
via spatial computing constructs were targeted at the so-
called IT specialists: we refer the reader to a number of
spatial computing domain-specific languages (DSLs) made
available in recent years, such as Proto [3], Kairos [10] and
TOTA [16]. Our framework is built on top of such a pro-
gramming language, Proto. We further elaborate on this in
Section 2.

The framework we present in this paper has been tailored
for protoSpace [12] at TU Delft, Faculty of Architecture,
Hyperbody Group[6]. The space has an interactive floor,
protoDeck, consisting of 189 tiles each equipped with a mi-
crocontroller, RGB leds and a pressure sensor (Figure 1).
Due to the power requirements of the LED’s, the nodes
are powered from the grid. ProtoSpace 3.0 [12] also com-
prises other multimedia devices such as beamers, a complex
sound system and various interactive objects. The ambition
is to use protoSpace and all its components as an ecosystem
capable to create interactive user experiences. To achieve
that, we provide the non-IT specialists with a friendly design
tool chain. It facilitates the design of interactive spaces for
various events such as art exhibitions, dance performances,
teaching activities, social events, etc.

The design tool chain (Figure 2) comprises four compo-
nents: GUI, StateChart Compiler, DeckSim and protoDeck.
They correspond to the four stages of the design process.
The GUI serves as a graphical specification tool that eases
the description of the tiles’ behavior. The GUI produces a
state chart representation of the behavior and is given as an
input to the StateChart Compiler which generates the plat-
form specific code for DeckSim and the protoDeck hardware.
The SC Compiler aims to substitute the embedded systems
specialists in the design loop.

The paper has the following outline. In Section 2 we dis-
cuss related work for both interactive spaces and spatial
computing platforms. Section 3 outlines and describes the
framework and its components in detail. An example sce-
nario is given in Section 4. We show the experimental results
in Section 5. We discuss the results in Section 6. Finally,
we conclude in Section 7.

2. RELATED WORK
Interactive environments have become popular in recent

years [5] and several aspects achieving interactivity have
been explored. Next section will discuss three interactive
spaces (Ada [8], Healing Pool [13] and Hallway monitor-
ing [2]) and their main characteristics in terms of interac-
tivity type and adopted techniques.

2.1 Interactive Environments
Delbruck et al. have created a tactile luminous floor,

Ada, for an interactive autonomous space. The space con-

Figure 1: The protoDeck floor. On the left the floor detect-
ing presence of a person, on the right an impression of the
shape of the floor.

sists of a floor, projection screens, microphones, ceiling cam-
eras, speakers and theatre lights. The tiles on the floor are
equipped with tactile load sensors and RGB lamps. They
are networked as a cellular automata using an industrial au-
tomation network, Interbus. A centralized approach is used
for controlling the floor’s behavior. In fact, the tile’s local
controller delivers the data to a PC which controls the be-
havior. In contrast, our approach aims to provide a complete
distributed approach to achieve user interactions.

Another example of an interactive floor is Healing Pool [13].
It was presented at the exhibition in the Brauer Museum
of Art (Valparaiso University). The Healing Pool is an in-
teractive video installation equipped with video projectors,
cameras, custom software and a vinyl floor. The main char-
acteristic is the ability to project organic patterns that are
torn apart by visitors walking on the floor. Ultimately, they
rebuild themselves in an always unique way. Even though
the work relies upon artificial intelligence and imaging tech-
niques it shows the strain and increasing interest in interac-
tive spaces. We believe that large-scale complex interaction
can be achieved only by means of distributed systems of
sensors and actuators via the spatial computing paradigm.

An approach technologically more similar to ours is Hall-
way Monitoring [2]. In this project, wireless sensor nodes
have been placed underneath a hallway floor. The sensor
nodes are able to sense pressure on the tiles and actuate
lights and speakers on the hallway walls. Due to the limited
space and the lack of direct feedback from the tiles, the pos-
sibilities for complex interaction are also limited. No extra
objects to interact with can be placed in the hallway and
the movement of a person is unidirectional only. The set-
up offers interesting research possibilities from the computer
science viewpoint, but it lacks expressiveness for designers
and architects.

2.2 Spatial Computing Platforms
The goal for the protoDeck space is to have an interac-

tive prototyping platform in which architects and designers
can develop interactive environments. The spatial and tem-
poral properties are both considered as fundamental con-
stituents. This is strongly correlated to the Spatial Com-
puting paradigm, which endeavors to unleash the potential
of using the notions of space and time in programming of
distributed systems. In the past, several efforts were taken
in this area [4]. In this section we will discuss three of them
(Proto [3], Kairos [10] and TOTA [16]). Additionaly, we
explain why we chose Proto for this project.

34

Proto[3] is a functional language that employs the con-
cept of an amorphous medium abstraction[1], in which the
discretization of space and time is hidden from the end user.
When using Proto, programs do not incorporate their own
algorithms for communication and communication related
services (e.g, neighborhood discovery or distance estima-
tion). The information about the network and neighbor-
hood is presumed to be available and should be taken care
of by the underlying layers. These features enable Proto pro-
grams to be very compact. Proto comes with a tool chain
that includes a compiler, a simulator and a virtual machine.

Kairos[10] is based on ideas from shared-memory parallel
programming. It delivers three primitives: a node abstrac-
tion, delivering the programmer tools to manipulate (lists
of) nodes, a list of one-hop neighbours and remote data ac-
cess. Remote data access does not guarantee delivering the
correct value, instead Karios relies on ’eventual consistency’.
Eventually the system should converge to the correct solu-
tion to the problem at hand. While executing tasks, Kairos
blocks the execution of the application. Kairos’ functional-
ity is delivered through an API, which can be accessed from
imperative programming environments. Kairos still remains
in a proof-of-concept state.

TOTA[16] stands for ’Tuples over the Air’. It is based on
the notion of Tuple fields, which can be seen as information
fields from nature, like force fields or chemical gradients. Tu-
ples consist of a content element, a propagation rule and a
maintenance rule. Tuples are produced locally and then dis-
tributed through the network. Its limitation comes from the
fact information from tuples can not be aggregated. TOTA
exposes a Java API to the end user.

When choosing a platform we have to remember our goal:
an easy to use environment for architects and designers. For
this, we need to be able to generate programs from a graphi-
cal representation (in our case a state chart) and a tool chain
that is feature-complete. The translation from state charts
to Proto code is a viable option.

3. SYSTEM DESCRIPTION
The proposed framework is described by the block dia-

gram in Figure 2. The diagram shows four components that
correspond to the four stages of our design process. In the
following we briefly describe each component and the design
rationale behind it.

3.1 GUI
The user interacts with the GUI which consists, in the

current state, of a graphical state chart editor. It allows non-
IT experts to design a state chart representing the desired
behavior of individual tiles. The state chart describes the
state transitions of a single tile of the protoDeck floor. The
ultimate ambition is to design a user friendly and easy to
use GUI for specifying system level and node level behaviors
that will hide the cumbersome design of a state chart. The
GUI produces an xml file that is structured according to the
W3C State Chart extensible Markup Language which serves
as an input to the SC Compiler. The rationale behind the
use of a state chart representation for the tile’s behavior
is the following. Since the system under design is reactive
and its elements are connected in a mesh topology, the state
charts proved to be suitable modeling technique. Moreover,
state charts have a way, though limited, of specifying time
which is sufficient for our application purposes.

Figure 2: Framework block diagram

3.2 StateChart Compiler
StateChart Compiler is a java based tool that parses the

scxml file and produces code for a specific platform or en-
vironment. In our case the two supported languages are
Netlogo[19] and Proto[3]. In order to be able to support
as many end platforms as possible the specification of the
scxml presents a strongly generalized set of events, condi-
tions and actions that can easily be mapped to any specific
platform code. In our specific case, the end platforms are
DeckSim and protoDeck. The former is a Netlogo based
simulation environment, while the latter consists of a mesh
network of embedded system devices running the DelftPro-
toVM. The compilation process is a customizable process
which receives as input a configuration file describing the
used hardware platform in terms of its sensors and actua-
tors and ,in addition, it uses the language specific spatial
computing libraries. The SC Compiler interprets the scxml
by translating the state chart with the provided hardware
specifics. While, the spatial actions are mapped by referenc-
ing the provided language specific library. The SC Compiler
can be further extended by adding a desired new language
specific library and translator module.

3.3 DeckSim
DeckSim is a Netlogo based simulator that provides the

possibility to test and have visual feedback of the state chart
behavior diagram. The simulation models protoDeck behav-
ior and allows to simulate and test interactions. This way a
speedup of the design process can be achieved. The iterative
design process consists of a design and test cycle that is usu-
ally performed by a designer or architect during sketching or
prototyping. They are able to iterate from the specification
phase to the test phase and back before deploying the code
to protoDeck. Simulations can be run either stand alone or
guided.

3.4 Embedded Software Platform

3.4.1 DelftProto VM
The DelftProto VM is a virtual machine that executes

Proto bytecode. In September 2011 it replaced the original
virtual machine in the Proto distribution, the ’Proto Ker-
nel’. The DelftProto VM code is written to be extremely
portable; we were able to succesfully run it on ARM Cor-
tex, Atmel ATmega, MSP430, Intel 586 and AMD 64.

The instruction set of the VM is designed specifically for
spatial computing applications. It incorporates instructions
that form an aggregate from neighborhood information and
common (high level) data types such as vectors are natively

35

Figure 3: Schematic view of platform components.

supported. Most instructions have implicit operands and
work on multiple data types, which allows complex programs
to be compiled to very small binaries that can be executed
by the VM. For example, a simple gradient algorithm has a
size of 35 bytes.

An improved virtual machine based on the DelftProto
VM, the Delft VM, is currently being developed. Whereas
the DelftProto VM is specifically made for programs writ-
ten in Proto, the Delft VM supports other languages as well.
The instruction set makes it easier to generate code from an
imperative language, although the focus still lies on func-
tional languages.

3.4.2 Communication and Scheduling
When an application is translated to local rules, it is com-

piled to run on the virtual machine. We provide an embed-
ded software framework that is easily portable to different
hardware platforms. A schematic view of the building blocks
is shown in Figure 3.

We use protoDeck as prototyping platform(Figure 1). Each
tile is equipped with RGB leds and a pressure sensor. The
nodes beneath the tiles are based on NXP LPCXPresso
LPC1769 (ARM Cortex-M3) modules connected in a wired
mesh configuration. Inter node communication uses the
chip’s UARTs at 115K2 baud, but our implementation is
built to be easily adapted to other communication methods.
A wireless (2.4 GHz, 802.15.4 based) version is planned for
future experiments. The floor is able to interact with other
objects in the room, for example tables, chairs, external
lighting and beamers.

The first software layer consists of the FreeRTOS operat-
ing system and hardware-specific driver libraries. These de-
liver basic facilities for the layers on top. The middle layer
consists of three parts: the communication library called
ProtoComm, the DelftProto VM and a reprogramming fa-
cility to update Proto applications virally.

The ProtoComm library supplies the VM with neighbor-
hood information in a best-effort way, since achieving perfect
knowledge of all neighbors is generally not possible in real
world applications. It takes care of neighborhood discov-
ery, distance estimation, lag estimation, exchange of state
information and application updates.

ProtoComm is designed to be compatible with multiple
communication types. Incoming data is buffered by device
driver interrupt routines. ProtoComm scans the buffers for

valid packets and processes them. Packet processing that
involves changing the state of the virtual machine is post-
poned until a virtual machine execution round is completed.

The reprogramming library enables the user to virally roll
out new Proto applications without the need to update each
node manually. Applications consist of (compact) Proto
bytecode, what makes updating the application easier and
faster compared to updating a complete platform binary.
Nodes keep track of their application version and automati-
cally disseminate new applications as soon as a new version
is detected in the neighborhood. An update process is initi-
ated by updating a single node with the new application.

For both disseminating state information and application
updates, a negotiation based approach (ADV-REQ-DATA)
such as in [14] is employed to avoid broadcast storms and
hidden terminal problems. For the case of state updates,
which are just exchanged between direct neighbors and thus
not propagated, we can reduce completion time by replacing
the first advertisement after a detected change in local state
with a data packet. The negotiation based technique contin-
ues to run in the background to take care of the occasional
failed initial communication.

4. INTERACTIVE SCENARIO
As an example scenario we propose using protoSpace to

enhance art exhibitions. We imagine the space consisting of
several interactive components such as the protoDeck and
responsive furniture which engage the visitor and guide him
through the various art objects. When visitors walk across
the room, the floor leaves a colored trail along the visitor’s
path. The art objects are placed in showcases which are
demarcated by the floor by creating a pulsating light circle
around them. Whenever a visitor approaches one of the
showcases it triggers an increase of the circle’s radius which
will surround object and visitor. The light patterns will
change triggered by different factors such as the number of
people that are close to an art object or the crossing of
different visitor trails.

The aforementioned scenario can be composed of several
sub-behaviors the space performs in a distributed fashion.
Such sub-behaviors are, for example, a distance metric or
a desired light pattern. For that reason, we divide the sce-
nario in several sub-behaviors. At the current stage of our
project, we performed our experiments focusing on two test
applications - a gradient application and firefly synchroniza-
tion algorithm. By creating a gradient we were able to de-
fine a distance metric and show the viability of using spatial
primitives. Firefly synchronization is a suitable test to as-
sess the viability of using time primitives while continuously
stressing the communication layer.

5. EXPERIMENTAL RESULTS

5.1 User Survey
In order to confirm the benefits of IDS we performed a

survey amongst architecture students that have used pro-
toSpace in one of their projects. We were interested in
three different topics. Firstly, what kind of network of many
‘smart’ components they would like an environment to be
equipped with (Figure 4a). Secondly, we asked what they
would like to improve or upgrade in protoSpace (Figure 4a).
Finally, we asked what kind of software tools they would like

36

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

firefly

firefly-SC

gradient

gradient-SC

M
e
m

o
ry

 u
sa

g
e
 [

b
y
te

s]

Heap
Comm stack
VM stack
Beacon stack

Figure 5: RAM usage comparison for the four Proto appli-
cations.

to have at hand to design or prototype protoDeck or alike
(Figure 4c).

In Figure 4 we show the radar charts of the survey out-
come. In Figure 4a we can see that the most requested
type of ‘smart’ component is a network of smart furniture
followed by a light control system and control software for
the space. Smart furniture is for example a chair, table or
other object equipped with sensors and actuators. Figure
4b shows the most requested features to add to the existing
prototype. These are a designer community, crowd sourcing
and more advanced lighting capabilities. Community and
crowd sourcing are in a certain way related. With commu-
nity the students mostly intend a forum like website where
they can discuss current and past projects regarding proto-
Space. With crowd sourcing we mean code sharing. Finally,
Figure 4c shows that most of the surveyed students would
like to have a simulation tool or a web based application
that is capable to simulate protoSpace. The gathered infor-
mation is used to guide the ongoing research.

