
HAL Id: hal-01161004
https://hal.science/hal-01161004v1

Preprint submitted on 8 Jun 2015 (v1), last revised 20 Oct 2016 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distortion and Tits alternative in smooth mapping class
groups

Sebastian Hurtado, Emmanuel Militon

To cite this version:
Sebastian Hurtado, Emmanuel Militon. Distortion and Tits alternative in smooth mapping class
groups. 2015. �hal-01161004v1�

https://hal.science/hal-01161004v1
https://hal.archives-ouvertes.fr


DISTORTION AND TITS ALTERNATIVE IN SMOOTH
MAPPING CLASS GROUPS

SEBASTIAN HURTADO, EMMANUEL MILITON

Abstract. In this article, we study the smooth mapping class
group of a surface S relative to a given Cantor set, that is the group
of isotopy classes of orientation-preserving smooth diffeomorphisms
of S which preserve this Cantor set. When the Cantor set is the
standard ternary Cantor set, we prove that the subgroup consisting
of diffeomorphisms which are isotopic to the identity on S does not
contain any distorted elements. Moreover, we prove a weak Tits
alternative for these groups.

1. Introduction

Definition 1.1. Let S be a surface of finite type and let K be a closed
subset contained in S. Let Diff(S,K) be the group of orientation-
preserving C∞-diffeomorphisms of S that leaveK invariant (i.e. f(K) =
K) and let Diff0(S,K) be the identity component of Diff(S,K). We
define the “smooth” mapping class group M∞(S,K) of S relative to
K as the quotient:

M∞(S,K) = Diff(S,K)/Diff0(S,K)

If K is a finite set of points, M∞(S,K) coincides with the braid
group with |K| points in S.

The groups M∞(S,K) appear very naturally when studying group
actions on surfaces, as given a smooth group action on S preserves
a non-trivial closed set K, one obtains a group homomorphism into
M∞(S,K). These groups were first studied by Funar and Neretin in
[11]. The aim of this paper is to contribute to the study ofM∞(S,K)
for a Cantor set K ⊂ S. Our results are aiming towards the under-
standing of two basic properties of these groups, namely, the distortion
of the cyclic subgroups and the Tits alternative.

A recent result related to mapping class groups of infinite type that
deserves to be mentioned (but which we will not make use of here)
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is J.Bavard’s proof that the mapping class group of R2 relative to a
Cantor set K acts faithfully on a Gromov hyperbolic space. This hy-
perbolic space is similar to the curve complex for finite mapping class
groups and was suggested by Calegari (see [2] and [4]). Possible lines of
research and developments after Bavard’s article are suggested by Cale-
gari in his blog (see [4]). These developments partly inspired this work.

We now introduce some notation in order to state our results and
explain the ideas involved in the proofs. Denote by PM∞(S,K) ⊂
M∞(S,K) (the “pure” smooth mapping class group of K in S) the
subgroup of the mapping class group M∞(S,K) consisting of the ele-
ments which fix K pointwise.

We also define the group diffS(K) as the group of homeomorphisms
of K which are induced by orientation-preserving diffeomorphisms of S
preserving K. In other words, a homeomorphism f : K → K belongs
to diffS(K) if there exists f̄ ∈ Diff(S) such that f̄ |K = f . There is a
natural exact sequence of groups given by:

(1) PM∞(S,K)→M∞(S,K)→ diffS(K).

The exact sequence (1) was studied by Funar and Neretin in [11],
where it is proven that PM∞(S,K) is always a countable group (this
follows from Lemma 2.2) and where for certain “affine” Cantor sets K,
the group diffS(K) is shown to be countable and to have a “Thompson
group” kind of structure.

We can now proceed to state our results. We begin with our results
about distortion in M∞(S,K).

1.1. Distortion. We recall the concept of distortion which comes from
geometric group theory and is due to Gromov (see [15]).

Definition 1.2. Let G be a group and let G ⊂ G be a finite set which
is symmetric (i.e. G = G−1). For any element f ∈ G contained in
the group generated by G, the word length lG(f) of f is defined as the
minimal integer n such that f can be expressed as a product

f = s1s2...sn

where each si ∈ G. An element f of a group G is called distorted if it
has infinite order and there exists a finite symmetric set G ⊂ G such
that
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(1) f ∈ 〈G〉.
(2) lim

n→∞
lG(fn)
n

= 0.

By a theorem of Farb, Lubotzky and Minsky, the mapping class
group of a surface of finite type does not have distorted elements
(see [12]). We believe that such a result should extend to the groups
M∞(S,K) for every Cantor set K.

LetM∞
0 (S,K) be the subgroup ofM∞(S,K) consisting of elements

whose representatives in Diff∞(S) are isotopic to the identity. Also
let PM∞

0 (S,K) be the subgroup of M∞
0 (S,K) consisting of elements

which fix K pointwise. Our first result is the following. Recall that
a Cantor set is a totally disconnected topological space such that any
point of K is an accumulation point.

Theorem 1.1. Let S be a closed surface and K be a closed subset of
S which is a Cantor set. The elements of PM∞

0 (S,K) are undistorted
in M∞

0 (S,K).

It is important to point out that any element in PM∞(S,K) can be
thought as mapping class group of a surface of finite type (see Corol-
lary 2.3) and is therefore much easier to deal with compared to other
elements of M∞(S,K).

Theorem 1.1 is proven using some of the techniques developed by
Franks and Handel in [9] to show that there are no distorted element
in the groups of area-preserving diffeomorphisms of surfaces.

Denote byM0(S,K) the quotient of the group of orientation-preserving
homeomorphisms of S which preserve K by the subgroup consisting
of homeomorphisms of S which are isotopic to the identity relative
to K. It is worth pointing out that if the smoothness assumption is
dropped and if K is a Cantor set, one can construct distorted ele-
ments in M0(S,K). One can even construct elements which fix the
set K pointwise and which are distorted in the subgroup M0

0(S,K) of
M0(S,K) consisting of homeomorphisms isotopic to the identity in S.
In particular, Theorem 1.2 below implies that the group M0(S,K) is
not isomorphic toM∞(S,K): the behavior of these groups is different
from the behavior of classical mapping class groups (i.e. when K is a
finite set).

In the smooth case, we have not been able so far to produce any
distorted element for our groups M∞(S,K) (even when S = S1 is the



DISTORTION AND TITS ALTERNATIVE IN M∞(S,K) 4

circle and K ⊂ S1).

We will then focus on one of the simplest examples of Cantor sets in
surfaces: the standard ternary Cantor set Cλ contained in an embedded
segment l ⊂ S (see Section 4 for a precise definition of Cλ). It is shown
in [11] that the group diffS(Cλ) consists of piecewise affine homeomor-
phisms of Cλ and therefore diffS(K) is very“similar” to Thompson’s
group V2, see Lemma 4.2.

Using the fact that there are no distorted elements in Thompson’s
groups Vn (see [1]) and the exact sequence (1), we are then able to show
the following:

Theorem 1.2. Let S be a closed surface and 0 < λ < 1/2. Then,
there are no distorted elements in the group M∞

0 (S,Cλ), where Cλ is
an embedding of the standard ternary Cantor set with parameter λ in
S.

1.2. Tits alternative. It is known that mapping class groups of finite
type satisfy the Tits alternative, i.e., any subgroup Γ ⊂M∞(S) either
contains a free subgroup on two generators or is virtually solvable. In
[18], Margulis proved that the group Homeo(S1) of homeomorphisms
of the circle satisfies a similar alternative. More precisely, he proved
that a group Γ ⊂ Homeo(S1) either preserves a measure on S1 or con-
tains a free subgroup on two generators, see [19].

Ghys asked whether the same statement holds for Diff(S) for a sur-
face S (see [14]). We believe that some kind of similar statement should
hold for our groups M∞

0 (S,K). Here, we obtain the following result
in the case where the Cantor set K is the standard ternary Cantor set
Cλ.

Theorem 1.3. Let Γ be a finitely generated subgroup of M∞(S,Cα),
then one of the following holds:

(1) Γ contains a free subgroup on two generators.
(2) Γ has a finite orbit, i.e. there exists p ∈ Cα such that the set

Γ(p) := {g(p) |g ∈ Γ} is finite.