5.2 Simulations versus Testbed Evaluation
As most embedded software developers will acknowledge,

the step from simulation to deployment is far from trivial.
In this section we highlight several issues we came across
while making this step.

Most simulations are based on unrealistic assumptions,
like instant communication, infinitesimal computation times
and a certain level of synchrony. In the actual system usually
they do not hold. Our specific approach to handle this is still
work in progress.

A larger number of nodes implies a higher risk of hardware
failures. We conducted some experiments with the previous
generation of protoDeck nodes. The testbed consisted of
24 nodes (3 by 8 mesh) with wired serial connections. The
connections were not amplified and cables were connected
directly to pin headers. This set-up was working when faced
with a number of hardware failures. People walking on the
floor caused wires to loose contact or suffer from breakage
and caused some nodes to die. The high number of compo-
nents made these failures a rule rather than an exception.
This calls for software that can handle failing nodes, unreli-
able communication.

There are possible software failures that will not show
until the software is run on the actual embedded platform.
However, once on the hardware, it is much more difficult to
find the cause of the failures. Getting the simulated environ-

 0

 50

 100

 150

 200

 250

 300

 350

 400

firefly

firefly-SC

gradient

gradient-SC

S
ci

p
rt

 s
iz

e
 [

b
y
te

s]

Figure 6: Script size comparison for the four Proto applica-
tions.

ment closer to the real world scenario would help to discover
failures earlier.

5.3 Memory Usage and Script Size
To asses IDS, we implemented two spatial computing ap-

plications, building a gradient and firefly synchronization.
Both are implemented as a manually crafted Proto applica-
tion as well as an application generated by IDS. Tests are
run in a five node network in which one of the nodes was
connected to three neighbors. Memory usage statistics were
collected from this node.

Shown in Figure 5 is the maximum memory usage in bytes
for the various applications. As can be observed, the bulk
memory is consumed by the heap. The heap is used for
storing incoming packets and during execution of the vir-
tual machine. Our primary interest here is the increase in
memory usage with increasing application complexity, not
the absolute memory usage. When considering script size,
shown in Figure 6, as a measure for application complex-
ity we can observe that the increase in memory usage is
approximately 10% when the application complexity more
than doubles. This indicates there is space for implementing
much more advanced applications.

Also note that although the manual and state chart ver-
sions of applications are functionally equal, there is a notable
difference in script size. This is an indication that there is
much to gain from further optimization within the Proto
compiler. A compiler should ideally be able to reduce the
state chart version of an application to the same script size
as the manual version.

6. DISCUSSION
The trend in designing interactive environments is the

driving force for creating a toolchain to ease the development
of interactive spatial computing applications. To confirm
this, we conducted a survey amongst designers and archi-
tects. The survey confirms our expectations on the interest
in such environments and the need for a simulator to enable
fast prototyping. During design toolchain testing, we real-
ized that the current GUI requiring the use a state chart
representation is still a cumbersome for designers or archi-
tects. Therefore, another level of abstraction is needed to
hide the state chart representation.

In an effort to validate the viability of spatial computing

37

(a) ‘Smart’ architectural components (b) Requested features (c) Desired tools

Figure 4: Survey results

for interactive environments, we implemented a toolchain
that is capable of designing an application using state charts,
testing the application in a simulator and running it on ac-
tual hardware. A proof of concept implementation of the
spatial computing primitives confirms the validity and shows
the viability of this approach. For larger applications there
might be a need for further optimization of the memory con-
sumption.

7. CONCLUSIONS AND FUTURE WORK
In this paper we introduce a software platform called IDS

that uses the concepts of Spatial Computing to facilitate
to non-IT specialists the fast-prototyping of interactive de-
signs using distributed embedded systems installations. It
is able to translate high-level specifications into agent be-
haviors and local interaction rules. We evaluate it via two
application scenarios in order to link together all the com-
ponents of the system. Comparison to related work showed
that our approach is one of the first fully-distributed em-
bedded platforms that makes use of the Spatial Computing
paradigm for fast-prototyping of interactive design installa-
tions. As future work, we identified several directions. We
will run large-scale experiments by making use of the en-
tire size of the ProtoDeck floor. Secondly, the GUI will hide
some of the complexity related to expressing agent-level be-
haviors and will contain more complex aggregate primitives.
Complete design ideas will be prototyped and tested in order
to improve our methodology based on user feedback.

8. REFERENCES
[1] H. Abelson et al. Amorphous computing.

Communications of the ACM, 43(5):74–82, 2000.

[2] T. Baumgartner, S. Fekete, T. Kamphans, A. Kröller,
and M. Pagel. Hallway monitoring: Distributed data
processing with wireless sensor networks. In
REALWSN. 2010.

[3] J. Beal and J. Bachrach. Infrastructure for engineered
emergence on sensor/actuator networks. Intelligent
Systems, IEEE, 21(2):10 – 19, march-april 2006.

[4] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and
N. Correll. Formal and Practical Aspects of
Domain-Specific Languages: Recent Developments,
chapter Organizing the Aggregate: Languages for
Spatial Computing. IGI Global, 2012.

[5] T. Bekker, J. Sturm, and B. Eggen. Designing playful
interactions for social interaction and physical play.
Personal and Ubiquitous Computing, 14(5):385–396,
2010.

[6] N. Biloria. Emergent technologies and design.
eCAADe 23, pages 441–447, 2005.

[7] A. Crabtree, T. Hemmings, and T. Rodden.
Pattern-based support for interactive design in
domestic settings. In DIS 2002 Proceedings, pages
265–276. ACM, 2002.

[8] T. Delbrück, A. M. Whatley, R. Douglas, K. Eng,
K. Hepp, and P. F. Verschure. A tactile luminous floor
for an interactive autonomous space. Robotics and
Autonomous Systems, 55(6):433–443, 2007.

[9] S. Dulman. Robotics in Architecture, chapter Practical
Programming of Large-Scale Adaptive Systems.
JapSam Books, 2012.

[10] R. Gummadi, O. Gnawali, and R. Govindan.
Macro-programming wireless sensor networks using
kairos. In DCOSS, volume 3560 of LNCS, pages
466–466. 2005.

[11] M. Haeusler. Media facades: history, technology,
content. Avedition, 2009.

[12] J. Hubers. Collaborative design in protospace 3.0.
Changing roles; new roles, new challenges, 2009.

[13] B. Knep. http://www.blep.com/healingPool/.

[14] J. Kulik, W. Heinzelman, and H. Balakrishnan.
Negotiation-based protocols for disseminating
information in wireless sensor networks. Wirel. Netw.,
8(2/3):169–185, Mar. 2002.

[15] N. Lehrer and S. Rajko. Thrii. 2010.

[16] M. Mamei and F. Zambonelli. Programming pervasive
and mobile computing applications: The tota
approach. ACM Trans. Softw. Eng. Methodol.,
18:15:1–15:56, ’09.

[17] R. Nagpal. Programmable self-assembly: constructing
global shape using biologically-inspired local
interactions and origami mathematics. PhD thesis,
Massachusetts Institute of Technology, 2002.

[18] B. Quinn. Textile Futures: Fashion, Design and
Technology. Berg Pub Ltd, 2010.

[19] U. Wilensky. Netlogo, 1999.
http://ccl.northwestern.edu/netlogo/.

38

Recursivity in Field-Based Programming:
the Firing Squad Example

Luidnel Maignan
LIAFA, Université Paris-Diderot

France

Jean-Baptiste Yuǹes
LIAFA, Université Paris-Diderot

France

Abstract—In cellular automata, the well-known firing squad
synchronization problems have many solutions usually provided
as explicit transition tables, and explained in terms of idealized
continuous signals and their collision. However, very few proofs
exist despite of the large amount of work on these problems.
In this presentation, we take the spatial computing point of
view and provide a field-based description of a solution. On the
cellular automata part, this provide a understandable and formal
construction of a very general solution from which a proof seems
to be derivable almost directly. On the spatial computing part,
this provides an example of recursive field functional, with a kind
of tail-recursivity leading to a strictly finite system.

I. I NTRODUCTION

A. Firing squad and signal-based programming

In cellular automata, the firing squad synchronization prob-
lem (FSSP) [2], [12], [13] may be stated as follows:find a
finite transition function having a given (fire) state such that,
starting from arbitrary sized line of cells where all but onecell
(the general) are quiescent, all cells enter for the first time in
this state synchronously. A classical solution is to send signals
at different speed so that they first collide at the middles ofthe
space, then at the quarter of the space, then at the eighth of the
space, and so on, until an accumulation point is reached. For
example, if one sends two bouncing signals from the leftmost
cell, one at speed 1 and another at speed1

3 , these two signals
will collide at the middle of the space. However, this is only
an idealized presentation since actual solutions have to deal
with peculiarities appearing when applying these continuous
concepts to the discrete cellular space, the parity of the space
being the simplest example. Solutions based on these type on
intuition are therefore obtained by solving these peculiarities
by hand by iterative correction of the transition table.

Despite these difficulties, this basic idea has been gen-
eralized into many solutions for the classical problems and
for some generalizations. One can consider synchronizing
with general at any arbitrary position [1], [18], [20], many
generals synchronous or not [17], synchronizing 2D-spaces
[3], [6], [17], 3D-spaces [16], graphs [5], [15], and variants
with different constraints on shape of the space, that may also
be dynamic to some extent [4]. However, the drawback of
the method is that proofs are hard to obtain directly from the
solution, and mistakes has also been found in some cases,
using large experiment on many initial configuration. Only a
very poor number of proofs of correctness [11], [14], [19]
exist.

B. Field-based approaches in spatial computing

Spatial computing considers massively distributed architec-
tures as (programmable) spaces and promote the use of spatial
concepts to ease the programming of such architectures. Data
structure are therefore spatially extended objects, as canbe
seen in languages such as PROTO and MGS. In particular, the
concept offields is an important one: it is an object which
associates a value to each point in space and specifies the
local evolution of these values in time. In contrast with cellular
automata, the values evolution is not a closed system but an
open one, i.e. it may depend on values determined by other
input fields. Fields can therefore be composed together to form
more complex fields or fully determined (closed) systems, as
functions can be composed to obtain more complex functions
or programs.

In [7]–[10], the concept of fields has been applied to cellular
automata in order to solve algorithmically different dynamic
geometric problems in a modular way, using a common set
of fields. In particular, the distance field is present in all of
them and is the primary building block to collect spatial infor-
mation in a finite-state manner. While all these problems are
geometrical, it was postulated that non-geometrical problems
could also be tackled with the same building blocks, and this
paper is here to provide such an example. Also, while fields
are really manipulated as functions, no cases analogous to
recursive functions arose naturally from previously considered
problems, this paper is again here to provide such an example,
along with a notion of tail-recursivity.

Indeed, we propose to apply the same methodology to pro-
vide an algorithmic description of the FSSP. By algorithmic,
we mean decomposing the problem into easier sub-problems,
solving each sub-problem by a field, and composing the fields
together to obtain a cellular automata solving the problem.In
this process, each sub-problem and field will have a simple
and fully independent semantic, contrary to signals whose
meanings depend on all the signals present in the system.
Ultimately, we show that we recover the classical concepts
of modularity, reusability, semantic decomposition, etc in the
context of cellular automata. Benefits of this approach are
directly observable by the generality of the provided solution,
and by how easier and intelligible a proof for this system
seems to be compared to previous solutions.

39

B O O O O O O O O O O O O O

B B O O O O O O O O O O O O

B I B O O O O O O O O O O O

B I I B O O O O O O O O O O

B I I I B O O O O O O O O O

B I I I I B O O O O O O O O

B I I I I I B O O O O O O O

B I I I I I I B O O O O O O

B I I I I I I I B O O O O O

B I I I I I I I I B O O O O

B I I I I I I I I I B O O O

B I I I I I I I I I I B O O

B I I I I I I I I I I I B O

B I I I I I I I I I I I I B

B I I I I I I I I I I I I B

B I I I I I I I I I I I I B

B I I I I I I I I I I I I B

B I I I I I I I I I I I I B

B I I I I I I I I I I I I B

B I I I I I I I I I I I I B

B I I I I I I I I I I I I B

B I I I I I I I I I I I I B

B I I I I I I I I I I I I B

B I I I I I I I I I I I I B

B I I I I I I I I I I I I B

B I I I I I I I I I I I I B

(a) Region field

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 2 1 1 0 0 0 0 0 0 0 0 0

0 1 2 2 1 1 0 0 0 0 0 0 0 0

0 1 2 2 2 1 1 0 0 0 0 0 0 0

0 1 2 3 2 2 1 1 0 0 0 0 0 0

0 1 2 3 3 2 2 1 1 0 0 0 0 0

0 1 2 3 3 3 2 2 1 1 0 0 0 0

0 1 2 3 4 3 3 2 2 1 1 0 0 0

0 1 2 3 4 4 3 3 2 2 1 1 0 0

0 1 2 3 4 4 4 3 3 2 2 1 1 0

0 1 2 3 4 5 4 4 3 3 2 2 1 0

0 1 2 3 4 5 5 4 4 3 3 2 1 0

0 1 2 3 4 5 5 5 4 4 3 2 1 0

0 1 2 3 4 5 6 5 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

(b) Distance field

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 2 1 1 0 0 0 0 0 0 0 0 0

0 1 2 2 1 1 0 0 0 0 0 0 0 0

0 1 2 2 2 1 1 0 0 0 0 0 0 0

0 1 2 3 2 2 1 1 0 0 0 0 0 0

0 1 2 3 3 2 2 1 1 0 0 0 0 0

0 1 2 3 3 3 2 2 1 1 0 0 0 0

0 1 2 3 4 3 3 2 2 1 1 0 0 0

0 1 2 3 4 4 3 3 2 2 1 1 0 0

0 1 2 3 4 4 4 3 3 2 2 1 1 0

0 1 2 3 4 5 4 4 3 3 2 2 1 0

0 1 2 3 4 5 5 4 4 3 3 2 1 0

0 1 2 3 4 5 5 5 4 4 3 2 1 0

0 1 2 3 4 5 6 5 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 1 2 3 4 5 6 6 5 4 3 2 1 0

(c) Fixity field (d) Size 54

Fig. 1. The three fields describing the initial region and itsmiddle

II. A F IELD-BASED DESCRIPTION OF THEFSSP

A. An algorithmic decomposition

We recall that the main idea is to divide the space into two
equals regions and to proceed recursively until all regionshave
size 1.