We will deduce the previous theorem as an immediate corollary of
the following statement about Thompson’s group Vn, which could be
of independent interest:

Theorem 1.4. For any finitely generated subgroup Γ ⊂ Vn, either Γ
has a finite orbit or Γ contains a free subgroup.
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The proof of this result involves the study of the dynamics of el-
ements of Vn on the Cantor set Kn where it acts naturally. These
dynamics are known to be of contracting-repelling type and the spirit
of our proof is similar to the proof of Margulis for Homeo(S1). The
proof of this theorem uses the following lemma, which might be useful
to prove similar results.

Lemma 1.5. Let Γ be a countable group acting on a compact space K
by homeomorphisms and a finite subset F ⊂ K. Then there is finite
orbit of Γ on K or there is an element g ∈ Γ sending F disjoint from
itself (i.e. g(F ) ∩ F = ∅).

The proof of the previous lemma is based on Horbez’s recent proof
of the Tits alternative for mapping class groups and related automor-
phisms groups (see [6] and [7]).

1.3. Outline of the article. In Section 2, we prove Theorem 1.1.
In Section 3, we show that the group diffS(K) is independent of the
surface S where K is embedded. Then, we will focus on the study of
the standard ternary Cantor set, and, in Section 4, we prove Theorem
1.2. Finally, in Section 5, we prove Theorems 1.3, 1.4 and Lemma 1.5.
Section 5 is independent of Section 2.

2. Distorted elements in smooth mapping class groups

In this section, we prove Theorem 1.1, which we restate now:

Theorem 2.1. Let S be a closed surface and K be a closed subset of
S which is a Cantor set. The elements of PM∞

0 (S,K) are undistorted
in M∞

0 (S,K).

The proof and main ideas of Theorem 2.1 come from the work of
Franks and Handel about distorted elements in surface diffeomorphism
groups (see [9]).

The reason why the hypothesis f |K = Id makes things more simple
is the following observation.

Lemma 2.2 (Handel). Let S be a surface. Suppose f is a diffeomor-
phism fixing a compact set K pointwise. Suppose that K contains an
accumulation point p. Then, there exists a neighborhood U of p and an
isotopy ft fixing K pointwise such that f0 = f and f1|U = Id.
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Proof. We consider the homotopy ht = tf + (1 − t)Id in a coordinate
chart around p. Take a sequence of points pn ∈ K converging to p.
As f(pn) = pn, there exists v ∈ Tp(S) such that Dpf(v) = v. Observe
that the equation Dpht(w) = 0 implies that Dpf(w) = −αw, for some
α > 0. As Dpf(v) = v and f is orientation preserving, this is not
possible unless w = 0. Hence Dpht is invertible.

This implies that, for every t, Dht is invertible in a neighborhood
U of p: there is a neighborhood U of p where ht is invertible and is
therefore an actual isotopy between the inclusion i : U → S and f |U .

Now, using the Isotopy Extension Theorem (Lemma 5.8 in Milnor h-
cobordism book) we can extend the isotopy ht|U to an actual isotopy gt
of S such that g0 = Id, gt fixes K pointwise and that coincides with ht
on U . Therefore the isotopy ft = g−1

t f gives us the desired result. �

If the closed set K is perfect, we can take an appropriate finite cover
of K by coordinate charts and use the previous lemma to prove that ev-
ery element f ∈ PM∞(S,K) is isotopic to a diffeomorphism f ′ which
is the identity in a small neighborhood of K. Hence it can be consid-
ered as an element of a mapping class group of a surface of finite type.

Corollary 2.3. Let S be a surface. Suppose f is a diffeomorphism fix-
ing a compact perfect set K pointwise. Then there exists a diffeomor-
phism g isotopic to f and a finite collection of smooth closed disjoint
disks {Di} covering K such that g|Di = Id.

As we will show next, this corollary implies that if f is distorted in
M∞(S,K), then f must be isotopic to a composition of Dehn twists
about disjoint closed curves βi which do not meet K.

2.1. Reduction to Dehn twists. We use the following theorem due
to Franks and Handel (see Theorem 1.2, Definition 6.1 and Lemma 6.3
in [10]). This theorem is a consequence of Lemma 2.2 and of classical
Nielsen-Thurston theory (see [13] on Nielsen-Thurston theory). Given
a diffeomorphism f of the surface S, we denote by Fix(f) the set of
points of S which are fixed under f .

Theorem 2.4 (Franks-Handel). Let f be a diffeomorphism in Diff∞0 (S)
and M = S−Fix(f). There exists a finite set R of disjoint simple closed
curves of M which are pairwise non-isotopic and a diffeomorphism ϕ
of S which is isotopic to f relative to Fix(f) such that:
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(1) For any curve γ in R, the homeomorphism ϕ preserves an open
annulus neighbourhood Aγ of the curve γ.

(2) For any connected component Si of S − ∪γAγ,
(a) if Fix(f) ∩ Si is infinite, then ϕ|Si = Id|Si.
(b) if Fix(f) ∩ Si is finite, then either ϕ|Mi

= Id|Mi
or ϕ|Mi

is
pseudo-Anosov, where Mi = Si − Fix(f).

We need more precisely the following corollary of this theorem.

Corollary 2.5. Let ξ be an element in M∞
0 (S,K) which fixes a closed

set K pointwise. There exists a finite set R of disjoint simple closed
curves of M which are pairwise non-isotopic and a diffeomorphism ψ
of S which is a representative of ξ such that:

(1) For any curve γ in R, the diffeomorphism ψ preserves an open
annulus neighbourhood Aγ of the curve γ.

(2) For any connected component Si of S − ∪γAγ,
(a) if K ∩ Si is infinite, then ψ|Si = Id|Si.
(b) if K ∩ Si is finite, then either ψ|Mi

= Id|Mi
or ψ|Mi

is
pseudo-Anosov, where Mi = Si −K.

Proof. Apply Theorem 2.4 to a representative of ξ. This provides a
diffeomorphism ϕ with the properties given by the theorem. When
K ∩ Si is infinite, the theorem states that ϕ|Si = Id|Si and we take
ψ|Si = Id|Si . If the set K ∩ Si is finite, we can apply the classical
Nielsen-Thurston theory (see Theorem 5 p.12 in [13]) to ϕ|Si to obtain
a decomposition of Si and a diffeomorphism ψ|Si whose restriction to
each component of this decomposition satisfies (b). �

Let ξ be an element inM∞
0 (S,K) and denote by ψ its representative

in the group Diff∞0 (S) given by the above corollary. As we suppose in
Theorem 2.1 that K is a perfect set, Case (b) in Corollary 2.5 can never
happen. Hence the diffeomorphism ψ is a composition of Dehn twists
about curves of R.

The proof of Theorem 2.1 is carried out in Subsection 2.3. The
following subsection is devoted to finding different obstructions to being
distorted.

2.2. Obstructions to distortion. The obstructions we will provide
here are analogous to those given in Franks and Handel’s article [9].
However, as we are working in an isotopy invariant setting, Franks and
Handel’s invariants have to be changed a little to suit our needs.

2.2.1. Linear displacement. Let S be a closed surface. Denote by S̃
its universal cover. We endow S with the spherical, a euclidean or
a hyperbolic metric depending on whether S is a sphere, a torus or
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a higher genus surface. We denote by d the distance on S̃ which is
induced by this metric. For any diffeomorphism f in Diff∞0 (S), we

denote by f̃ : S̃ → S̃ an identity lift of f , i.e. a lift which is obtained
as time one of a lift starting from IdS̃ of an isotopy between the identity
IS and f . Recall that such an isotopy lift is unique when the genus of
S is greater than or equal to two.

Lemma 2.6. Let S be a closed surface with g(S) ≥ 2. Let ξ be an

element of M∞
0 (S,K), f be a representative of ξ in Diff∞0 (S) and f̃ be

the identity lift of f to the universal cover H2 of S. Suppose that the
element ξ is distorted in the group M∞

0 (S,K). Then, for any point x̃
of H2 whose projection belongs to K, we have:

lim
n→+∞

d(f̃n(x̃), x̃)

n
= 0.

Proof. By definition of a distorted element, there exist elements η1, η2, . . . , ηk
in M∞

0 (S,K) such that ξ belongs to the group G generated by these
elements and such that, for any integer n, there exist indices 1 ≤
i1,n, . . . , iln,n ≤ k with the following properties.

(1) ξn = ηi1,n . . . ηiln,n .

(2) limn→+∞
ln
n

= 0.

For any i, fix a representative gi of ηi in Diff∞0 (S). For any n, there
exists a diffeomorphism hn in Diff∞0 (S,K) such that

fn = gi1,n . . . giln,nhn.