Naturally, the first step is toidentify the middle of the
physical space. To do this we introduce three fields. The first
field, R0, represents the discovery of the region to be cut.
The second field,D0, will provide some distance information
deduced fromR0, such that this distance will eventually allows
us to detect the middle. The third one is a boolean field,F 0

that indicates the correctness of the values ofR0 and D0.
Indeed,R0 andD0 are dynamic fields, which means thatR0

discovers the space from time to time and so its derived field
D0 also updates accordingly. EventuallyR0 stabilizes when
it corresponds to the whole physical space and leading in turn
to the stabilization ofD0 (see Section II-B).

Now that we have a region and its middle, we introduce
another collection of three fields:R1 that represents the
discovery of the two regions induced by the previous cut of
the space,D1 the distance field deduced fromR1 such that
the middles of the two regions will be detected, andF 1 the
corresponding correctness field. As the reader might guess,
this extends to a recursive schema which definesRℓ, Dℓ and
F ℓ in terms ofRℓ−1, Dℓ−1 andF ℓ−1 (see Section II-C).

This obviously implies that we need an unbounded number
of fields. However, we will later explain how this can be
reduced to a finite system (see Section II-D).

B. Initial region and its middle

The initial region field R0 is defined using three statesO
(“outside”), B (“border”) and I (“ inside”). O is the quiescent
state of the field. A cell in stateO will turn into B as soon as

one of its neighbors is in stateB. The “border” state is used to
mark the border of the region currently discovered, which at
this step must finally correspond the whole physical space. A
cell in stateB which does not coincide with a physical border
of the space updates its state toI. With the help of a given
static boolean fieldBorder0(x) that states for eachx if it is
a physical border or not, the fieldR0 is formally defined by:

R0
t (x) =

B if R0
t−1(x) = O∧

∃y ∈ N(x);R0
t−1(y) = B

I if R0
t−1(x) = B ∧ ¬Border0(x)

R0
t−1(x) otherwise.

(1)
From any initial condition of the formBO . . . O, the evolution
of R0 produces a space-time diagram like the one depicted in
Fig. 1(a).

Now that we have the field that, after some time, represents
the whole initial region, we want to determine its middle point.
To do so, we use the fact that the middle of a region is
the further inner point from both “borders”. So, we build the
distance fieldD0, which associates to each cell its distance to
latest observed nearest “borders” of the region. As the middle
is necessarily an inner cell, the value ofD0 of any cell that is
not inside is defined as 0. One can note that this is coherent
with the fact that a “border” is obviously at distance 0 from a
“border”. For an inner cell its distance to the latest observed
nearest “border” is obviously 1 plus the smallest distance to
the latest observed nearest “border” of its neighbors. Thisis
formally defined by:

D0
t (x) =

{
0 if R0

t (x) 6= I

miny∈N(x) 1 +D0
t−1(y) otherwise

(2)

This rule has been extensively studied as a generic building

40

B O O O O O O O O O O O O O

B B O O O O O O O O O O O O

B B B O O O O O O O O O O O

B B B B O O O O O O O O O O

B B B B B O O O O O O O O O

B B B B B B O O O O O O O O

B I B B B B B O O O O O O O

B I B B B B B B O O O O O O

B I B B B B B B B O O O O O

B I I B B B B B B B O O O O

B I I B B B B B B B B O O O

B I I B B B B B B B B B O O

B I I I B B B B B B B B B O

B I I I B B B B B B B B B B

B I I I B B B B B B B B B B

B I I I I B B B B B B B I B

B I I I I B B B B B B I I B

B I I I I B B B B B I I I B

B I I I I I B B B I I I I B

B I I I I I B B I I I I I B

B I I I I I B B I I I I I B

B I I I I I B B I I I I I B

B I I I I I B B I I I I I B

B I I I I I B B I I I I I B

B I I I I I B B I I I I I B

B I I I I I B B I I I I I B

(a) Region field

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 2 1 0 0 0 0 0 0 0 0 0 0

0 1 2 1 0 0 0 0 0 0 0 0 0 0

0 1 2 1 1 0 0 0 0 0 0 0 1 0

0 1 2 2 1 0 0 0 0 0 0 1 1 0

0 1 2 2 1 0 0 0 0 0 1 1 1 0

0 1 2 2 1 1 0 0 0 1 1 2 1 0

0 1 2 2 2 1 0 0 1 1 2 2 1 0

0 1 2 3 2 1 0 0 1 2 2 2 1 0

0 1 2 3 2 1 0 0 1 2 3 2 1 0

0 1 2 3 2 1 0 0 1 2 3 2 1 0

0 1 2 3 2 1 0 0 1 2 3 2 1 0

0 1 2 3 2 1 0 0 1 2 3 2 1 0

0 1 2 3 2 1 0 0 1 2 3 2 1 0

(b) Distance field

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 2 1 0 0 0 0 0 0 0 0 0 0

0 1 2 1 0 0 0 0 0 0 0 0 0 0

0 1 2 1 1 0 0 0 0 0 0 0 1 0

0 1 2 2 1 0 0 0 0 0 0 1 1 0

0 1 2 2 1 0 0 0 0 0 1 1 1 0

0 1 2 2 1 1 0 0 0 1 1 2 1 0

0 1 2 2 2 1 0 0 1 1 2 2 1 0

0 1 2 3 2 1 0 0 1 2 2 2 1 0

0 1 2 3 2 1 0 0 1 2 3 2 1 0

0 1 2 3 2 1 0 0 1 2 3 2 1 0

0 1 2 3 2 1 0 0 1 2 3 2 1 0

0 1 2 3 2 1 0 0 1 2 3 2 1 0

0 1 2 3 2 1 0 0 1 2 3 2 1 0

(c) Fixity field (d) Size 54, level 0 and 1

Fig. 2. The three fields describing the level 1

block in cellular automata that solve different geometric prob-
lems (see [7]–[10]). It is sufficient to detect non-strict local
maxima from the distance field to obtain the middle cell(s) of
the region. This is illustrated in Fig. 1(b) which shows how
region and distance fields evolve.

A final piece is required with respect to synchronization: we
need to know when values provided by the region and distance
fields are finals. Hence, we define a boolean fieldF 0 which
associates to each cell a boolean indicating if its respective
region and distance values are definitely correct. It is possible
to determine the appropriate value by a simple case analysis.
First, no field’s value of an “outside” cell is considered correct
(it has not been discovered yet). “Border” cell field’s values
are correct only if they coincide with a physical border. For
“inside” cells, we know by construction that they are really
inside so this value is always correct, but we still need to
ensure that the distance value is also correct. To determine
the distance value correctness, we use the fact that the region
only grows, which implies that distance values only increase.
And, from the point of view of a cellx, this means that
once a neighbor is both correct and minimaly-valued in its
neighborhood, it will remain such forever. This ensures that the
distance value ofx will not evolve anymore since it correspond
to this fixed value + 1 as specified in Eq. (2). Altogether, this
leads to the following formal definition, whose evolution is
illustrated in Fig. 1(c).

F 0
t (x) =

∨

R0
t (x) = B ∧Border0(x)

R0
t (x) = I ∧ ∃y ∈ N(x);

D0
t (x) = 1 +D0

t−1(y) ∧ F 0
t−1(y)

(3)

C. Subsequent regions and middles

Now that the initial region is identified and that enough
information has been built to divide it, let us proceed by
adding new fields to obtain the division and provide sufficient
information to recurse.

First, let us clearly identify what we want to build. From
Fig. 1, it should be clear that we are going to build one
region starting from the left and another starting from the
right. However, we shall prevent ourselves to trust our eyes
too much, but try to describe what we want by definition.

Let us come back on what we have done for the initial
region and do nearly the same here. Given the predicate
Border0(x), what we built is a region field whose values are,
after some time,R0(x) = B for x’s that are physical borders,
andR0(x) = I for x’s that are not physical borders and so
inner cells.

In the region fieldR1, we want to obtain as borders all
the “borders” obtained at the previous level and new ones
corresponding to the middle(s) cell(s) finally obtained at the
previous level. Thus, we consider as borders of the two
regions all correctx’s such thatR0(x) = B, and allx’s that
correspond to correct non-strict local maxima ofD0. We also
want to haveR1(x) = I everywherex is correct and is neither
a “border” nor a maximum among its neighbors inD0. This
naturally leads to the following recursive formal definition of
the two predicatesBorder andInside for any levell > 0 :

Borderℓ+1
t (x) =

∨

Rℓ
t(x) = B ∧ F ℓ

t (x)

∀y ∈ {x} ∪N(x);

Dℓ
t−1(x) ≥ Dℓ

t−1(y) ∧ F ℓ
t−1(y)

(4)

41

0

0

0

0

0

1

1

1

1

0

2

2

2

2

0

3

3

3

0

0

4

4

4

0

0

5

5

5

0

0

6

6

0

0

0

7

7

0

0

0

8

8

0

0

0

9

9

0

0

0

10

10

1

0

0

11

11

2

0

0

12

12

1

0

0

13

13

0

0

0

14

12

1

0

0

15

11

2

0

0

16

10

1

0

0

17

9

0

0

0

18

8

0

0

0

19

7

0

0

0

20

6

0

0

0

21

5

5

0

0

22

4

4

0

0

23

3

3

0

0

24

2

2

0

0

25

1

1

1

0

26

0

0

0

0

26

0

0

0

0

25

1

1

1

0

24

2

2

0

0

23

3

3

0

0

22

4

4

0

0

21

5

5

0

0

20

6

0

0

0

19

7

0

0

0

18

8

0

0

0

17

9

0

0

0

16

10

1

0

0

15

11

2

0

0

14

12

1

0

0

13

13

0

0

0

12

12

1

0

0

11

11

2

0

0

10

10

1

0

0

9

9

0

0

0

8

8

0

0

0

7

7

0

0

0

6

6

0

0

0

5

5

5

0

0

4

4

4

0

0

3

3

3

0

0

2

2

2

0

0

1

1

1

1

0

0

0

0

0

0

0

1 1

3 2 1

6 6 5 4 3

1 1

0

1 1

3 4 5 5 6

0 1 2 2

1

0 0

1

2 2 1 0

6 5 5 4 3

1 1

0

1 1

3 4 5 5 6

1 2 2 2

1

0

Fig. 3. Stack (level 0 on top) of all field values computed at time96. Line length is 54.

Insideℓ+1
t (x) = F ℓ

t (x) ∧Rℓ
t(x) 6= B

∧ ∃y ∈ N(x); Dℓ
t−1(y) > Dℓ

t(x) (5)

Given these two boolean fields, we can apply the same
reasoning as before and, obtain nearly the same evolution
rule as the initial region. We only need to change the use
of ¬Border0(x) in Eq. 1 into Inside1t (x) and the use of
Border0(x) in Eq. 3 intoBorder1t (x). Thus, we obtain the
three additional fields describing the first level of division, and
iterating this construction, for any levell > 0 we obtain the
following recursive definition:

Rℓ
t(x) =

B if Rℓ
t−1(x) = O∧
∃y ∈ N(x);Rℓ

t−1(y) = B

I if Rℓ
t−1(x) = B ∧ Insideℓt(x)

Rℓ
t−1(x) otherwise.

(6)

Dℓ
t(x) =

{
0 if Rℓ

t(x) 6= I

miny∈N(x) 1 +Dℓ
t−1(y) otherwise.

(7)

F ℓ
t (x) =

∨

Rℓ
t(x) = B ∧Borderℓt(x)

Rℓ
t(x) = I ∧ ∃y ∈ N(x);

Dℓ
t(x) = 1 +Dℓ

t−1(y) ∧ F ℓ
t−1(y)

(8)

Fig. 2 shows how the three fields evolve at level 1 of the
algorithm. In Fig. 2(a) we have one region that grows from the
left and starts at the initial time, and another one that grows
from the right and starts at timen−1 (n is the number of cells).
The distance fieldD1 evolves inside each region described by
R1.

One can observe that while inD0 the non-strict local
maxima spanned two cells, then inD1 there is two non-strict
local maxima that both span only one cell. This depends on
whether the region’s length is odd or even (Fig. 2(b)).

D. Reduction to a finite number of states

Now we face two problems. The first one is that distance
fields are defined over integers and the other one that we ob-
tained an unbounded number of fields. A detailed explanation
of the reducability in finite state is out of the scope of this
paper, but let us sketch the most important steps.

The first problem can be solved using a special property. If
an integer field is Lipschitz-continuous, i.e. the difference of
values between two neighbors is bounded, and the information
used in the system only depends on this difference, then it
can be transformed into a finite-state field (refer to [8] for
all the details). An application of this result is that when the
difference is at most 1, then only 3 states are required. With
definitions given in Eq. 2 and Eq. 7, it’s easy to remark that

all the distance fieldsDℓ can therefore be represented with
only 3 states each.

To solve the second problem we remark thatin some
sensethe recursive schema is “tail-recursive”. Indeed, tail-
recursiveness is about conserving only the information that are
required by the subsequent recursive calls. From the point of
view of a cellx, if its field values at given levelℓ are correct,
this means that they do not evolve anymore. If furthermore its
field values atℓ+ 1 are also correct and so are the values of
its neighbors, then its values at levelℓ are no more useful and
can be discarded. This is observable in Fig. 3 where fields
values are represented for all cells at a given time. Values
(x, ℓ) in darker gray are correct (F ℓ

t (x) is true), and if the
whole neighborhood at the next level is also gray, then(x, ℓ)
can be “forgotten”. By discarding all these gray values (and
a little bit more with a much finer analysis), we obtain for
each cell alowest useful levelrepresented by a bold surround
in the figure. In fact, these are the only necessary values
that need to be stored, along with their associated lowest
level number (which can be represented with only three state
thanks to the Lipschitz-continuous argument). Altogether, this
shows that field values are uniformly bounded, and that only a
finite number of fields is required. This imply that we finally
describe the behavior of a cellular automaton.

III. C ONCLUSION

Without any modification, the system described in this paper
is much more general than one can think. Indeed, in all our
description we never use the property that there is only one
general on the left. Thus we can naturally expect that it is
agnostic to such particularities, and this is exactly the case
as one can observe in Fig. 4. We also never assumed that
the wake-up of the cells happens one after the other from
the general, so that removing the corresponding sub-system,
one obtain a solution for arbitrary initial desynchronized
configuration.

It seems also possible to compose the same fields in slightly
different ways to obtain different kind of solutions or to extend
this solution to higher dimensions. We can also expect that a
proof of correctness of the solution for all sizes and all initial
desynchronized configurations to be much more easier than
for classical solutions, each field is simple and almost correct
by construction, and so is their composition.

REFERENCES

[1] Karel Culik. Variations of the firing squad problem and applications.
Information Processing Letters, 30:153–157, 1989.

42

Fig. 4. Evolution of the complete system with different set ofgenerals

[2] Eiichi Goto. A minimum time solution of the firing squad synchroniza-
tion problem. Courses Notes for Applied Mathematics 298, Harvard
University, 1962.

[3] Antonio Grasselli. Synchronization of cellular arrays: The firing squad
problem in two dimensions.Information and Control, 28:113–124, 1975.

[4] G.T. Herman, W. Liu, S. Rowland, and A. Walker. Synchronization of
growing cellular automata.Information and Control, 25:103–122, 1974.

[5] Tao Jiang. The synchronization of nonuniform networks of finite
automata.Information and Control, 97:234–261, 1992.

[6] Kojiro Kobayashi. The firing squad synchronisation problem for two-
dimensional arrays.Information and Control, 34:177–197, 1977.

[7] Luidnel Maignan and Fŕed́eric Gruau. Integer gradient for cellular
automata: Principle and examples. InProceedings of the 2008 Second
IEEE International Conference on Self-Adaptive and Self-Organizing
Systems Workshops, pages 321–325, Washington, DC, USA, 2008. IEEE
Computer Society.

[8] Luidnel Maignan and Fŕed́eric Gruau. A1D cellular automaton that
moves particles until regular spatial placement.Parallel Processing
Letters, 19(2):315–331, June 2009.

[9] Luidnel Maignan and Fŕed́eric Gruau. Convex hulls on cellular automata.
In Stefania Bandini, Sara Manzoni, Hiroshi Umeo, and Giuseppe Viz-
zari, editors,ACRI, volume 6350 ofLecture Notes in Computer Science,
pages 69–78. Springer, 2010.

[10] Luidnel Maignan and Fréd́eric Gruau. Gabriel graphs in arbitrary metric
space and their cellular automaton for many grids.ACM Trans. Auton.
Adapt. Syst., 6:12:1–12:14, June 2011.

[11] Jacques Mazoyer. A six states minimal time solution to the firing squad
synchronization problem.Theoretical Computer Science, 50:183–238,
1987.

[12] Marvin Minsky. Computation : Finite and Infinite Machines. Prentice-
Hall, 1967.

[13] Edward E. Moore. Sequential machines, Selected papers. Addison
Wesley, 1964.

[14] Kenichiro Noguchi. Simple 8-state minimal time solution tothe firing
squad synchronization problem.TCS, 314:303–334, 2004.

[15] P. Rosenstiehl, J.R. Fiskel, and A. Holliger.Intelligent Graphs :
Networks of Finite Automata capable of Solving Graph Problems. Graph
Theory and Computing (R.C. Read Ed.) Academic Press, 1972.

[16] Ilka Shinahr. Two and three dimensional firing squad synchronization
problems.Information and Control, 24:163–180, 1974.

[17] Helge Szwerinski. Time-optimal solution of the firing-squad synchro-
nization problem forn-dimensional rectangles with the general at an
arbitrary position.Theoretical Computer Science, 19:305–320, 1982.

[18] V.I. Varshavsky, V.B. Marakhovsky, and V.A. Peshansky. Synchro-
nization of interacting automata. Mathematical System Theory, 4
n.3:212–230, 1969.

[19] Jean-Baptiste Yuǹes. An intrinsically non minimal-time Minsky-like
6-states solution to the firing squad synchronization problem. RAIRO
ITA/TIA, 42(1):55–66, 2008.

[20] Jean-Baptiste Yuǹes. Known CA synchronizers made insensitive to the
initial state of the initiator.JCA, 4(2):147–158, 2009.

43

44

Towards a Robust Spatial Computing Language for
Modular Robots (Position Paper)

Ulrik Pagh Schultz
Modular Robotics Lab, University of Southern Denmark

Email: ups@mmmi.sdu.dk

Abstract—Self-reconfigurable, modular robots are distributed
mechatronic devices that can autonomously change their physical
shape. Self-reconfiguration from one shape to another is typically
achieved through a specific sequence of actuation operations
distributed across the modules of the robot. More generally,
control of self-reconfigurable robots requires individual modules
to act in specific ways in response to sensor input, and these
actions need to be coordinated across the modules of the robot.
Robust sequential control and role-based control of individual
modules has been experimentally demonstrated using the Dyna-
Role language. DynaRole however only allows simple sequences
of distributed operations to be executed, which is suitable for
self-reconfiguration sequences but lacks the generality needed to
implement more complex behaviors.

In this position paper we present initial ideas on generalizing
the DynaRole language to support a wider range of modular
robot control scenarios, while retaining robustness, scalability,
and the ability to declaratively address issues pertaining to the
spatial composition of the robot.

I. INTRODUCTION

Modular robotics is an approach to the design, construction
and operation of robotic devices aiming to achieve flexibility
and reliability by using a reconfigurable assembly of sim-
ple subsystems [1]. Robots built from modular components
can potentially overcome the limitations of traditional fixed-
morphology systems because they are able to rearrange mod-
ules automatically on a need basis, a process known as self-
reconfiguration, and are able to replace unserviceable mod-
ules without disrupting the system’s operations significantly.
Programming reconfigurable robots is however complicated
by the need to adapt the behavior of each of the individual
modules to the overall physical shape of the robot and the
difficulty of handling partial hardware failures in a robust
manner. These challenges bring to mind the use of spatial
programming techniques to provide robust and scalable control
coupled with the physical shape of the robot.

Control of self-reconfigurable robots can broadly be divided
into centralized and distributed approaches. The distributed
approaches are considered superior compared to centralized
approaches due to their robustness and inherent parallelism,
but are on the other hand often intractable in terms of con-
troller design. Centralized approaches are more tractable, but
have limited robustness due to having a single point of failure.
In earlier work, we have investigated the distributed execution
of a pre-specified self-reconfiguration sequence in a modular
robot [2]. A sequence is specified using a simple, centralized
scripting language, which either could be the outcome of a
planner or be hand-coded. The distributed controller generated

from this language allows for parallel self-reconfiguration
steps and is highly robust to communication errors and loss
of local state due to software failures. Furthermore, the self-
reconfiguration sequence can automatically be reversed if
desired. The scripting language is based on the DynaRole
role-based language for modular robots [3], but the distributed
scripting facility is only superficially integrated with the role-
based control principle, which prompts the development of
an improved language which integrates roles and robust,
distributed execution.

This position paper reviews the existing work on control
of modular robots in the context of spatial computing, with a
focus on language-based approaches. Based on this review we
propose a generalization of the DynaRole language, named
RoCoRo (for Robust Collaobrative Roles). This language
incorporates a state sharing feature heavily inspired by the
MIT Proto language [4], a notion of distributed scopes for
delimiting a modular robot into distinct ensembles of closely
collaborating modules, and a generalized approach to robust
distributed execution.

II. SPATIAL COMPUTING AND MODULAR ROBOTS

The term spatial computing denotes collections of local
computational devices distributed through a physical space, in
which: (1) the difficulty of moving information between any
two devices is strongly dependent on the distance between
them, and (2) the “functional goals” of the system are gen-
erally defined in terms of the system’s spatial structure [5].
Modular robots are obviously spatial computing systems:
computation and actuation is local to the individual module,
communication is in general module-to-module (global com-
munication such as radio could be used, but would hamper
scalability), and the typical modular robot application has to
do with controlling the physical spatial structure of the system.
Modular robots are an interesting application area for spatial
computing techniques: space and time are critical given the
robotic nature of the system, numerous variations of concrete
hardware is available for experimenting with programming,
and specifying a global behavior that is compiled into local
and robust control is considered a key issue.

Modular robotics has a significant inspiration from biolog-
ical systems, as is also the case for spatial computing. The
individual module is here seen as a cell which is part of a
larger multicellular organism. In homogeneous systems the
modules are physically identical but will typically differen-
tiate their behavior depending on their physical position in

45

the structure, whereas in heterogeneous systems the modules
also have different physical characteristics [6]. Chemical and
biological concepts such as gradients, hormones and central
pattern generators have been used for robust, scalable control
of modular robotic systems, although typically in an ad-hoc
fashion with an application-specific implementation in C.

A. Modular robot hardware

There are numerous different kinds of modular robots [1].
From the point of view of spatial computing, we can make an
overall categorization into macroscale modules, that must be
carefully controlled due to motion constraints, and microscale
modules, that are typically controlled in a probabilistic way
that ignores most if not all physical constraints (such modules
so far only exist in simulation). In this paper, we focus on
macroscale modules, and we are concerned with the problem
of global-to-local compilation of programs for physical modu-
lar robots with significant motion constraints, limited process-
ing capacity, and unreliable neighbor-to-neighbor communca-
tion. Microscale modules would typically be more directly
amenable to principles of self-organization and mathemetical
modelling in general, whereas macroscale modules face many
significant implementation issues that must be resolved before
these principles become relevant to consider in practice.

As an example of a macroscale module, consider the
ATRON self-reconfigurable modular robot (Figure 1), which
is our primary experimental platform. The ATRON is a
3D lattice-type system [7]. Each unit is composed of two
hemispheres, which rotate relative to each other, giving the
module one degree of freedom. Connection to neighboring
modules is performed by using its four actuated male and
four passive female connectors, each positioned at 90 degree
intervals on each hemisphere. The likewise positioned eight
infrared ports are used to communicate among neighboring
modules and to sense distance to nearby objects. The ATRON
exists in two hardware generations: one with an Atmel AT-
Mega128 micro-controller and 4K of RAM per hemisphere,
and one with a 1.2MGate FPGA and 64Mb of RAM per
hemisphere, in both cases linked by a serial connection. The
first generation ATRON is typical of most modular robotic
systems: the processing units are severely constrained in order
to keep the system simple, realistic to reduce to small size,
and potentially cost-effective by mass production. The second
generation ATRON is designed as an experimental platform
enabling experiments with standard operating systems and
programming languages [8].

Fig. 1. The ATRON modular robot used for various applications

B. Self-reconfiguration

Self-reconfiguration concerns the spatial transformation of
the robot morphology from one shape to another. It is typ-
ically viewed as a sequence of operations performed by the
robot; in some cases self-reconfiguration could be the only
operation performed e.g. if performing locomotion based on
self-reconfiguration by shifting the modules towards a specific
direction in a caterpillar-like motion.

Off-line planning of self-reconfiguration sequences has been
studied for a large number of different robotic systems [6], but
is largely complementary to the concerns addressed in this pa-
per: we are interested in providing runtime execution support
for control of modular robots, including self-reconfiguration.
An off-line planner could use the language proposed in this
paper as target, and would thus benefit from its features when
performing self-reconfiguration.

On-line, distributed self-reconfiguration algorithms address
the execution issue that a number of independent modules
must coordinate their actions to perform the correct sequence
of actions required for self-reconfiguration [9], [10], [11], [12],
[13], [14]. Unlike systems which require an off-line plan to
be computed first, these algorithms allow self-reconfiguration
to be done automatically given a target shape. However, a
limitation of the existing, purely on-line distributed algorithms
is that neighbor-to-neighbor communication is essential to
determine the position of modules relative to each other, and
thus a broken communication link, even if it is only one way, is
problematic. For example, in the Proteo system by Yim et al.,
two-way neighbor to neighbor communication is required for
coordination between neighboring modules and propagation of
heat values in the heat-based method [14].

For modules with motion constraints, scaling self-
reconfiguration to large-scale scenarios is often done by the
use of metamodules: small, flexible ensembles (groups) of
closely collaborating modules that can move as a unit through
the structure of the robot to shape-change the system [15],
[16]. Metamodules emerge from the larger robot configura-
tion, move on the surface of other modules, and stop at a
new position. The flow of metamodules, from one place to
another on the structure of modules, realizes the desired self-
reconfiguration. For the ATRON robot, 3 modules are typically
combined into a metamodule; a central module plays the role
of a “leg” whereas the two others are attached as “feet”.
Programming metamodules has so far been done in a low-
level manner using a combination of local actions executed
by specific metamodules and global information propagated
throughout the structure, such as a gradient serving as attractor
for the flow of metamodules [17].

C. Biologically inspired locomotion

Whereas self-reconfiguration typically serves the purpose of
transforming the robot between configurations, locomotion is
typically performed by actuating modules in a fixed configu-
ration, for example using gait tables [6]. We here review two
examples of biologically inspired locomotion that relate both
to spatial computing and to the RoCoRo language proposed in

46

this paper. In both cases, locomotion is achieved by propagat-
ing timed communication signals through the spatial structure
of the robot.

Shen et al. investigates a hormone-inspired approach to
communication and control in the CONRO self-reconfigurable
robot, where a set of communication signals triggers different
behaviors in modules [18]. Hormone signals are packets that
are diffused throughout the structure of the robot, possibly
causing operations to activate or new hormones to be created
when they arrive. This is similar to chemical diffusion, which
has also been used as the basis for spatial computing sys-
tems [19], [20], [21], and has been shown to be an effective
basis for decentralized communication and execution of pro-
grams in spatial computing systems. Shen et al. demonstrate
experimentally how hormones can be used to control locomo-
tion and self-reconfiguration of physical modular robots in a
highly dynamic fashion that automatically adapts to the current
topology. Self-reconfiguration is performed using a “cascade
of actions” that in execution is similar to the distributed
sequences of DynaRole.

In the work of Stoy et al, a lizard-like structure with
four legs is programmed using a primitive form of role-
based control where modules respond differently to a time-
pulse stimuli that propagates through the structure [22]. The
behavior of each module and its response to communication
is given by its position in the robot, such as “head”, “leg”,
or “spine”. Concretely, roles are used to express how modules
interpret sensors and events, and the behavior of each module
of the robot at any given time is driven by a combination of
its role and timed signals propagated through the structure.
In this work, the sole focus is on performing cyclic behavior
for locomotion, there is no support for coordination or for
performing sequences of actions in response to events.

D. Language-based approaches

The self-reconfiguration and locomotion techniques pre-
sented thus far all follow a high-level pattern, but are to the
author’s knowledge in every case implemented using compli-
cated low-level code that is difficult to reuse in a different
scenario. Recently, language-based approaches have however
been used in the attempt of creating succinct and reusable
software for controlling modular robots.