The diffeomorphism g̃i1,n . . . g̃iln,nh̃n is the identity lift of fn. Hence

f̃n = g̃i1,n . . . g̃iln,nh̃n. Observe that, as hn is isotopic to the identity

relative to K, h̃n(x̃) = x̃. Therefore, for any n,

f̃n(x̃) = g̃i1,n . . . g̃iln,n(x̃)

and

d(f̃n(x̃), x̃) ≤
ln∑
k=1

d(g̃ik . . . g̃iln (x̃), g̃ik+1
. . . g̃iln (x̃)) ≤ lnM,

whereM = max1≤i≤k, ỹ∈H2 d(g̃i(ỹ), ỹ) (observe that the quantities d(g̃i(ỹ), ỹ)
are bounded on H2 as the diffeomorphisms g̃i commute with the deck
transformations). As limn→+∞

ln
n

= 0, the lemma follows. �

Lemma 2.7. Let S be a closed surface with g(S) ≥ 1. Let ξ ∈
M∞

0 (S,K). Denote by f a representative of ξ in Diff∞0 (S). Suppose



DISTORTION AND TITS ALTERNATIVE IN M∞(S,K) 9

that the element ξ is distorted in M∞
0 (S,K). Then, for any two points

x̃ and ỹ of S̃ whose projections belong to K,

lim
n→+∞

d(f̃n(x̃), f̃n(ỹ))

n
= 0.

Proof. As d(f̃n(x̃), f̃n(ỹ)) ≤ d(f̃n(x̃), x̃) + d(x̃, ỹ) + d(ỹ, f̃n(ỹ)), this
lemma is a consequence of Lemma 2.6 if g(S) ≥ 2.

Suppose now that S is the 2-torus. We use the same notation as in
the proof of Lemma 2.6, meaning that there exist elements η1, η2, . . . , ηk
in M∞

0 (S,K) such that ξ belongs to the group G generated by these
elements and such that, for any integer n,

(1) ξn = ηi1,n . . . ηiln,n .

(2) limn→+∞
ln
n

= 0.

As before, for any i, fix a representative gi of ηi in Diff∞0 (S). For any
n, there exists a diffeomorphism hn in Diff∞0 (S,K) such that

fn = gi1,n . . . giln,nhn.

Now, there is a little difference as f̃n is not necessarily equal to g̃i1,n . . . g̃iln,nh̃n.
Instead, we can just say that, for any n, there exists an integral trans-
lation Tn of the universal cover R2 of the torus R2/Z2 such that

f̃n = Tng̃i1,n . . . g̃iln,nh̃n.

Therefore, for any points x̃ and ỹ in R2,

d(f̃n(x̃), f̃n(ỹ)) = d(g̃i1,n . . . g̃iln,n(x̃), g̃i1,n . . . g̃iln,n(ỹ))
≤ d(g̃i1,n . . . g̃iln,n(x̃), x̃) + d(x̃, ỹ) + d(g̃i1,n . . . g̃iln,n(ỹ), ỹ)
≤ 2lnM + d(x̃, ỹ),

where M = max1≤i≤k, ỹ∈R2 d(g̃i(ỹ), ỹ). Hence the left-hand side of this
inequality divided by n tends to 0 as n tends to +∞. �

2.2.2. Spread. We now introduce the concept of spread.

Let γ be a smooth curve with endpoints p, q (smooth at the end-
points) and β be a simple closed curve on S separating p and q. For
any curve, the spread Lβ,γ(α) is going to measure how many times α
rotates around β with respect to γ.

More formally Lβ,γ(α) is defined as the maximal number k, such that
there exist subarcs α0 ⊂ α, γ0 ⊂ γ such that γ0α0 is a closed curve
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Figure 1. α(purple), β(green), γ(yellow), γ0(red)

isotopic to βk in S \ {p, q}.

Example 2.8. In the example depicted in Figure 1, we have a thrice-
punctured sphere S together with the curves α, β and γ. In this case
we have that Lβ,γ(α) = 2.

Let us denote by CS,K the set of simple smooth curves [0, 1] → S
whose endpoints belong to K and whose interior is contained in S−K.
Two such curves are said to be isotopic if there exists a diffeomorphism
in Diff∞0 (S,K) which sends one of these curves to the other one.

Take an isotopy class [α] of curves in CS,K . We denote by CS,K the set
of isotopy classes of curves in CS,K . We define Lβ,γ([α]) as the infimum
of Lβ,γ(α) over all the representatives α of the class [α].

The lemma below is stronger than Lemma 6.8 in [9] but it follows
from the proof of Lemma 6.8. Notice that we state it only in the case
where the curve β bounds a disk as we believe that the proof given
in [9] covers only this case (which is sufficient for the purposes of the
article [9]).

Lemma 2.9 (Franks-Handel). Let G = {gi, 1 ≤ i ≤ k} be a finite set
of elements of Diff0(S). Then there exists a constant C > 0 depending
only on G such that the following property holds. Let f be any dif-
feomorphism which fixes K pointwise and which belongs to the group
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generated by the gi’s. Let α, γ be curves in CS,K. Finally, let β be a
closed simple loop contained in S −K which bounds a disk in the sur-
face S and such that the two endpoints of γ do not belong to the same
connected component of S − β. Then

Lβ,γ(f(α)) ≤ Lβ,γ(α) + ClG(f).

Corollary 2.10. Let G = {ξi, 1 ≤ i ≤ k} be a finite set of elements
in M∞

0 (S,K). Let η be an element of the group generated by the ξi’s
which fixes K pointwise. Then there exists a constant C > 0 such that,
for any n > 0, [α] in CS,K, β closed essential simple loop and γ in CS,K
which crosses β in only one point, Lβ,γ(η

n([α])) ≤ Lβ,γ([α]) +ClG(η
n).

Proof. Let ln = lG(η
n). Take a representative f in Diff∞0 (S) of η and,

for each i, choose a representative gi of ξi. For any curve α represent-
ing a class [α] in CS,K , the curve fn(α) represents the class ηn([α]).
Additionally, by hypothesis, we can write fn = gi1gi2 . . . gilnh

′, where
1 ≤ ij ≤ k and h′ is a diffeomorphism of S isotopic to the identity
relative to K. Franks and Handel’s lemma implies that there exists a
constant C > 0 independent of n, α, β and γ such that

Lβ,γ(f
n(α)) ≤ Lβ,γ(h

′(α)) + Cln.

Hence

Lβ,γ(η
n([α])) ≤ Lβ,γ(h

′(α)) + Cln.

As α is any curve in the isotopy class of [α],

Lβ,γ(η
n([α])) ≤ Lβ,γ([α]) + Cln.

�

The above corollary immediately yields the result below.

Corollary 2.11. Let η be a distorted element in PM∞
0 (S,K). Then,

for any [α] in CS,K, γ in CS,K and β closed simple loop which separates
the endpoints of γ and which bounds a disk,

lim
n→+∞

Lβ,γ(η
n([α]))

n
= 0.

We are now ready to start the proof of Theorem 2.1.

2.3. Proof of Theorem 2.1. By Subsection 2.1, Theorem 2.1 reduces
to the following proposition.

Proposition 2.12. Let ξ be an element of M∞
0 (S,K). Suppose that

ξ fixes K pointwise and is equal to a finite composition of Dehn twists
about disjoint simple loops of S − K which are pairwise non-isotopic
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relative to K and which are not homotopic to a point relative to K.
Then ξ is not distorted in M∞

0 (S,K).

Proof. Denote by f a representative of ξ in Diff∞0 (S) which is equal to
the identity outside small tubular neighbourhoods of the loops appear-
ing in the decomposition of ξ. Also denote by C(f) the set of loops
appearing in this decomposition. We will distinguish two cases: the
case where one of these curves is essential in S (i.e. does not bound a
disk in S) and the case where none is essential.

First case. Assume that at least one of the curves of C(f) is essential
in S. Observe that the surface S is necessarily different from the sphere
in this case. We denote by Ce(f) the subset of C(f) consisting of curves
which are essential in S.

In the case where the surface S has genus greater than or equal to
2, we call good ray a one-to-one map α : [0,+∞) → S with a lift
α̃ : [0,+∞) → S̃ such that α̃(t) converges to a point of the circle at
infinity when t → +∞. Observe that, in this case, any lift of α will
converge to a point of the boundary at infinity.

Lemma 2.13. One of the two following possibilities occur:

(1) There exist two points x1 and x2 in K and a simple curve α
joining x1 and x2 which meets the union of the curves in Ce(f)
in only one point. Moreover, the intersection is transverse.