Locally Distributed Predicates [23], [24] and Meld [25]
are two declarative programming languages specifically devel-
oped to support the operation of large-scale modular robots
composed of spherical microrobots [26] that form a self-
reconfigurable spatial computing system. The declarative style
of these languages enables complex behaviors of subsets of
modules to be derived from concise specifications of spatial
constraints. The feasibility of executing these languages on
resource-constrainted modular robots has however not been
addressed. Moreover, from a language design point of view,
the declarative style is perhaps not ideal for specifying com-
plex sequences of operations, as the actual operations to be
performed are the result of constraint resolutions as opposed
to programmer-specified behavior. This is an open issue that

we return to later in this paper. We note that while the context
and purpose are similar to the work presented in this paper, a
significant difference is the number of modules that robots
are anticipated to comprise: The spherical microrobots are
assumed to exist in numbers several order of magnitudes
higher than macroscale modular robots such as the ATRON.
Million-module structures are an ideal match for the typi-
cal spatial computing scenario, and can afford to overlook
reliability issues that we are intereted in addressing: in the
typical macroscale scenario, a single failing module can dis-
rupt locomotion or a whole self-reconfiguration sequence, and
must thus be taken into account, while in a highly-redundant
context, the same occurrence is often not as significant and
can in many cases be ignored due to physical redundancy.

The DynaRole language is designed for role-based control
of macroscale modular robots [3]. The DynaRole language is
a role-oriented language that allows the programmer to use
roles to declaratively specify how behaviors are deployed and
activated in the modular robot as a function of its spatial
layout and, similarly to the idea of role-based control, how
each module responds to sensor inputs and communication.
DynaRole programs run on a virtual machine that enables fast
and incremental on-line updates of programs, allowing the pro-
grammer to interactively experiment with the physical robots.
The use of roles allows behaviors to be organized into modules
that again are organized into an inheritance hierarchy, provid-
ing both reuse and behavioral specialization. Nevertheless, the
language provides no support for specifying behaviors at a
global level, the underlying virtual machine assumes reliable
communication, and in general there is no robustness towards
partial failures. Role selection is based on declarative spatial
specifications e.g. identifying wheel modules as “modules that
have a horizontal rotation axis, only have a single connection,
and are at y coordinate 0”. The declarative selection primitives
and 3D coordinate computations are specific to the robot
kinematics, but are in fact automatically generated based on
the geometrical description of a single module in the M3L
kinematics language [27], which when combined with spatial
labels [28] enables morphology-independent programming of
modular robots [29].

To enable DynaRole to be used for self-reconfiguration,
we extended the language to support robust execution of
distributed sequences of operations [2]. Specifically, self-
reconfiguration sequences are compiled to a robust and ef-
ficient implementation based on a distributed state machine
that continuously shares the current execution state between
the modules of the robot. Dependencies between operations
are explicitly stated to allow independent operations to be per-
formed in parallel while enforcing sequential ordering between
actions that are physically dependent on each other. The lan-
guage is reversible meaning that for any self-reconfiguration
sequence the reverse one is automatically generated: due to
the sequential nature of the programs, any self-reconfiguration
process described in the language is reversible by simply
performing the corresponding inverse operations in reverse
order. Reversibility is subject to physical constraints such as

47

gravity, changes in the environment, and hardware failures.
The continuous diffusion of the state of each module to its
neighboring modules provides a high degree of robustness
towards partial failures: one-way communication links still
serve to propagate state throughout the structure, and modules
that are reset (e.g., due to hardware issues or by a watchdog-
based timer) are automatically restored from the neighboring
modules. Nevertheless, the distributed sequences are extremely
simple, there are no conditionals, loops, or propagation of any
state except how far the sequence has executed.

III. ANALYSIS

The extension of DynaRole to support execution of dis-
tributed sequences provided a significant increase in robust-
ness, which was demonstrated both with (relatively) long-
running, reversible self-reconfiguration experiments using
physical ATRON modules, and a comprehensive set of self-
reconfiguration experiments using simulated ATRON modules
(and simulated M-TRAN [9] modules) [2]. One of the primary
challenges in programming the ATRON is ensuring robustness
towards partial hardware failures in communication, for exam-
ple two-way communication links that only provide one-way
connectivity due to misaligned infrared transceivers. Due to
the continuous state diffusion, execution in theory works as
long as for any two modules there exists a communication
path between them in the robot. The path needs neither to
be reliable nor to be static. On the other hand, as mentioned
earlier, the sequences cannot react to changes in the environ-
ment and are not really integrated with the role-based behavior
specification language.

DynaRole sequences could be made more general by adding
support for shared program state and conditionals. Shared
program state could be diffused similarly to how the dis-
tributed sequence progression is shared. In the specific case of
sequence progression, each module is reponsible for merging
the global state received from neighboring modules with the
local state — for arbitrary program state this would have to
be handled by the programmer. Such a state sharing approach
is inspired by and bears many similarities to MIT Proto [4]:
there is not necessarily a single, consistent global state, rather
each module continously computes its own view of the shared
state. Given that changes to state and progression of execution
are propagated together, different parts of the robot may have
different views on the state of the sequence, but each of
those views will be consistent and will ultimately converge
if conditionals are guaranteed to always take the same branch.
Indeed, for conditionals the primary challenge is to handle
the case where different modules executing parts of the same
sequence would take different branches due to sensor inputs
or local copies of a shared state having different values.
More generally, there is also the question of when to start
the execution of a distributed sequence: since the sequence
typically involves operations that modify the physical state
of the robot, running more than one sequence at a time is
usually not relevant. A solution to both of these issues is to
delegate the responsibility of triggering sequences and testing

conditionals to a single module in the structure. This provides
a simple semantics perfectly suitable for e.g. local creation and
control of metamodules, but at the obvious cost of limitations
in scalability and robustness.

The Meld and LDP language have been designed for con-
trolling subsets of modules within the larger structure. Decla-
rations are used to identify subsets of modules that perform
specified operations over time. This approach is obviously
required for scalability to larger scenarios, and is essential
for supporting the concept of metamodules, which is a proven
way of controlling larger-scale ATRON structures. In these
scenarios, module groups must be created and dissolved at
runtime. A similar scenario is that of self-assembly of modular
robots [30]. Here, a larger ensemble is built from smaller
groups of modules that become dynamically connected, but the
reverse operation splits up the ensemble into smaller groups,
each forming their own ensemble. In all these cases, the
module subsets can be seen as a dynamic scope delimiter
for execution and state propagation. This scope identifies
modules that are sharing state and optionally are participating
in the execution of a distributed sequence of actions. (This
notion of a distributed scope has many similarities to logical
neighborhoods [31].)

The design of domain-specific languages often exhibits a
tension between declarative and imperative styles of program-
ming. Unlike Meld and LDP which are purely declarative,
DynaRole favors a mixed style where declarations are used
to control the selection of behaviors in response to the spatial
layout of the robot, whereas the behaviors themselves are in
an imperative style, similarly the growing point language [19].
We believe the mixed style to be most well-suited to the task of
programming modular robots, but this remains an open issue
in the design of programming languages for modular robots
in particular and for spatial computing in general.

IV. TOWARDS THE ROCORO LANGUAGE

A. Introducing RoCoRo

We propose the RoCoRo (Robust Collaborative Roles) lan-
guage as a generalization of the DynaRole language, intended
for robust, general-purpose control of modular robots. The
language has two primary abstractions: ensembles and roles.
An ensemble is a dynamic, distributed scope the covers a
number of modules and introduces shared state and distributed
behaviors into these modules. A role applies to a single
module, and introduces local state and local behaviors into the
module. Roles are further divided into primary roles of which
only one can be active on a given module at a given point
in time, and mixin roles of which any number can be active
on a given module at a given point in time. A module can
be a member of any number of ensembles at a given point in
time. Ensembles and roles together are referred to as entities,
and the set of entities active on a given module is called its
activation. Declarative rules are used to control the activation
of entities based on spatial constraints, the entity activations on
neighboring modules, local state from roles, and shared state
from ensembles. Entities can be specialized with a semantics

48

abstract ensemble GradiField {
int g = @MAX_INT;
g.update {
min = @MAX_INT;
for(ng: GradiField.g) min = Math_min(min,ng);
if(g<@MAX_INT) g = min+1;

}
}
mixin role GradiSource within GradiField { g.update { g = 0; } }

Car

CarFrontGrad

Fro
n

t
Fro

n
tS

e
n

so
r

LeftWheel

RightWheel

LeftWheel

RightWheel

Fro
n

tCar

Fig. 2. Gradient field in RoCoRo applied to a configuration of two docked cars using concrete instantiations CarFrontGrad and FrontSensor which
specialize (instantiate) GradiField and GradiSource respectively. The docked car configuration moreover contains two Car ensembles which each
consists of three modules playing car-specific roles.

resembling standard object-oriented inheritance: members can
be added and existing members can be overridden.

B. RoCoRo by example: gradients

As a classical spatial computing example also relevant in
modular robotics, consider the implementation of a simple
gradient field in RoCoRo, shown in Figure 2. The ensemble
GradiField is used to describe the scope of the gradient
field, it introduces a shared variable g and provides an update
rule for g which continuously updates the value of g. The
update rule accesses the available (cached) values of g from
the neighboring modules, and uses these to compute the local
gradient value (the @ sign indicates an external constant).
The mixin role GradiSource can be activated on some
module that already is part of the GradiField ensemble, and
overrides the update rule from the ensemble to always make
the local gradient value be zero, making the module a source in
the gradient field. Member overriding depends on the order at
which the entities were activated at runtime, in this case since
the role is created within a pre-existing ensemble, the update
rule from the ensemble would necessarily be overridden by the
update rule from the role. Both entities are however declared
abstract, meaning they cannot be activated without first making
a specialization for a concrete scenario.

As an example of a specialization of the gradient entities,
consider a gradient field for an arbitrary car vehicle; this
gradient field is illustrated for a configuration of two docked
cars in Figure 2. Assume that the modules in each vehicle
are subroles of Front or Wheel, and that the gradient source
should be modules playing the role of Front and have no
forwards (“north”) connections. In this case, the following
specialization will activate the gradient field:

ensemble CarFrontGrad extends GradiField {
require subrole(Front) || subrole(Wheel);
}
mixin role FrontSensor extends GradiSource {
require subrole(Front) && connected(NORTH)==0;
}

The ensemble specialization adds a “require” declaration
which specifies under what conditions the ensemble can be
activated on a given module, and similarly for the mixin role
specializing the gradient source.

enum Obstacle { None, Left, Right, Center }

ensemble Car {
// State shared between all modules
Obstacle obstacle = Obstacle.None;

// Distributed control behavior
behavior Front.move() {
Front.if(Car.obstacle==Obstacle.None) {
Wheel.drive(); Wheel!evade();

}
else {
Wheel.evade(); Wheel!drive();

}
}

}

role Front within Car {
// Needs 2 neighbors
require connected(@COMPASS_ANY)==2;
// Continuously monitor proximity
behavior checkProximity() {
if(isProximity(@FRONT_LEFT) &&
isProximity(@FRONT_RIGHT)) {
obstacle = Obstacle.Center;

} else { ... }
}

}

abstract role Wheel within Car {
abstract constant Obstacle MY_SIDE;
abstract constant Compass CONNECTED_SIDE;
// Require 1 connection + break symmetry
require connected(CONNECTED_SIDE==1)

&& connected(@COMPASS_ANY)==1);
// Activated as behaviors by Car.move
void drive() {
self.rotateContinuous(100,1);

}
void evade() {
if((obstacle==MY_SIDE)) {
self.rotateContinuous(50,0);

} else {
self.rotateContinuous(100,0);

}
}

}

role LeftWheel extends Wheel { ... }
role RigthWheel extends Wheel { ... }

Fig. 3. Two-wheeler ATRON car obstacle evasion in RoCoRo

49

C. RoCoRo by example: obstacle avoidance

One of the primary design goals of RoCoRo is to allow
modular robots to be controlled in a robust manner based
on a global description of the behavior. As an example of
this, consider obstacle avoidance for the small ATRON cars
from Figure 1 (rightmost picture), depicted schematically in
a docked configuration in Figure 2: a “Front” module in the
middle and two “Wheel” modules on the sides. An obstacle
evasion program for such a two-wheeler car robot is shown in
Figure 3. The ensemble Car is used to define the scope of the
car; the ensemble is non-abstract and defines no requirements,
and so is automatically activated on every module of the robot.
This ensemble defines a shared variable obstacle (of an
enum type, similarly to e.g. C or Java) and a shared behavior
move which can only be initiated by modules playing the role
Front.1 Shared behaviors execute as distributed sequences of
operations across the modules of the robot. In this example,
the move behavior is a global description that expresses the
coordination between the various modules of the ensemble;
since it only has two steps it could however also have been
implemented as a behavior in the role Front, but the chosen
design arguably makes the overall behavior of the robot more
clear. In general, an ensemble behavior can consist of several
steps which execute as a robust sequence.

Behaviors are always initiated continuously and atomically
to the entity in which they are declared (e.g., for a given role
or ensemble, only a single behavior runs at a given point in
time). Behavior initiation is decided by a scheduler on the
individual module, whether defined on an ensemble or on a
role. This is also the case for the behavior move which starts
with a test on the shared variable obstacle. Depending on the
value of obstacle, the sequence either activates the method
drive and deactivates the evade method or alternatively the
inverse, and it does this on all modules of the robot playing
the role Wheel or a subrole. Activating a method means that
it acts like a behavior, that is, it is continuously activated on
the respective modules. Deactivating a method means that it
stops acting like a behavior. For a given module, this method
activation is subject to the state of the distributed sequence
being propagated to this module.

The role Front defines the requirements for role activation
(connected to two modules, the wheels) and its behavior which
is to continuously monitor the proximity sensors and update
the shared variable obstacle correspondingly. Note that no
update rules are defined for the shared variable, this means
that the default update rule is used, which simply overwrites
the local value with the most recent value received from
the neighbors, unless the variable was assigned locally in
which case it no longer updates automatically but will start to
propagate to its neighbors. (If the variable is assigned multiple
places in the robot, modules that have not assigned a value
to the variable will receive different values at different times

1If there were multiple modules playing this role, the behavior could be
initiated in multiple places at once, dealing with this issue is considered future
work.

through state propagation.) The abstract role Wheel defines the
conditions under which a wheel is activated as well as how
it behaves when the methods drive or evade are activated.
The exact requirement and behavior depends on whether it
is a left or a right wheel, which is described by the abstract
constants that are defined by the concrete subroles for left and
right wheels (not shown). The method evade uses a slower
rotation speed if the obstacle is on the same side as the wheel,
which causes the car to turn away from the obstacle.