(2) The surface S is different from the torus and there exists a good
ray α : [0,+∞)→ S starting from a point x1 in K which meets
the union of curves in Ce(f) in only one point. Moreover, the
intersection is transverse.

Proof. Denote by S the set of connected components of the comple-
ment in S of the union of curves in Ce(f). Two such components are
said to be adjacent if their closures share a curve of Ce(f) in common
(or equivalently if the intersection of their closures is nonempty). If
two adjacent components in S contain points of K or if there is only
one component in S, the first possibility occurs.

Hence suppose that there are at least two elements in S and that, for
any two adjacent components in S, one of them does not contain any
point of K. Fix a component U0 in S which contains at least a point of
K and a component U1 6= U0 which is adjacent to U0. The component
U1 has to be different from an annulus: otherwise two distinct curves
of Ce(f) would be isotopic. Hence the surface S is different from the
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torus. To conclude the proof, take any good ray α : [0,+∞) → S
starting from a point of K ∩ U0, meeting the union of curves in Ce(f)
in only one point and such that the image under α of a neighbourhood
of +∞ is contained in U1. �

First subcase. Item (1) in Lemma 2.13 occurs. Denote by β the curve

in Lemma 2.13 of Ce(f) which is met by α. Take a lift β̃ of the curve
β to the universal cover S̃ of the surface S. Denote by T : S̃ → S̃
the deck transformation corresponding to β̃. Finally, take a lift α̃ of α
which meets β̃ and denote by x̃1 and x̃2 its endpoints.

Assume first that the surface S has genus greater than or equal to 2
and that there exists a non-trivial deck transformation γ of S̃ such that
f̃(x̃1) = γ(x̃1). In this case, for any integer n ≥ 0, f̃n(x̃1) = γn(x̃1), as

the homeomorphism f̃ commutes with deck transformations. Hence,
by Lemma 2.6, the element ξ is undistorted in M∞

0 (S,K).

Suppose now that the homeomorphism f̃ fixes the point x̃1 (in the

case of the torus, we can choose an identity lift f̃ which satisfies this
property). Then, by definition of a Dehn twist, there exists k 6= 0 such
that, for any n,

f̃n(x̃2) = T kn(x̃2).

See Figure 2 for an illustration. Hence the element ξ is undistorted in
M∞

0 (S,K) by Lemma 2.7.

x̃1 x̃2

T (x̃1) T (x̃2)

T 2(x̃1)

T 3(x̃1)

T 2(x̃2)

T 3(x̃2)

α̃

β̃

T (α̃)

T 2(α̃)

T 3(α̃)

f̃(α̃)

Figure 2. f̃(α̃) in the case k = 3 (First subcase)

Second subcase. Let us suppose that item (2) in Lemma 2.13 occurs.

Denote by β the loop in Ce(f) which meets α and fix a lift β̃ : R→ H2

of β. Denote by T : H2 → H2 the deck transformation corresponding
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to β̃. Let α̃ : [0,+∞)→ H2 be a lift of α which meets β̃ and p be the
point in the boundary at infinity of H2 defined by α̃: if we see H2 as
the Poincaré disk, the unit disk in the plane, then p = limt→+∞ α̃(t).
As the homeomorphism f is isotopic to the identity, the extension of
the homeomorphism f̃ : H2 → H2 to the disk at infinity fixes the point
p. Then, by definition of a Dehn twist, there exists k 6= 0 such that,
for any n, f̃n(α̃(0)) = T kn(α̃(0)) (see Figure 3). By Lemma 2.6, the
element ξ is undistorted in M∞

0 (S,K).

x̃1

T (x̃1)

T 2(x̃1)

T 3(x̃1)

α̃

β̃

T (α̃)

T 2(α̃)

T 3(α̃)f̃(α̃)

p

Figure 3. f̃(α̃) in the case k = 3 (Second subcase)

Second case. Let us suppose that any curve in C(f) bounds a disk in
S.

First subcase: Suppose that at least two connected components of
the complement of the curves in C(f) contain points in K.

Lemma 2.14. There exists a simple smooth curve α : [0, 1]→ S such
that its endpoints α(0) = x1 and α(1) = x2 belong to the Cantor set K
and with one of the following properties.

(1) The curve α meets exactly one loop β of C(f) transversely in
only one point. Moreover, this loop β is isotopic to a small loop
around x1 relative to {x1, x2}.

(2) The curve α meets exactly two loops β and γ of C(f) transver-
sally and in one point. Moreover, the loop β is isotopic to a
small loop around x1 relative to {x1, x2} and the loop γ is iso-
topic to a small loop around x2 relative to {x1, x2}.

Proof. In order to carry out this proof, we have to introduce some no-
tation. Suppose that the surface S is different from the sphere. Then,
for any loop γ in C(f), there exists a unique connected component of
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S − γ which is homeomorphic to an open disk. We call this connected
component the interior of γ. In the case where S is a sphere, we fix a
point on this surface which does not belong to any curve of C(f). Then,
for any loop γ of C(f), we call interior of γ the connected component
of S − γ which does not contain this point.

To each curve γ in C(f), we will associate a number l(γ) ∈ N which
we call its level. For any curve γ of C(f) which is not contained in
the interior of a loop of C(f), we set l(γ) = 0. Denote by Ci(f) the
set of curves of C(f) whose level is i. The following statement defines
inductively the level of any curve in C(f): for any i ≥ 1, a curve γ in
C(f)−Ci−1(f) satisfies l(γ) = i if it is not contained in the interior of a
curve in C(f)−Ci−1(f). See Figure 4 for an example. The represented
loops are the elements of C(f) in this example and the numbers beside
them are their levels.

0

1

0

0

1

1

2

2
2

Figure 4. Level of curves of C(f).

Now, we are ready for the proof. Take a loop β in C(f) whose level
is maximal. As the level of this curve is maximal, its interior does not
contain any curve of C(f). However, its interior has to contain a point
x1 of K: otherwise, the loop β would be homotopically trivial.

If l(β) = 0, denote by U the complement of the interiors of the curves
of level 0 in C(f). Otherwise, let U be the complement of the interiors
of the curves of level l(β) in the interior of δ, where δ is the unique
loop of level l(β)− 1 whose interior contains β.

If the open set U contains some point x2 of K, it is not difficult to find
a curve α which satisfies the first property of the lemma. Otherwise,
there exists a loop γ of level l(β) which is different from β. If l(β) = 0,
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this is a consequence of the hypothesis made for the first subcase. If
l(β) 6= 0, we can further require that this loop is contained in the
interior of δ: if this was not the case, β would be isotopic to δ, a
contradiction. In this case, take a path α going from x1 to U crossing
β once and from U to a point x2 of K contained in the interior of γ
crossing γ once. This path satisfies the second property of the lemma.

�

In this subcase, we will prove Proposition 2.12 only in the case where
the surface S is different from the sphere. The case of the sphere is
similar and is left to the reader. Denote by S ′ the surface obtained
from S by blowing up the points x1 and x2 (replacing these points with
circles). Denote by C1 ⊂ S ′ the circle which projects to the point x1 in
S and by C2 ⊂ S ′ the circle which projects to the point x2. Denote by
S̃ ′ the universal cover of S ′. The space S̃ ′ can be seen as a subset of
the universal cover H2 of the double of S ′, which is the closed surface
obtained by gluing S ′ with itself by identifying their boundaries. The
curve α lifts to a smooth curve α′ of S ′ whose endpoints are x′1 ∈ C1

and x′2 ∈ C2. By abuse of notation, we denote by β the lift of the curve
β to S ′.

As the diffeomorphism f fixes both points x1 an x2, it induces a
smooth diffeomorphism f ′ of S ′, acting by the differential of f on the
circles C1 and C2. Observe that the diffeomorphism f ′ preserves C1

and C2 and is not a priori isotopic to the identity. As the compact set
K is perfect, the point x1 is accumulated by points of K which are fixed
under f . Denote by z a point of C1 which corresponds to a direction in
Tx1(S) accumulated by points of K. Then the diffeomorphism f ′ fixes
the point z.

Denote by C̃1 a lift of C1, i.e. a connected component of p−1(C1),
where p : S̃ ′ → S ′ is the projection, and by z̃ a lift of the point z
contained in C̃1. Denote by α̃′ a lift of α′ which meets C̃1 and by β̃
a lift of β which meets α̃′. The curve α̃′ joins the points x̃′1 ∈ C̃1 and

x̃′2 ∈ C̃2. Denote by f̃ ′ : S̃ ′ → S̃ ′ the lift of f ′ which fixes the point z̃.

This lift f̃ ′ preserves C̃1. Denote by T the deck transformation corre-
sponding to β̃ (or equivalently C̃1). Then the diffeomorphism f̃ ′ fixes
all the points of the orbit of z̃ under T . Hence the orbit of x̃′1 under

f̃ ′ lies on C̃1 between two consecutive points of the orbit of z̃ under
T . Up to translating z̃, we can suppose that these points are z̃ and T (z̃).
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α̃

T (α̃)

T 2(α̃)

T 3(α̃)

β̃

f̃(α̃)

C̃1
C̃2

x̃′1

T (x̃′1)
T 2(x̃′1)

T 3(x̃′1)

x̃′2

T (x̃′2)

T 2(x̃′2)T 3(x̃′2)

Figure 5. f̃(α̃) in the case k = 3

First suppose that the only loop in C(f) met by the curve α is β. In
this case, by definition of a Dehn twist, there exists k 6= 0 such that, for
any integer n, f̃ ′n(x̃′2) ∈ T kn(C̃2) (see Figure 5). For any 1 ≤ j ≤ kn−1,
the curve T j(α̃′) separates S̃ ′ into two connected components. Observe

that the point f̃n(x̃′1) belongs to one of them and that the component

T kn(C2) belongs to the other one. Hence the curve f̃ ′n(α̃′) has to meet
each of the curves T j(α̃′), for 1 ≤ j ≤ kn − 1. Denote by ỹ1 the first

intersection point of the curve f̃ ′n(α̃) with the curve T (α̃′) and by ỹ2

the last intersection point of f̃ ′n(α̃′) with the curve T kn−1(α̃′).

As the curve T (α̃′) belongs to the same component of the comple-
ment of T kn−1(α̃′) as the point x̃′1, the curve α̃′ meets the point ỹ1

before meeting the point ỹ2. Consider the curve γ̃ which is the con-
catenation of the segment of f̃ ′n(α̃′) between ỹ1 and ỹ2 and the segment
of the curve T kn−1(α̃′) between ỹ2 and T kn(ỹ1) The projection on S of
γ̃ is isotopic to βkn−2 relative to x1 and x2. Hence Lβ,α(fn(α)) ≥ kn−2.

In the above proof, we just used the fact that the curve α̃′ joined a
point of the boundary component C̃1 which is between z̃ and T (z̃) to
the boundary component C̃2. We will prove the following claim.

Claim: Any curve δ of CS,K which represents the same class as α in

CS,K has a lift δ̃′ to S̃ ′ with the following property. The curve δ̃′ joins

a point of the boundary component C̃1 which is between z̃ and T (z̃) to
the boundary component C̃2.
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Hence, for any curve δ isotopic to α relative to K, we obtain that,
for any n, Lβ,α(fn(δ)) ≥ kn−2 and Lβ,α(ξn([α])) ≥ kn−2. By Lemma
2.11, the element ξ is undistorted in the group M∞

0 (S,K).

Proof of the claim. By definition, there exists a continuous path (gt)t∈[0,1]

of diffeomorphisms in Diff∞0 (S,K) such that g0 = IdS and g1(α) = δ.
This path of diffeomorphisms lifts (by acting by the differential on C1

and C2) to a path of diffeomorphisms (g′t)t∈[0,1] of S ′ which in turns lifts
to a path (g̃′t)t∈[0,1] of diffeomorphisms such that g̃′0 = IdS̃′ .

As the direction in S corresponding to z ∈ C1 is accumulated by
points of K, we have that for any t, g′t(z) = z, then, for any t, g̃′t(z̃) =
z̃ and g̃′t(T (z̃)) = T (z̃). Moreover, for any t, the diffeomorphism g̃′t
preserves C̃1 and C̃2. Therefore, for any t, the point g̃′t(α̃

′(0)) lies
between the points z̃ and T (z̃) and the point g̃′t(α̃

′(1)) belongs to C̃2.
In particular, the curve g̃′1(α̃′) is a lift of δ which satisfies the required
properties. �

Now, suppose that the curve α meets a loop of C(f) which is different
from β, i.e. the second case in Lemma 2.14 occurs. Denote by γ̃ a lift of
γ to S̃ ′. Observe that there exists k 6= 0 such that, for any n, the curve
f̃ ′n(α̃′) meets T kn(γ̃). As the curves T j(α̃) separate the point x̃1 from
the curve T kn(γ̃) for any 1 ≤ j ≤ kn − 1, this case can be handled in
the same way as the case where the curve α meets only one loop in C(f).

Second subcase: Only one component of the complement of the curves
of C(f) meets K. The idea in this subcase is to lift our element to a
two-fold cover where we can apply the first subcase. We need the fol-
lowing lemma. Let p : Ŝ → S be a twofold cover of S. Let K̂ = p−1(K).
Observe that any element ξ in M∞

0 (S,K) can be lifted to an element

ξ̂ in M∞
0 (Ŝ, K̂) (such a lift might not be unique).

Lemma 2.15. Let ξ be an element in PM∞
0 (S,K) which is distorted

in this group. Then the lift ξ̂ of ξ is distorted in M∞
0 (Ŝ, K̂).

Before proving Lemma 2.15, let’s see how the lemma completes the
proof of our proposition for this subcase. Observe that if ξ̂ were dis-
torted, then ξ̂2 would also be distorted and ξ̂2 also fixes the cantor set
K̂. Moreover, the element ξ̂2 is a composition of Dehn twists about dis-
joint loops and at least two connected components of the complement
of these curves contain points of K̂. This reduces the second subcase
to the first subcase and so we are done.
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Proof. (Lemma 2.15) By definition of distorted elements, there exists
a finite subset G = {s1, . . . , sk} of M∞

0 (S,K) such that the element
ξ belongs to the group generated by this subset and, for any n, there
exists indices 1 ≤ i1, . . . , iln ≤ k with

ξn = si1 . . . siln

and

lim
n→+∞

ln
n

= 0

For any element si of G, choose a lift ŝi in M∞
0 (Ŝ, K̂). Let G be the

(finite) group of deck transformations isotopic to the identity of the

covering Ŝ → S, seen as a subgroup of M∞(Ŝ, K̂) and let Ĝ = G ∪G.
Then, for any n, there exists Tn ∈ G such that

ξ̂n = Tnŝi1 . . . ŝiln

Hence

lĜ(ξ̂
n) ≤ ln + 1

and the element ξ̂ is distorted in M∞(Ŝ, K̂). �

�

3. Independence of the surface

Let S be a closed surface and K be any closed subset of S. Recall
that diffS(K) =M∞(S,K)/PM∞(S,K). This group can also be seen
as the quotient of the group Diff∞(S,K) consisting of diffeomorphisms
that preserve K by the subgroup of Diff∞(S,K) consisting of elements
which fix K point-wise.

In what follows, we call disk the image of the unit closed disk D2

under an embedding D2 ↪→ S.

Suppose that the closed set K is contained in the interior of a disk
D. The goal of this section is to prove the following proposition.

Proposition 3.1. Any element of diffS(K) has a representative in
Diff∞0 (S) which is supported in D.

The proof of this proposition also implies that diffS(K) is isomorphic
to M∞

0 (S,K)/PM∞
0 (S,K).
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The following corollary implies that, to prove something about groups
of the form diffS(K), it suffices to prove it in the case where the surface
S is the sphere.

Corollary 3.2. Let S an S ′ be surfaces and K ⊂ S and K ′ ⊂ S ′ be
closed subsets. Suppose that there exist disks DS ⊂ S and DS′ ⊂ S ′ as
well as a diffeomorphism ϕ : DS → DS′ such that:

(1) The closed set K is contained in the interior of the disk DS.
(2) The closed set K ′ is contained in the interior of the disk DS′.
(3) ϕ(K) = K ′.

Then, the group diffS(K) is isomorphic to diffS′(K
′).

Proof. Let ψ : D2 → DS be a diffeomorphism. This diffeomorphism
induces a morphism

Ψ : diffD2(ψ−1(K)) → diffS(K)
ξ 7→ ψξψ−1 .