D. RoCoRo runtime behavior

The RoCoRo language is built on the idea of continuous
state propagation by diffusion to neighboring modules. Roles
react to changes in the environment that they receive through
diffusion, both in terms of what methods are activated and in
terms of what role should be active on the module. The shared
state from ensembles is also propagated using diffusion, and
the local update rules (explicit or implicit) define how the state
is merged.

The shared behaviors execute similarly to the distributed
sequences from DynaRole: once initiated, each operation in
the behavior explicitly denotes the module where it should
execute. A program counter denoting the set of parallel exe-
cuting operations is shared between all modules executing the
sequence, and is advanced when modules begin and complete
operations. Here, the activation of a method is instantaneous
and does not wait for the method to run; rather, the method is
activated and will start to run the next time state propagation
is performed, and will continue to do so until deactivated.

State propagation is not assumed to be reliable, on the con-
trary the language is designed for operation of modular robots
with unreliable communication links, such as the ATRON.
Changes to the module activation, updates to shared variables,
activation and deactivation of methods, and progress in the
execution of a distributed sequence propagates asynchronously
throughout the module structure, and only when the underlying
communication system has succeeded in propagating informa-
tion through a communication link. For consistency, complete
information about the state of a module is transmitted in a
single packet, but this is problematic on a system like the
ATRON where the older generation modules cannot reliably
transmit more than roughly 100 bytes of information per
packet. We leave this issue to future work.

E. Implementation status

A complete RoCoRo frontend and code generator for Java
source code is currently being implemented using the xtext
eclipse framework. The generated code assumes a high-level
object-oriented runtime system, which is being implemented
on top of the USSR generic simulation framework for modular
robots [32]. Unlike earlier work [3], this implementation does
not address the issue of code distribution in any way, this
is considered future work. Moreover, there currently is no
underlying spatial information framework, meaning that only
very simple predicates can be used to query the physical
structure of the robot. Our plan is however to integrate the

50

M3L language [27] with the simulator to enable automatic
generation of new robot implementations from M3L dec-
larations. Such generated robot implementations would be
automatically equipped with the ability to compute precise
spatial information based on the M3L generation of forward
kinematics.

V. DISCUSSION

There are numerous issues that must be resolved before
RoCoRo can be used for large-scale scenarios like self-
assembly and metamodules. In particular, the semantics of
ensembles needs to be defined such that multiple ensembles
of the same type can exist in the same robot. We expect that
the existing work on logical neighborhoods [31] will be a
useful source of inspiration. The RoCoRo language has been
pragmatically designed for robust control of modular robots,
and we expect that it can be applied as a generally useful
programming language for modular robots. The question of
how well RoCoRo is suited to other spatial computing tasks,
such as programming of sensor networks or swarm robotics,
is in an interesting one that will be explored in future work.
Acknowledgment: I would like to thank the anonymous re-
viewers for their insightful and constructive comments.

REFERENCES

[1] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. S. Chirikjian, “Modular Self-Reconfigurable Robot Systems
[Grand Challenges of Robotics],” IEEE Robot. Automat. Mag., March
2007.

[2] U. P. Schultz, M. Bordignon, and K. Stoy, “Robust and reversible
execution of self-reconfiguration sequences,” Robotica, vol. 29, pp. 35–
57, 2011.

[3] M. Bordignon, K. Stoy, and U. P. Schultz, “A Virtual Machine-based
Approach for Fast and Flexible Reprogramming of Modular Robots,”
in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’09), Kobe,
Japan, May 12-17 2009, pp. 4273–4280.

[4] “MIT proto,” retrieved March 8, 2012. Software available at http://proto.
bbn.com/.

[5] J. Beal, S. Dulman, J.-L. Giavitto, and A. Spicher, “Spatial computing
workshop 2012 call for papers,” 2012, http://www.spatial-computing.
org/scw12:start, downloaded April 15th 2012.

[6] K. Stoy, D. Brandt, and D. J. Christensen, An Introduction to Self-
Reconfigurable Robots. MIT Press, 2010.

[7] E. Østergaard, K. Kassow, R. Beck, and H. Lund, “Design of the ATRON
lattice-based self-reconfigurable robot,” Autonomous Robots, vol. 21,
no. 2, pp. 165–183, 2006.

[8] M. Moghadam, D. Christensen, D. Brandt, and U. Schultz, “Towards
Python-based DSL languages for self-reconfigurable modular robotics
research,” in 2nd Int. Workshop on Domain-Specific Languages and
models for ROBotic systems (DSLRob’11), 2011.

[9] E. Yoshida, S. Murata, H. Kurokawa, K. Tomita, and S. Kokaji, “A dis-
tributed method for reconfiguration of a three-dimensional homogeneous
structure,” Advanced Robotics, no. 13, pp. 363–379, 1999.

[10] C. Ünsal, H. Kiliccöte, and P. K. Khosla, “A modular self-reconfigurable
bipartite robotic system: Implementation and motion planning,” Au-
tonomous Robots, no. 10, pp. 23–40, 2001.

[11] Z. Butler and D. Rus, “Distributed planning and control for modular
robots with unit-compressible modules,” The International Journal of
Robotics Research, no. 22, pp. 699–715, 2003.

[12] M. D. Rosa, S. Goldstein, P. Lee, J. Campbell, and P. Pillai, “Scalable
shape sculpting via hole motion: Motion planning in lattice-constrained
modular robots,” in Proc. of the 2006 IEEE Int. Conf. on Robotics and
Automation (ICRA’06), 2006.

[13] S. Murata, H. Kurokawa, and S. Kokaji, “Self-assembling machine,” in
Proc. of the 1994 IEEE Int. Conf. on Robotics and Automation, 1994,
pp. 441–448.

[14] M. Yim, Y. Zhang, J. Lamping, and E. Mao, “Distributed control for 3d
metamorphosis,” Auton. Robots, vol. 10, no. 1, pp. 41–56, 2001.

[15] K. C. Prevas, C. Unsal, M. O. Efe, and P. K. Khosla, “A hierarchical
motion planning strategy for a uniform self-reconfigurable modular
robotic system,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), May 2002.

[16] D. Christensen and K. Stoy, “Selecting a meta-module to shape-change
the ATRON self-reconfigurable robot,” in Proc. of IEEE Int. Conf. on
Robotics and Automations (ICRA), Orlando, USA, May 2006, pp. 2532–
2538.

[17] D. J. Christensen, “Experiments on fault-tolerant self-reconfiguration
and emergent self-repair,” in Proc. of Symposium on Artificial Life part
of the IEEE Symposium Series on Computational Intelligence, Honolulu,
Hawaii, Apr. 2007.

[18] W.-M. Shen, B. Salemi, and P. Will, “Hormone-inspired adaptive com-
munication and distributed control for conro self-reconfigurable robots,”
IEEE Transactions on Robotics and Automation, vol. 18, pp. 700–712,
2002.

[19] D. Coore, “Botanical computing: A developmental approach to gen-
erating interconnect topologies on an amorphous computer,” Ph.D.
dissertation, MIT, 1999.

[20] R. Nagpal, “Programmable self-assembly: Constructing global shape
using biologically-inspired local interactions and origami mathematics,”
Ph.D. dissertation, MIT, 2001.

[21] M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli, “Spatial
coordination of pervasive services through chemical-inspired tuple
spaces,” ACM Trans. Auton. Adapt. Syst., vol. 6, no. 2, pp. 14:1–14:24,
June 2011. [Online]. Available: http://doi.acm.org/10.1145/1968513.
1968517

[22] K. Stoy, W.-M. Shen, and P. Will, “Implementing configuration depen-
dent gaits in a self-reconfigurable robot,” in Proc. of the 2003 IEEE Int.
Conf. on Robotics and Automation (ICRA’03), Tai-Pei, Taiwan, Sept.
2003, pp. 3828–3833.

[23] M. De Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, and P. Pillai,
“Programming Modular Robots with Locally Distributed Predicates,” in
Proceedings of the 2008 IEEE International Conference on Robotics
and Automation (ICRA’08), Pasadena, CA, USA, May 19-23 2008, pp.
3156–3162.

[24] M. De Rosa, S. C. Goldstein, P. Lee, J. Campbell, and P. S. Pillai,
“Detecting locally distributed predicates,” ACM Trans. Auton. Adapt.
Syst., vol. 6, no. 2, pp. 13:1–13:14, June 2011. [Online]. Available:
http://doi.acm.org/10.1145/1968513.1968516

[25] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and
P. Pillai, “Meld: A Declarative Approach to Programming Ensembles,”
in Proceedings of the 2007 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS’07), San Diego, CA, USA, October
29 - November 2 2007, pp. 2794–2800.

[26] S. C. Goldstein, J. D. Campbell, and T. C. Mowry, “Programmable
Matter,” IEEE Computer, vol. 38, no. 6, pp. 99–101, June 2005.

[27] M. Bordignon, U. P. Schultz, and K. Stoy, “Model-based Kinematics
Generation for Modular Mechatronic Toolkits,” in Proc. 9th ACM SIG-
PLAN/SIGSOFT Int. Conf. on Generative Programming and Component
Engineering (GPCE’10), Eindhoven, The Netherlands, October 10-13
2010.

[28] U. P. Schultz, M. Bordignon, D. J. Christensen, and K. Stoy, “Spatial
Computing with Labels,” in Proc. SASO’08 Spatial Computing Work-
shop (SCW’08), Venice, Italy, October 20 2008.

[29] M. Bordignon, K. Stoy, and U. Schultz, “Generalized programming of
modular robots through kinematic configurations,” in Proc. of the 2011
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2011,
pp. 3659–3666.

[30] K. Stoy, D. J. Christensen, D. Brandt, M. Bordignon, and U. P.
Schultz, “Exploit morphology to simplify docking of self-reconfigurable
robots,” in Proc. Int. Symp. on Distributed Autonomous Robotic Systems
(DARS’08), Tsukuba, Japan, 2008, pp. 441–452.

[31] L. Mottola and G. Picco, “Logical neighborhoods: A programming
abstraction for wireless sensor networks,” in Distributed Computing in
Sensor Systems, 2006, pp. 150–168.

[32] D. J. Christensen, D. Brandt, K. Stoy, and U. P. Schultz, “A Unified
Simulator for Self-Reconfigurable Robots,” in Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS’08), France, 2008, pp. 870–
876.

51

52

On the Space-time Situation of
Pervasive Service Ecosystems

Mirko Viroli
Alma Mater Studiorum – Università di Bologna, Italy

Email: mirko.viroli@unibo.it

Graeme Stevenson
University of St Andrews, UK

Email: graeme.stevenson@st-andrews.ac.uk

Abstract—We focus on a coordination model for pervasive com-
puting applications, tightly coupled to Semantic Web technologies
to support openness and semantic reasoning. Our approach is
based on the ideas of reifying the existence of services, data,
and events in terms of RDF-oriented annotations maintained
by local agents, and enacting global system behaviour by ma-
nipulation rules for such annotations, which resemble chemical
reactions and can be seen as sequences of SPARQL queries and
SPARUL updates over RDF stores. We show a minimal set of
ingredients to equip this framework with space-time computing
mechanisms, including reification of space-time information in
terms of annotations, and a relocation service for annotations.
Some examples of spatial computations in pervasive computing
are given to illustrate the approach.

I. INTRODUCTION

A pervasive service ecosystem is a pervasive computing
system in which the various individuals that populate it – such
as humans, their smartphones, software services, pervasive
displays, sensors and devices spread in the environment,
sources of knowledge and data – interoperate opportunistically
to achieve their private goals, but are also globally governed
by some infrastructure rules analogous to the “laws of nature”
in natural ecosystems [22]. Following the general approach
proposed in [20], [2], which we here take as a reference, we
assume that the presence and activities of such individuals
are continuously reflected (in the infrastructure node in which
they reside) as semantic annotations, called Live Semantic
Annotations (LSA). In concert, these form a global network of
annotations representing the virtual counterpart of the physical
ecosystem. Overall system behaviour is driven by a set of laws,
called eco-laws, which act locally to each node, combining
and manipulating annotations in a semantic way—enacting
all the fine- and coarse-grained processes of LSA interaction,
composition, disposal, and so on.

As a concrete implementation of this model, we focus
on one that is fully-grounded on standard frameworks and
technologies for the Semantic Web, due to their support for
openness (supporting interactions with third party software
and data) and semantic reasoning (relying on ontologies and
semantic matching) [21]. We use RDF as language for struc-
turing LSAs, and the SPARQL/SPARUL query languages for
coding eco-laws: the main advantage of this choice is that
off the shelf query engines (supporting execution of SPARQL
queries and updates over RDF stores) and reasoners [17]
can be used to support scheduling and execution of eco-laws
locally.

As a key contribution of this paper, which builds on top of

[21], [20], we isolate a minimal set of additional middleware
services that add the ability to define spatial computing ac-
tivities (evolutions of distributed structures of LSAs), namely:
(i) automatically reifying location information in each LSA,
(ii) reifying a node’s spatiotemporal state into new LSAs
injected therein, and (iii) asynchronously relocating LSAs that
have a mismatching location property. A main advantage of
the proposed technique is that spatial computations can be
structured in terms of chemical-resembling reactions applying
semantically to LSAs, handling temporal and spatial aspects in
a fully declarative way, treating spacial and temporal aspects
no differently from other service properties. We believe this
idea can bring new insights as to how spatial features can
be added to existing middlewares, particular those which are
tuple-based. As a further contribution, we discuss several
examples of spatial computations useful in the context of
pervasive computing scenarios.

The remainder of this paper is organised as follows: Sec-
tion II sketches our pervasive ecosystem framework, Sec-
tion III details the model and its RDF/SPARQL/SPARUL
serialisation, Section IV introduces our support for spatial
computing aspects, Section V presents example applications,
and Section VI provides concluding remarks.

II. ABSTRACT ARCHITECTURE

Pervasive ecosystems [22] are characterised by two main
features, which influence their underlying abstract architecture
and model. On one hand, they should be situated, namely, the
activity of any software agent and the data it produces are
tightly bound to the agent’s physical location: this is because
any behaviour should be intrinsically aware of and affect the
surrounding context. Situatedness is achieved by infrastruc-
tures reifying data, knowledge, and events in the precise point
(or region) of space where they pertain, and by promoting
interactions based on proximity. Accordingly, a cornerstone
of pervasive ecosystems is that a uniform representation is
required for the various software agents living within them
(whether they run on smartphones, sensors, actuators, displays,
or any other computational device). We term such a repre-
sentation a “Live Semantic Annotation” (LSA) for it should
continuously represent the state of its associated component
(live), and it should be implicitly or explicitly connected to the
domain in which such information is produced, interpreted and
manipulated (semantic). The LSAs of each agent are reified
in a distributed space (called an “LSA-space”) acting as the

53

Fig. 1. An architectural view of a pervasive ecosystem.

fabric of the ecosystem, located in the computational device
hosting the agent.