By Proposition 3.1, this morphism is onto. Let us prove that it is into.
Let ξ and ξ′ be elements of diffD2(ψ−1(K)) such that Ψ(ξ) = Ψ(ξ′).
Take representatives f and f ′ of ξ and ξ′ in Diff∞0 (D2). Then there ex-
ists a diffeomorphism g in Diff∞0 (S) which fixes K pointwise such that
ψfψ−1 = gψf ′ψ−1. Then the support of g, which is also the support of
ψff ′−1ψ−1, is contained in DS. Hence, there exists a diffeomorphism
g′ in Diff∞0 (D2) which fixes ψ−1(K) pointwise such that g = ψg′ψ−1.
Therefore, f = g′f ′ and ξ = ξ′.

For the same reason, the map

Ψ′ : diffD2(ψ−1(K)) → diffS′(K
′)

ξ 7→ ϕψξψ−1ϕ−1

is an isomorphism. Hence the map Ψ′Ψ−1 is an isomorphism between
diffS(K) and diffS′(K

′). �

To prove Proposition 3.1, we need the following lemma (see [17]
Theorem 3.1 p.185).

Lemma 3.3. Let Σ be a surface and e1, e2 : D2 → Σ be orientation
preserving smooth embeddings such that e1(D2) ∩ ∂Σ = ∅ and e2(D2) ∩
∂Σ = ∅. Then there exists a diffeomorphism h in Diff∞0 (Σ) such that
h ◦ e1 = e2.

Proof of Proposition 3.1. Let ξ be an element of diffS(K) and take a
representative f of ξ in Diff∞0 (S). In the case where the surface S is
the sphere, choose a representative f which fixes a point p in S −D.
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Let Σ be an embedded compact surface contained in the interior D̊
of D which is a small neighbourhood of K. More precisely, this em-
bedded surface Σ is chosen close enough to K so that the sets Σ and
f(Σ) are contained in D̊. Observe that this surface Σ is not neces-
sarily connected and denote by Σ1, . . . ,Σl its connected components.
As these surfaces are embedded in a disk, each of these components is
diffeomorphic to a disk with or without holes.

Fix 1 ≤ i ≤ l. Denote by Ui the connected component of S − Σi

which contains ∂D. Finally, let Di = S −Ui. Observe that the surface
Di is diffeomorphic to a disk : it is the surface Σi with ”filled holes”.

Claim 3.4. For any i, Di ∪ f(Di) ⊂ D̊.

Proof. In the case where S 6= S2, observe that the connected compo-
nent of S − f(Σi) which contains ∂D (and hence S −D as f(Σi) ⊂ D)
is not homeomorphic to a disk. Therefore, this connected component
has to be f(Ui) and S − D̊ ⊂ f(Ui) ∩ Ui. Taking complements, we
obtain the desired property.

The case of the sphere is similar: f(Ui) is the only connected com-
ponent of S − f(Σ) which contains p = f(p). �

Given two disks in the family D1, D2, . . . , Dl, observe that either
they are disjoint or one of them is contained in the other one. In-
deed, for any i, the boundary of Di is a boundary component of Σi

and the surfaces Σi are pairwise disjoint. Hence, it is possible to find
pairwise disjoint disks D′1, . . . D

′
m among the disks D1, . . . , Dl such that

D1 ∪D2 ∪ . . . ∪Dl = D′1 ∪D′2 ∪ . . . ∪D′m.

We prove by induction on i that, for any i ≤ m, there exists a
diffeomorphism gi supported in D such that

f|D′1∪D′2∪...∪D′i = gi|D′1∪D′2∪...∪D′i .

Then the diffeomorphism gm is a representative of ξ supported in D.

In the case i = 1, use Lemma 3.3 to find a diffeomorphism g1 sup-
ported in D such that f|D′1 = g|D′1 .

Suppose that we have built the diffeomorphism gi for some i < m.
Observe that the diffeomorphism g−1

i f fixes D′1∪D′2∪. . .∪D′m pointwise

and satisfies g−1
i f(D′i+1) ∪ D′i+1 ⊂ D̊. Apply Lemma 3.3 to find a
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diffeomorphism h supported in D − (D′1 ∪ D′2 ∪ . . . ∪ D′i) such that
g−1
i f|D′i+1

= h|D′i+1
and take gi+1 = gih. �

4. Standard Cantor set

Fix a parameter 0 < λ < 1/2. The central ternary Cantor set
Cλ in R × {0} ⊂ R2 ⊂ S2 is obtained from the interval [0, 1] as the
limit of the following inductive process: At the first step, take out the
central subinterval of length (1−2λ) from the interval [0, 1] to obtain a
collection I1 of two intervals of size λ. At the n-th step of the process,
we obtain a collection In of 2n intervals of size λn by removing from
each interval I in In−1, the middle subinterval of size (1− 2λ)|I|. Our
Cantor set is given by the formula:

Cλ := ∩n≥0(∪In)

In this section we will prove Theorem 1.2, which we restate as follows:

Theorem 4.1. Let S be a closed surface. For any λ > 0, there are
no distorted elements in the group M∞

0 (S,Cλ), where Cλ is a smooth
embedding in S of the standard ternary Cantor set with affine parameter
λ.

Definition 4.1. We call elementary interval in our Cantor set Cλ
a set of the form Cλ ∩ I ′, where I ′ is an interval in the collection In for
some n.

It was proven in Funar-Neretin ([11], see Theorem 6) that any ele-
ment φ ∈ diffR2(Cλ) is piecewise affine, i.e. there exists a finite collec-
tion of elementary intervals {Ik} covering Cλ such that φ sends Ik into
another elementary interval φ(Ik) and such that φ|Ik = ±λnkx+ ck, for
some nk ∈ Z and an appropriate constant ck.

One consequence of this fact is that the group diffR2(Cλ) does not
depend on λ. Therefore we define the group V2 := diffR2(Cλ). The
group V2 contains Thompson’s group V2, which we define as the group
of homeomorphisms of Cλ which are piecewise affine, where the affine
maps are of the form x → λnx + c, see 5.1 for another description of
V2. (See also [1], [5] and [11]).

Even though the groups V2 and V2 are different and V2 ⊂ V2, there is
an embedding of the group V2 into V2 as we will show in the following
proposition:

Proposition 4.2. There is an injective homomorphism φ : V2 → V2.
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Figure 6. An element f ∈ V2

Figure 7. The corresponding element φ(f) ∈ V2.

Proof. Let us define K := Cλ for some 0 < λ < 1. Consider the Cantor
set K ′ := K0 ∪K1, where K0 = K and K1 is the Cantor set obtained
by reflecting K0 in the vertical line x = 3/2 as in Figure 7.

There is an involution σ : K → K given by x→ 1− x. We will use
the following notation: for any interval I ⊂ K, Ii is the corresponding
interval of I in the copy Ki.

For a homeomorphism f ∈ V2 of the ternary Cantor set Cλ, we define
φ(f) ∈ V2 as the piecewise affine homeomorphism of K ′ which satisfies
the following property. Let I ⊂ K be any elementary interval such
that our homeomorphism f sends I affinely into the elementary inter-
val J := f(I). In this situation, we will define φ(f) on I0 ∪ σ(I)1 by
the following rules:
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(1) If f preserves the orientation of I, we define:

φ(f)(I0) = J0 and φ(f)(σ(I)1) = σ(J)1.

(2) If f reverses the orientation of I, we define:

φ(f)(I0) = σ(J)1 and φ(f)(σ(I)1) = J0.

(3) In (1) and (2), the maps φ(f)|I0 and φ(f)|σ(I)1 are affine orien-
tation preserving maps.

One can easily check that φ(f) is well defined on K ′ (If I ⊂ J and
f |I and f |J are affine maps, then the definition of φ(f) on I0 ∪ σ(I)1

and on J0 ∪ σ(J)1 should coincide). See Figure 7 for an illustration of
this construction.

We still need to prove that φ is a group homomorphism, but that can
be shown easily as follows: Suppose f and g are two elements of V2. If
we partition our Cantor set K into a collection {In} of sufficiently small
intervals, we can suppose that each interval In is mapped affinely by f
and also that each interval f(In) is mapped affinely by g. One can then
do a case by case check (whether f, g are preserving orientation or not
in In and f(In) respectively) to show that, restricted to the intervals
(In)0 and (σ(In))1 in K ′, we have φ(gf) = φ(g)φ(f).

�

Example: Consider the element f described in Figure 6. The ar-
rows in the picture indicate where f is mapping each of the 4 elemen-
tary intervals affinely. The symbols −,+ denote whether the interval is
mapped by f preserving orientation or not. The corresponding element
φ(f) is depicted in Figure 7.