On the other hand, pervasive ecosystems should be adaptive,
exhibiting properties of autonomous adaptation and manage-
ment to survive contingencies without human intervention
and/or global supervision. This is achieved following the
natural inspiration [22], by designing system rules that – by
acting locally – make global properties emerge dynamically.
So, while agents enact their individual behaviour by observing
their context and updating their LSAs, global behaviour (i.e.,
global system coordination) is enacted by self-organising
manipulation rules of the LSA-space, which we call eco-laws.
They can execute delete/update/create actions applied to a
small set of LSAs within the same locality. Following [3], [18],
such eco-laws are structured as chemical-resembling reactions
over LSAs.

Figure 1 shows an architectural view, based on the above
abstractions, of a portion of an ecosystem featuring: two public
displays and two smartphones (carried by people in front
of displays), forming a network of 4 computational nodes,
each with a local LSA-space containing some running agents
(e.g., profile agents and sensor agents in smartphones); LSAs
through which agents manifest (in colour); additional LSAs
representing data, knowledge, and contextual information like
the existence of neighbouring nodes (in white); references
from one LSA to another (also called bonds); and a set of eco-
laws executed by an underlying engine working over the global
LSA-space. More generally, one should think of a very large
and mobile set of devices connected to each other based on
proximity, creating a distributed “space” – ideally a pervasive
continuum – where LSAs form spatial structures that evolve
over time. The eco-law engine, accordingly, has to be seen as a
distributed one uniformly working on all LSA-space—though
we will show that a feasible approach amounts at developing
local eco-law engines in each node.

III. A CONCRETE MODEL OF LSAS AND ECO-LAWS

A. Live Semantic Annotations
LSAs have a unique, system-wide identifier (LSA-id),

and a content (description) including all the information the
agent wants to manifest to the ecosystem. This is realised as
an RDF-like (Resource Description Framework [10]) set of
multi-valued properties, or equivalently, a set of triples that
consist of a subject (an LSA-id), a predicate (the property
name, a Uniform Resource Identifier – URI) and an object
(the assigned value, a literal, URI, or bnode1). URIs are
qualified by universally-accessible namespaces (using syntax
namespace:term). In RDF, a literal can be qualified by an
XML Schema datatype (XSD) as in "10.0"ˆˆxsd:double
to enforce type-checking, but we shall omit it for the sake of
simplicity, and simply consider quoted strings. By adopting
a notation resembling N3 [6], an LSA is represented e.g,.
as “id p v; id q w1 w2 w3;” where id is the LSA-id,
property p is assigned to value v, and property q is assigned
to values w1, w2, and w3. Following N3, we can avoid
repeating the subject when this is unchanged with respect to
previous triple, hence writing “id p v; q w1 w2 w3;” for
the above example. A concrete example of an LSA is, hence:

lsa:crowdsensorlsa1123
eco:type msm:crowd;
msm:time "2011-05-30T11:00:00";
msm:crowd_level "0.9";

which is the LSA injected by a sensor that describes the precise
point in time that a value (0.9) concerning the presence of
people in a given room of a museum is sensed.

B. Eco-laws
Eco-laws are structured as chemical-resembling rules of

the kind “P+..+P --r--> Q+..+Q”. Elements P and Q are
patterns of LSAs, expressed like LSAs with the following
extensions: (i) in place of each element of a triple one can use
a variable ?V (matching any value) or an annotated variable
?V(filter) where filter is a predicate expression over
?V (matching any value that makes filter true); and (ii)
the object of a triple can be prepended by a symbol “+”
(assumed by default), “-”, or “=”— respectively meaning that
the triples with this object should exist, should not exist,
should be the only that exists for that subject and predicate.
For syntactic convenience, we also allow a pattern to consist
solely of the source, meaning no further constraint on its
triples is imposed. Additionally, we sometimes use as filter
for a subject ?LSA an expression of the kind “?LSA clones
?LSA2”, meaning that ?LSA should have the same content of
?LSA2 plus additional constraints specified by any following
triples. The above definition of a pattern naturally induces the
concept of an LSA matching a pattern (modulo a substitution
of variable to terms).

1A bnode, or blank node, is an locally scoped identifier. Bnodes are used
to represent structured property values within LSAs, although we do not
elaborate this concept within this paper.

54

The semantics of an eco-law is then as follows. It consumes
a set of reactant LSAs based on left-hand side patterns and
produces a set of product LSAs based on the right-hand side
patterns. In particular, right-hand side patterns are to be seen
as post-conditions applied to the selected reactant LSAs. Eco-
laws also obey a numeric transformation rate r representing a
Markovian rate in a continuous-time Markov chain (CTMC)
system. Such a rate can be omitted, in which case it is assumed
to be infinite, that is, the eco-law is executed with “as soon
as possible” semantics.

An eco-law can apply in many different locations of the
ecosystem, and to different sets of (co-located) LSAs. We call
reaction the pair consisting of a set of reactant LSAs and
their corresponding product LSAs that an eco-law can trigger.
Execution of a reaction amounts to atomically removing
reactant LSAs from the LSA-space and inserting product LSAs
back.

As an example eco-law, consider the following, which
aggregates two LSAs produced by a crowd sensor, so as to
keep the most recent:

?LSA eco:type msm:crowd; msm:time =?T; +
?LSA2 eco:type msm:crowd; msm:time =?T2(?T2<?T);
--r-->
?LSA

Note that in the right-hand side we do not specify triples for
?LSA2, which means that the LSA with id ?LSA2 will be
removed, and that for ?LSA we simply state it will be left
unchanged. Another example of an eco-law, used to make a
display activate and show an advertisement as soon as the
presence of a person with a matching profile is sensed (e.g.,
the LSA of an user present in the same space), is the following:

?DIS eco:type msm:display; msm:status ="ready"; +
?ADV eco:type msm:ad; msm:content ?C; +
?USR eco:type msm:usr; msm:prof ?P(?P matches ?C);
--r-->
?DIS msm:status ="showing"; msm:service ?ADV; +
?ADV +
?USR

Note that object ="ready" in the left-hand side means that
"ready" is the only object for subject ?DIS and predicate
msm:status, while object ="showing" in the right-hand side
means that "showing" should replace any previous value,
while using object "showing" (or +"showing") would mean
adding value "showing". We have defined a formal mapping
between eco-laws and SPARQL/SPARUL, which is not re-
ported here for brevity. As an example, the latter eco-law is
written as:

SELECT DISTINCT * WHERE{
?DIS eco:type msm:display .
?DIS msm:status "ready" .
FILTER NOT EXISTS { ?DIS msm:status ?o .

FILTER (?o!= "ready") }
?ADV eco:type msm:ad .
?ADV msm:content ?C .
?USR eco:type msm:user .
?USR msm:prof ?P; FILTER(?P rdf:type ?C) .

}
REMOVE DATA {!DIS msm:status ?o}
INSERT DATA {!DIS msm:status "showing"}
INSERT DATA {!DIS msm:service !ASV"}

Put in more general terms, each eco-law is mapped to one
single SPARQL SELECT query, and a sequence of SPARUL
REMOVE or INSERT statements. The first query checks whether
and how the eco-law applies, yielding a set of bindings for
all the variables involved—one binding of variables per each
solution found, namely, per each set of reactant LSAs. Given
one binding, the SPARUL statements are used to apply the eco-
law. To this end, we let a placeholder !VAR stand for the value
to which variable ?VAR is linked to by the binding produced
by SPARQL query.

C. Architectural Components

From an implementation viewpoint, the framework can be
realised as a lightweight and minimal middleware that reifies
LSAs in the form of semantic tuples, to be dynamically
stored and updated in a system of spatially-situated tuple
spaces spread over the devices of the network. The eco-laws
governing the ecosystem are deployed in all network nodes,
and apply locally2. Each node comprises a set of modules
managing LSAs and Eco-laws, described in turn, all based on
functionality provided by the ARQ query engine [1] and Pellet
reasoner [17].

External Interface: The interface by which agents, devices,
services and other nodes – namely, the external environment –
interacts with the node providing operations to locally inject
a new LSA, observe an LSA with a known ID, and modify
and remove the LSAs the agent owns (injected).

Space: A space represents a passive component, similar to
a tuple space, storing LSAs that are local to the node. It is
responsible for the identification of LSAs within the node,
hence, it manages LSA naming through unique identifiers. It
is also the module in charge of implementing any possibly so-
phisticated indexing algorithm and data structure with the goal
of quickly retrieving and filtering candidate LSAs matching
an eco-law to be executed. Considering the above-mentioned
technologies, the space is easily realised as an RDF-store.

Matcher: During the processing of eco-laws, the reaction
manager checks whether an eco-law can apply to a candidate
set of LSAs—extracted from the space based on pattern match-
ing. More specifically, it computes all the bindings for a given

2At the time of writing, one such prototype is under construction in the
context of SAPERE project [2].

55

eco-law by executing the SPARQL query. Additionally, this
component also computes all filter expressions, the evaluation
of which is deferred to Pellet, which – other than standard
mathematical functions – allows one to code external functions
computing, e.g., any ad-hoc matching between the arguments.
The semantics provided by RDF Schema (RFDS) [8] and the
Web Ontology Language (OWL) [9] support vocabularies that
define classes of resources, semantically-rich relations, and
sets of restrictions on how both may legally be combined.
Application of these vocabularies to an RDF model may
be verified for correctness, and inferences – such as the
classification of resources – may be drawn. Indeed, stan-
dard OWL classification provides one approach to realising
ontology-based semantic matching in our eco-law language.
A filter ?A matches ?C can be interpreted as ?A rdf:type
?C. In standard OWL semantics, this considers an individual
a valid substitution for ?A if its description satisfies the set
of restrictions that describe ?C, an OWL Class description.
Hence, whenever one or more ontologies are used in the
pervasive ecosystem, they must be accessible to the Matcher
component.

Reaction manager: The reaction manager handles events
occurring within the node, based on the set of eco-laws it
holds. An event describes either an external operation upon an
LSA (injection, observation, removal or modification), or the
activation of a specific eco-law to be executed. Events of the
first kind are considered with highest priority, and are simply
processed by interaction with the space. In the second case,
the event is characterised by a reaction, indicating the eco-law
it refers to, its binding, and the time at which it should be
executed. The reaction manager exploits a simple scheduling
engine, maintaining a list of scheduled events sorted by their
occurrence time. It takes the next event, and executes the
corresponding SPARUL statements through ARQ.

IV. ADDING SPATIAL COMPUTING FEATURES

The framework described so far contains only interactions
of agents working in the same node, mediated by some form of
local knowledge, similarly to other coordination frameworks
like those in [14], [7]. In this section we develop an arguably
minimal extension, enabling the possibility to enact spatial
computing, by which distributed behaviour useful to pervasive
computing purposes can be supported. This is based on three
ingredients we describe in turn.

LSAs reifying location: We shall assume that each LSA
carries one property named eco:#loc, holding one URI value
representing the ID of the location (i.e., the node) in which
the LSA currently resides. We refer to this property as a
“synthetic” one, for it is not specified by the agent that
injects the LSA, but it is rather created and maintained by
the infrastructure. Additionally, this is a property that cannot
be changed by agents, but only by eco-laws as we will detail
in the following.

Space-time LSAs: A core idea of pervasive service ecosys-
tems is that, all information deemed important for the overall
system coordination should be reified within LSAs. This

applies, in fact, to all agent activities, and the data, knowledge,
and events they produce. Additionally, contextual information
bridging ecosystem evolution with the physical word has
to be properly reified into what we call synthetic LSAs—
again, “synthetic” here refers to the fact that these LSAs
are maintained by the infrastructure (e.g., by some agents in
charge of injecting them and keeping them updated by some
timing policy). Most importantly here, this concerns the space-
time situation of the computation, that is, at which time we
are currently executing, and how the local space is shaped.

Accordingly, we shall first assume that in each node we
have the so-called time LSA, an LSA carrying information
about the current time in the node, which is of the kind:

lsa:timelsa321
eco:type eco:#timeLSA;
eco:#time "2011-05-30T11:00:00";
eco:#loc sid:node34164@room132;

Concerning space, we reify the shape of space as can be
perceived from a single node, namely, what are the neighbours
in the node’s proximity (possibly including their IDs, their
estimated distance, the kind of connectivity, the maximum
communication bandwidth, the relative orientation in space,
and any other information the infrastructure can discern). In
particular, in any node, we assume that for each neighbour
there is a synthetic neighbour LSA of the kind

lsa:neighlsa456
eco:type eco:#neighbourLSA;
eco:#loc sid:node34164@room132;
eco:remotelocation sid:node34163@room132;
eco:distance "51.3";
eco:orientation "north-east";

stating that the neighbouring node is at location
node34163@room132, which is at expected distance
51.3 (meters) in a north-easterly direction.

We reiterate that the connection between such LSAs and
the neighbours they represent is entirely implicit; nodes do
not directly manage their remote representations, and these
synthetic LSAs are not proxies through which information
from remote spaces may be obtained.

Relocation service: One of the motivations for reifying
these synthetic LSAs is the ability, by means of proper
eco-laws, to make their actual content impact ecosystem
dynamics, by which we can fully achieve context-dependent
behaviour. Concerning space, for instance, one can develop
an eco-law that changes the value of the eco:#loc property
of an LSA, replacing it with that of a neighbouring node.
One such eco-law is:

?LSA eco:type msm:crowd; eco:status ="tomove"; +
?NEI eco:type eco:#neighbourLSA; eco:remote ?L;
--r-->
?NEI + ?LSA eco:#loc =?L; eco:status -"tomove";

56

This causes an LSA to have a location that no longer fits
the current node in which it resides. A lower-level middleware
service then, can be in charge of intercepting such LSAs before
they are injected in the space, and relocating them to the proper
neighbour, by an asynchronous request.

Note that our management of space-time aspects has the
advantage of being fully declarative—e.g., an LSA with a new
location can just be perceived as the LSA having been relo-
cated. By this approach we retain the spatial locality property
of eco-laws, mitigating the need to perform synchronisation
across spaces during their application. This approach also
orthogonally supports more advanced concepts of “topology”,
such as notions of social neighbouring (connecting smart-
phones of people who are friends on a social network as
envisioned in [16]).