The previous construction is useful for our purposes because it is
known there are no distorted elements in Thompson’s group Vn (see
Bleak-Collin-et al. [1], Sec.8 ). By Proposition 4.2, this implies there
are no distorted elements in V2. Having that fact in mind and in view
of Theorem 2.1 we can easily finish the proof of Theorem 4.1:

Proof of Theorem 4.1. Suppose f ∈ M∞
0 (S,Cλ) is distorted. Observe

that, by Corollary 3.2, the group diffS(Cλ) is isomorphic to diffR2(Cλ).
From the exact sequence:

PM∞
0 (S,Cλ)→M∞

0 (S,Cλ)→
π
diffS(Cλ) = V2,

we obtain that π(f) is distorted. Now, by Lemma 4.2, V2 embeds
in V2 and as there are no infinite order distorted elements in V2 (See
[1], Sec.8), the element π(f) has finite order. Thus, we obtained that
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fk ∈ PM∞
0 (S,Cλ) for some k ≥ 1, and the element fk is as well

distorted. By Theorem 2.1, fk = Id and so f has finite order. �

5. Tits alternative

The “Tits alternative” states that a finitely generated group Γ which
is linear (isomorphic to a subgroup of GLn(R) for some n) either con-
tains a copy of the free subgroup on two generators F2 or it is virtually
solvable. In [18], Margulis proved a similar statement for Homeo(S1):
Any subgroup Γ ⊂ Homeo(S1) either contains a free subgroup or pre-
serves a measure in S1. As the derived subgroup [Fn, Fn] of Thomp-
son’s group Fn is a simple subgroup of Homeo(S1) (see [5], Theorem
4.5) and does not contain free subgroups on two generators by Brin-
Squier’s Theorem (see [14], Theorem 4.6 p.344), the actual statement
of the Tits alternative cannot hold in Homeo(S1) (see also [19]). In this
section, we prove Theorem 1.3. By Corollary 3.2, Theorem 1.3 reduces
to the following theorem.

Theorem 5.1. Let Γ be a finitely generated subgroup of M∞(R2, Cα),
then one of the following holds:

(1) Γ contains a free subgroup on two generators F2

(2) Γ has a finite orbit, i.e. there exists p ∈ Cα such that the set
Γ(p) := {g(p) |g ∈ Γ} is finite.

Using the description of diffR2(Cλ) explained at the beginning of Sec-
tion 4 and Proposition 4.2, we deduce the previous theorem as an im-
mediate corollary of the following statement about Thompson’s group
Vn, which could be of independent interest:

Theorem 5.2. For any finitely generated subgroup Γ ⊂ Vn, either the
action of Γ on the Cantor set Kn has a finite orbit or Γ contains a free
subgroup.

The finite generation condition is indeed necessary, as the following
example shows:

The finite group of permutations S2n is a subgroup of V2 as it acts on
Cλ by permutations of the elementary intervals of the collection In de-
scribed at the beginning of Section 4. Defining the group S∞ :=

⋃
n S2n ,

we easily see that S∞ has no finite orbit (the action is in fact minimal)
and there is no free subgroups in S∞ as any element has finite order.
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5.1. Elements of Vn and tree pair diagrams. We need to describe
the action of the elements of Vn on the Cantor set Kn in detail. In
order to do this, we will use as a tool the description of the elements of
Vn as tree pair diagrams as described for example in [1], [3], [5], [20].
We will follow very closely the description given in [1] and we refer to
it for a more detailed explanation of the material introduced in this
subsection. The main tool for us is the existence of “revealing tree pair
diagrams” which were first introduced by Brin in [3]. These “revealing
diagrams” allow us to read the dynamics of elements of Vn easily.

Indeed, we will show that for each element g ∈ Vn, there are two
g−invariant clopen sets Vg and Ug such that Kn = Ug ∪ Vg, where g|Ug
has finite order and g|Vg has “repelling-contracting” dynamics. The
reader that decide to skip this introductory subsection, should look at
Lemma 5.5, where all the properties of the dynamics of elements of Vn
in Kn that we will use are described.

Figure 8. The rooted tree T2, for a vertex a ∈ T2, the
tree Ta and the elementary interval Ka are depicted

5.1.1. Notation. From now on, Kn denotes the Cantor set that we iden-
tify with the ends of the infinite rooted n−tree Tn (see Figure 8, where
T2 and K are depicted). For a vertex a ∈ Tn, we define Ta as the
infinite n-ary rooted tree descending from a. We define the clopen set
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Ka ⊂ K as the ends of Ta (see Figure 8). Any subset of Kn of the form
Ka is an elementary interval as in Definition 4.1.

The group Vn is a subgroup of the group Homeo(Kn). Our next
task is to describe which kind of homeomorphisms of Kn belong to Vn,
looking at the example depicted in Figure 9 might be instructive to
understand what an element of Vn can be.

Figure 9. An element f of V2

An element g of Vn is described by a triple (A,B, σ) where A and B
are n-ary rooted trees (connected subtrees of Tn) with the same num-
ber of endpoints (A,B tell us a way of partitioning our Cantor set Kn

into elementary intervals) together with a bijection σ between the end-
points of A and the endpoints of B that tell us how an interval is going
to be mapped by g to another interval. More formally, for an endpoint
a ∈ A, g maps Ka into Kσ(a) by mapping Ta into Tσ(a) in the obvious
way (see Figure 9).

5.2. Revealing pairs. It should be noted that an element g ∈ Vn is
not described by a unique tree pair diagram (A,B, σ). Some tree pair
diagrams describe the dynamics of an element Vn better than others.
As an example, consider the element f with the diagrams depicted in
Figures 9 and 10. In the tree pair diagram in Figure 10, the trees A
and B coincide and so f must have finite order.
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Figure 10. A revealing pair diagram for the element in
Figure 9.

Before defining what a revealing tree pair diagram is, we will need
to set up some notation. Let g ∈ Vn be an element described by a tree
pair (A,B, σ).

Consider the sets X = A−B and Y = B − A. Notice that each con-
nected component of X (respectively Y ) is a rooted tree whose root
is an endpoint of B but not of A (respectively A but not B). In the
example depicted in Figure 11, X is blue and Y is red.

Let L(A,B,σ) denote the set of vertices of Tn which are endpoints of
either A or B. A vertex in L(A,B,σ) is called neutral if x is an endpoint
of both A and B. Observe that if λ ∈ L(A,B,σ) and if gi(λ) is a neutral
vertex of L(A,B,σ) for every i ≥ 0, then the vertex λ must be periodic for
g. Let t be the period of λ, i.e. the minimal t > 0 such that gt(λ) = λ.
Observe that in this case gt|Kλ = Id. If λ is not periodic we can find
the largest integers s ≥ 0 and r ≥ 0, such that for any −r < i < s, the
vertex gi(λ) is a neutral vertex of L(A,B,σ). In this case, we define the
iterated augmentation chain as

IAC(λ) :=
(
gi(λ)

)s
i=−r.

Observe that the vertex g−r(λ) is an endpoint of A but not of B and
the vertex gs(λ) is an endpoint of B but not of A.

An attractor in L(A,B,σ) is defined as an endpoint of A such that gs(λ)
belongs to B \A and such that gs(λ) is strictly contained in Tλ (gs(λ)
is under λ). In this case we see that gs|Kλ has attracting dynamics,
and there is a unique attracting point p for gs inside Kλ. In a similar
way, one defines a “repeller” as a vertex λ in B, such that g−r(λ) is
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strictly contained in Tλ. In Figure 11, the red vertices are attractors
and the blue one is a repeller. Observe that attractors are always roots
of components of Y and repellers are always roots of components of X.

Definition 5.1. Let (A,B, σ) be a tree pair diagram for an element

g ∈ Vn. The set X = A \B (respectively Y = B \ A) consists of a
union of rooted trees, whose roots are endpoints of B (respectively A).
If all these vertices are repellers (respectively attractors), then (A,B, σ)
is said to be a revealing tree pair diagram.

Theorem 5.3 (Brin [3]). For every g ∈ Vn, there exists a revealing
tree pair diagram (A,B, σ), even more, there is an algorithm to extend
any tree pair diagram into a revealing tree pair diagram.

One easy consequence of Theorem 5.3 is that every periodic element
of Vn has a tree pair diagram (A,B, σ) where A = B, as it is illustrated
in Figure 10.