V. EXAMPLES

While a basic use of the above ingredients supports relo-
cating information to mirror its physical counterpart’s move-
ments, they also permit the enactment of some patterns of
spatial computing that enable useful interactions within per-
vasive service ecosystems; here we describe 4 such patterns,
accompanied by illustrative examples.

A. Gossiping

We first show how we can make an LSA spread from
a given location to all the nodes of the network, with the
further ability of expiring everywhere at a given time. This is
the set of eco-laws realising this behaviour:

[GOS] % ?GOS gets spread in any neighbour
?GOS spc:type spc:goss; +
?NEI eco:type eco:#neighbourLSA; eco:remote ?L;
--r-->
?NEI + ?GOS + ?CLO(?CLO clones ?GOS) eco:#loc =?L;

[AGG] % Of two similar LSAs, it removes one
?AGG spc:type spc:aggr; spc:content ?C; +
?AG2 spc:type spc:aggr; spc:content ?C;
--> ?AGG

[DEL] % Disposes an LSA if its deadline expired
?DEL spc:type spc:del; spc:deadline = ?T; +
?TIM eco:type eco:#timeLSA; eco:time ?T2(?T<?T2);
--> ?TIM

Initially, a gossip LSA with spc:type set to values spc:goss,
spc:aggr, and spc:del is injected in a node—so that all
three eco-laws apply. The former eco-law makes any gossip
LSA ?GOS (having property spc:type set to spc:goss)
create a cloned version ?CLO relocated in a neighbour node ?L.
Iterative application of this eco-law over time (at rate r) and
over all nodes makes copies of ?GOS flood the network. The
second eco-law takes two gossip LSAs (of kind spc:aggr)
with same content (namely, relative to the same source) and
drops one: this is used to avoid multiple versions residing
in the same node. Finally, the latter eco-law fires when the
current time in a node is greater than the deadline time

spc:deadline defined in the gossip LSA, causing removal
of that LSA. Of course, rate r is to be properly designed to
tune the network load, using considerations similar to those
discussed in [18]. Note that the three eco-laws orthogonally
apply—one could leverage spreading without time-disposal, or
time-disposal alone, and so on.

In the context of pervasive computing applications, this
pattern can be useful to advertise an event happening in a given
node to the whole network. Considering e.g., the application
scenario in [12], it could be used to advertise a fire alarm in an
exhibition centre, so as to immediately trigger all the activities
necessary to safely steer people towards exits.

B. Gradient

A variation of the above diffusion mechanism can be used
to create a gradient data structure—a key brick of several
spatial computing patterns [18], [4], [19]. This is based on
the idea of spreading copies of an LSA such that each of
them holds the estimated distance from the source according
to the shortest path. We shall also equip each LSA with a
reference to the next node to traverse in order to follow the
gradient towards the source, and provide a mechanism to
limit the gradient to a given spatial extent (gradient horizon).
This is the set of eco-laws realising this behaviour:

[GRA] % ?GRA gets spread with increasing spc:dist
?GRA spc:type spc:gra; spc:dist ?D;

spc:rng ?R; eco:#loc ?LG; spc:source ?S +
?NEI eco:type eco:#neighbourLSA; eco:remote ?L;

eco:distance ?D2(?D+?D2<=?R);
--r-->
?NEI + ?GRA +
?CLO(?CLO clones ?GRA) eco:#loc =?L; eco:prev =?LG;

spc:dist =?D3(?D3 = ?D+?D2);

[SHR] % Of two paths, the shortest one is kept
?GRA spc:type spc:short; spc:content ?C;

spc:dist ?D; +
?GR2 spc:type spc:short; spc:content ?C;

spc:dist ?D2(?D2>?D);
--> ?GRA

Initially, a gradient LSA with spc:type set to spc:gra and
spc:short, and spc:dist set to 0 is to be injected in a node;
we also assume (for the sake of the following examples) that
property spc:source is initially set to the LSA-id itself—
by spreading, this property will hold everywhere the ID of
the LSA from which the gradient originates. The former eco-
law creates a cloned version ?CLO relocated in a neighbour
node ?L, with an increased value of distance depending on
the estimated distance of that neighbour—note this does not
happen if horizon ?R is escaped. The second eco-law takes
two gradient LSAs with same content and keeps the one with
smaller distance.

In the context of pervasive computing applications, this
pattern can be useful to advertise an event in a given node
with additional information on how its source can be reached.
E.g., as a fire alarm has been spread, people can be directed

57

to any exit (acting as gradient source) by signs appearing in
their smartphone or on public displays, properly reflecting the
direction to take as can be inferred from property eco:prev
of gradient LSAs.

C. Partitioning

This pattern is used to partition a network in n areas once
n nodes (sources) have been selected as candidate centres
of these areas, ensuring that these areas have also similar
size whenever possible. This is achieved by making each
source spread a different gradient, such that propagation does
not overlap in nodes in which other gradients are already
established with smaller distance to another source. In this
way, each node will belong to the area of the nearest source
node. We observe that the above eco-laws for gradients already
support this behaviour, provided that the n source LSAs share
the same spc:content, but have e.g., different values of a
property spc:area.

An example application can be envisioned in the context
of adaptive pervasive displays [18]. Assuming we have n
different advertisements to show in an airport, and we want
the set of displays showing one of them to form a contiguous
area (to avoid people perceiving different advertisements as
the pass by neighbouring displays), we can use the partition
pattern and let displays choose what to visualise depending
on the area they belong to. Note this pattern automatically
accommodates the injection and removal of sources.

D. Path

Another pattern proposed in [11] is the path connecting two
distinct nodes, possibly enlarged to the set of devices whose
distance from that path is smaller than a given horizon h. This
is achieved by first making the two nodes (called source and
target) create their own gradient (with sufficient horizon to
reach each other). As soon as the source perceives the target,
it should gossip a new LSA indicating their relative distance
d. Then, each node should compare d with the sum of its
distance to source and target: if the difference is smaller than
h, then a new LSA is created to tag this node as being part of
the path. The eco-laws realising this behaviour are as follows:
[PATH] % SRC senses TRG gradient, gossiping distance
?GRA spc:type spc:gra spc:pathtrg;

spc:dist ?D; spc:source ?TRG; +
?SRC eco:type spc:gra spc:pathsrc; spc:dist 0;
--r-->
?GRA + ?SRC +
?GSP(?GSP clones ?GRA)

eco:type =spc:goss =spc:aggr;
spc:pathtrg =?TRG; spc:pathsrc =?SRC:

[SUM] % Reifying ?PTH if the node is inside the path
?TRG spc:type spc:gra; spc:dist ?DT; +
?SRC spc:type spc:gra; spc:dist ?DS; spc:rng = ?R +
?GSP spc:pathtarget =?TRG; spc:pathsrc =?SRC;

spc:dist ?DP(?DP>?DT+?DS-?R);
--->
?TRG + ?SRC + ?GSP +
?PTH(?PTH clones ?GSP) spc:type =spc:path =spc:shr;

The former eco-law makes a source detect the target at distance
?D and correspondingly gossip (without timeout) that value of
distance. The second eco-law makes any node inside the path
creating an LSA of kind spc:path. Note the latter LSA is also
of type spc:shr, so that only the copy with shortest distance
is kept.

This pattern can be useful to mark the transiting area
of people steered from a place to another in an articulated
environment, as in the case of people moving from one gate
to another in an airport. Public displays can be programmed to
show signs towards the target gate only if they stay inside the
path dynamically computed as described above. In this way,
we avoid affecting all the displays of the airport, but may still
handle the case of people departing slightly from the optimal
path.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we described how spatial computing con-
cepts can be injected into a framework of pervasive service
ecosystems, in terms of a minimal set of features concerning
reification of space-time information (namely, bridging the gap
between the computational world and the physical world),
and a relocation service designed to remedy mismatches
between the locality declared by some information and its
actual position. Several examples of applications to spatial
computing structures are provided to explain the details of
these mechanisms and show the usefulness in pervasive com-
puting. We believe that the work presented in this paper has
a validity beyond the pervasive ecosystem framework, for it
can be smoothly applied to any distributed system based on a
notion of shared data-space (contrasting approaches based on
message-passing such as e.g. [11]).

The proposed chemical model can be extended in several
ways, all of which will be subject of our future investigations.
First of all, we currently retain a quite rigid structure in which
the number of reactants and products is statically defined:
further studies are needed to understand to which extent the
corresponding language can mimic transformations working
over sets of LSAs whose size is not known a priori. Then,
we currently rely on CTMC semantics to trigger eco-laws,
without considering further priority constructs which could be
interesting. Also, we assume a flat set of LSAs without any
hierarchical structuring of the topological space, which would
be of some interest for pervasive computing applications.
Finally, we note that a distributed setting requires security
and privacy mechanisms that complement the openness of the
system. We intend to develop such mechanisms as part of the
ecosystem fabric: for example, supporting spatially restricted
information flow and using inference based on property and
concept hierarchies to appropriately abstract information view-
able by agents. Alternatively, general frameworks tackling
security in coordination models like [13] can be evaluated.

A further roadmap for future works aimed at strengthening
the relationships between spatial computing, space-based coor-
dination models, and their applicability to pervasive computing
applications, includes the following activities: (i) identifying a

58

concept of expressiveness of spatial computations and a mini-
mal set of mechanisms to achieve it, along the lines of [5]; (ii)
studying techniques for predicting and controlling the global
behaviour that emerges out of the local coordination rules; (iii)
deepening the advantages of using semantic matching in the
context of spatial computing patterns, as e.g., exploited in [15];
(iv) thoroughly analysing the applicability of spatial computing
to emerging ICT scenarios like smart cities, intelligent traffic
control, and augmented social reality.

ACKNOWLEDGMENTS

This work has been supported by the EU FP7 project
“SAPERE - Self-aware Pervasive Service Ecosystems” under
contract No. 256873.

REFERENCES

[1] ARQ - a SPARQL processor for Jena. http://jena.sourceforge.net/ARQ/,
2011.

[2] Self-aware pervasive service ecosystems. http://www.sapere-project.eu,
2012.

[3] J.-P. Banâtre and T. Priol. Chemical programming of future service-
oriented architectures. JSW, 4(7):738–746, 2009.

[4] J. Beal. Flexible self-healing gradients. In Proceedings of the 2009 ACM
Symposium on Applied Computing (SAC), pages 1197–1201. ACM,
2009.

[5] J. Beal. A basis set of operators for space-time computations. In Self-
Adaptive and Self-Organizing Systems Workshop (SASOW 2010), pages
91 –97, sept. 2010.

[6] T. Berners-Lee and D. Connolly. Notation3 (N3): A readable rdf
syntax. W3C team submission, W3C, 2011. http://www.w3.org/
TeamSubmission/n3/.

[7] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A programmable
coordination architecture for mobile agents. IEEE Internet Computing,
4(4):26–35, 2000.

[8] R. V. Guha and D. Brickley. RDF vocabulary description language 1.0:
RDF schema. W3C recommendation, W3C, Feb. 2004. http://www.w3.
org/TR/2004/REC-rdf-schema-20040210/.

[9] M. Krötzsch, P. F. Patel-Schneider, S. Rudolph, P. Hitzler, and B. Parsia.
OWL 2 web ontology language primer. Technical report, W3C, Oct.
2009. http://www.w3.org/TR/2009/REC-owl2-primer-20091027/.

[10] E. Miller and F. Manola. RDF primer. W3C recommendation, W3C,
Feb. 2004. http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[11] MIT Proto. software available at http://proto.bbn.com/, Retrieved
Nov. 1st, 2010.

[12] S. Montagna, M. Viroli, M. Risoldi, D. Pianini, and G. Di Marzo Seru-
gendo. Self-organising pervasive ecosystems: A crowd evacuation
example. In Workshop on Software Engineering for Resilient Systems,
volume 6968 of LNCS, pages 115–129. Springer, 2011.

[13] A. Omicini, A. Ricci, and M. Viroli. An algebraic approach for
modelling organisation, roles and contexts in MAS. Applicable Algebra
in Engineering, Communication and Computing, 16(2-3):151–178, Aug.
2005.

[14] A. Omicini and F. Zambonelli. Coordination for Internet application
development. Autonomous Agents and Multi-Agent Systems, 2(3):251–
269, Sept. 1999.

[15] D. Pianini, S. Virruso, R. Menezes, A. Omicini, and M. Viroli. Self or-
ganization in coordination systems using a WordNet-based ontology. In
4th IEEE International Conference on Self-Adaptive and Self-Organizing
Systems (SASO 2010), pages 114–123. IEEE CS, 27 Sept.–1 Oct. 2010.

[16] A. Rosi, M. Mamei, F. Zambonelli, S. Dobson, G. Stevenson, and J. Ye.
Social sensors and pervasive services: Approaches and perspectives. In
PerCom Workshops, pages 525–530. IEEE, 2011.

[17] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A
practical OWL-DL reasoner. Web Semant., 5:51–53, June 2007.

[18] M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli. Spatial coor-
dination of pervasive services through chemical-inspired tuple spaces.
ACM Transactions on Autonomous and Adaptive Systems, 6(2):14:1 –
14:24, June 2011.

[19] M. Viroli, D. Pianini, and J. Beal. Linda in space-time: an adaptive
coordination model for mobile ad-hoc environments. In M. Sirjani,
editor, Proceedings of the 14th Conference of Coordination Models
and Languages (Coordination 2012),Stockholm (Sweden), 14-15 June,
Lecture Notes in Computer Science. Springer, 2012.

[20] M. Viroli, D. Pianini, S. Montagna, and G. Stevenson. Pervasive
ecosystems: a coordination model based on semantic chemistry. In
S. Ossowski, P. Lecca, C.-C. Hung, and J. Hong, editors, 27th Annual
ACM Symposium on Applied Computing (SAC 2012), Riva del Garda,
TN, Italy, 26-30 March 2012. ACM.

[21] M. Viroli, F. Zambonelli, G. Stevenson, and S. Dobson. From
SOA to Pervasive Service Ecosystems: an approach based on Seman-
tic Web technologies. IGI Global, 2012. Available for reviewers
to download at: http://apice.unibo.it/xwiki/bin/download/Publications/
SemanticSapereIGI2012/chapter.pdf.

[22] F. Zambonelli and M. Viroli. A survey on nature-inspired metaphors
for pervasive service ecosystems. International Journal of Pervasive
Computing and Communications, 7(3):186–204, 2011.

59

60