If (A,B, σ) is a revealing pair, the dynamics of each interval under
a vertex of L(A,B,σ) can be easily described as we will show next.

Let λ be a vertex of L(A,B,σ) and suppose that λ is not a periodic

vertex. Let IAC(λ) =
(
gi(λ)

)s
i=−r be its iterated augmented chain. In

this case, g−r(λ) is an endpoint of A but not of B, and gs(λ) is an
endpoint of B but not of A. Hence, there are two possibilities: either
gs(λ) is a root of a component of X, or gs(λ) is a vertex of a tree in Y .

If gs(λ) is a root of a component of X, then, as (A,B, σ) is a reveal-
ing tree pair diagram, gs(λ) is a repeller. The vertex g−r(λ) is then
strictly under gs(λ) and there is a unique fixed point p for g−r−s in
Kgs(α). This point p is a repelling periodic point of order s + r. In
that case, the elementary intervals {gi(Kλ)}s−1

i=−r are disjoint and each
of them contains a unique repelling periodic point in the orbit of p.

If gs(λ) is a vertex of a tree in Y and the vertex g−r(λ) is a root of
a component of Y , then g−r(λ) is an attractor. In this case, there is a
unique periodic attracting point q of order s+ r in Kg−r(α). Again, the

intervals {gi(Kλ)}s−1
i=−r are disjoint and each of them contains a unique

attracting periodic point in the orbit of p.

If the vertex g−r(λ) is a vertex of a tree in Y under a repeller α
and the vertex gs(λ) is a vertex of a tree in X under an attarctor ω,
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then we see that the forward orbit of Kλ is getting attracted toward
the periodic orbit pω corresponding to ω and the backward orbit of Kλ

gets attracted toward the periodic repeller pα corresponding to α.

Figure 11. A revealing pair diagram for an element of V2

Example (see Figure 11). We use the following notation, for a num-
ber j, we denote by jA the vertex in T2 numbered by j in the tree A.
We define similarly the vertices jB. Observe that for our particular
example we have 1A = 3B and 2A = 9B.

In Figure 11, X is depicted blue. It consists of one rooted tree with
root 2B. Observe that, for this element, we have

9A → 9B = 2A → 2B

and the vertex 9A is under 2B, and so 2B is a repeller. There is a unique
repelling periodic point under 2B of period 2.

The set Y consists of two trees, one tree with root 3A and the other
one with root 13A, we have

3A → 1A → 7A → 5A → 5B

and 5B is under 3A and so 3A is an attractor, there is an attracting
periodic point of period 4 under 3A . We also notice that 13B is under
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13A and so there is an attracting fixed point under 13A.

Observe also that 10A → 11A → 11B, the vertex 10A is under the re-
peller 2B and 11B under the attractor 13A, this means there are points
arbitrarily close to the repelling periodic point that converge toward
the attracting fixed point under 13A and we also have 8A → 8B, where
8A is under the repeller 2B and 8B under the attractor at 3A, and so
there are orbits going from the repelling periodic orbit to the attracting
periodic orbit corresponding to 3A.

As a consequence of the previous discussion, we obtain the following
lemma. For a more detailed discussion, see [1] and [20].

Lemma 5.4. Let (A,B, σ) be a revealing pair for an element g ∈ Vn.
Let λ be a vertex in LA,B,σ, then exactly one of the following holds.

(1) λ is periodic, in which case there is t > 0 such that gtλ = λ and
gt|Kλ = Id.

(2) Kλ contains a unique contracting periodic point p and there is
t > 0 such that gt(Kλ) ⊂ Kλ and gt|Kλ is contracting affinely
(i.e gt sends the interval Kλ into the interval gt(Kλ) in the
obvious way).

(3) Kλ contains a unique repelling periodic point p in λ and there
is r > 0 such that g−r(Kλ) ⊂ Kλ and g−r|Kλ is contracting
affinely.

(4) There exist s ≥ 0, r ≥ 0 such that gs(λ) and gr(λ) are ver-
tices but not roots of components of Y and X respectively. In
this case, the following property holds. As n→∞, gn(Kλ) gets
contracted affinely converging towards an attracting periodic or-
bit of g and g−n(Kλ) gets attracted towards a repelling periodic
orbit of g.

In the proof of Theorem 5.1, we use the following notation which
makes the proof easier to digest.

Definition 5.2 (Neighborhoods). In the Cantor set Kn, let us consider
the metric coming from the standard embedding of Kn in the interval
[0, 1]. For a point p ∈ Kn and ε > 0, we define the neighborhood Nε(p)
as the maximal elementary interval I such that p ∈ I and length(I) < ε.
Similarly, if S is a finite set, we define Nε(S) := ∪s∈SNε(s).

Definition 5.3. For any element g ∈ Vn, we define the following:

Att(g) := { p ∈ Kn such that p is periodic and attracting}
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Rep(g) := { p ∈ Kn such that p is periodic and repelling}
Per0(g) := Att(g) ∪ Rep(g)

By Lemma 5.4, both sets Att(g) and Rep(g) are finite. Hence the set
Per0(g) is also finite.

As a conclusion of Lemma 5.4 we obtain the following lemma that
enumerates all the dynamical properties of the action of elements Vn
on Kn that we will use.

Lemma 5.5. Given an element g ∈ Vn there exist two g−invariant
clopen sets Ug, Vg (i.e. finite union of elementary intervals in Kn)
such that:

(1) Kn = Ug ∪ Vg.

(2) g|Ug has finite order.

(3) There are finitely many periodic points of g contained in Vg( the
set Per0(g)) and the dynamics of g|Vg are “attracting-repelling”
i.e. for every ε > 0, there exists m0 such that, for m ≥ m0, we
have:

gm(Vg \Nε(Rep(g))) ⊂ Nε(Att(g))

g−m(Vg \Nε(Att(g))) ⊂ Nε(Rep(g)).

(4) If ε is small enough, for any point p ∈ Att(g), there exists s
(the period of p) such that gs(Nε(p)) ⊂ Nε(p) and gs|Nε(p) is
an affine contraction. The analogous condition also holds for
points in Rep(g).

5.3. Proof of Theorem 5.1. The idea of the proof of Theorem 5.1
is to use the “attracting-repelling” dynamics of elements of Vn and the
“ping-pong” lemma to obtain a free subgroup F2 contained in Γ (this
strategy was the one used by Margulis to prove his “alternative” for
Homeo(S1), see [18]). To illustrate the idea of the proof, suppose our
group G contains two elements f and h such that h sends Per0(f)∪Uf
disjoint from itself. In that case, if we consider the element g = hfh−1,
the sets Per0(f) ∪ Uf and Per0(g) ∪ Ug are disjoint.

Under this last condition, one can apply the ping-pong lemma (see
[16], Ch. 2) as follows to show that 〈fn, gn〉 generate a free group if n
is large enough. Let us take small disjoint neighborhoods Nε(Per0(f))
and Nε(Per0(g)) and consider the set

X = K \ (Uf ∪ Ug ∪Nε(Per0(f)) ∪Nε(Per0(g))).



DISTORTION AND TITS ALTERNATIVE IN M∞(S,K) 33

If we take ε small enough, then X 6= ∅, and, by Lemma 5.5, if n is large
enough, we have

fn(X) ⊂ Nε(Att(f))

f−n(X) ⊂ Nε(Rep(f))

and we also have

fn(Nε(Per0(g))) ⊂ Nε(Att(f))

f−n(Nε(Per0(g))) ⊂ Nε(Rep(f)).

The corresponding statement for gn and g−n are also true. This im-
plies that fn, gn generate a free group, as for any nontrivial word w
on the elements fn, gn, we have by the “ping-pong” argument that
w(X) ⊂ Nε(Per0(f) ∪ Per0(g)) and therefore w 6= Id.

As a conclusion, we have proved the following lemma:

Lemma 5.6. Let Γ ⊂ Vn. If there are two elements f, h ∈ Γ such that
the sets Per0(f)∪Uf and h(Per0(f)∪Uf ) are disjoint, then Γ contains
a free subgroup on two generators.

To prove Theorem 5.1, we will show that either a pair of elements
f, h of Γ as in Lemma 5.6 exists or that Γ has a finite orbit in Kn. The
following result is the key lemma for proving the existence of such an
element h sending Per0(f) ∪ Uf disjoint from itself. It is based on a
recent proof by Camille Horbez (See [6], Sec.3, [7]) of the Tits alterna-
tive for mapping class groups, outer automorphisms of free groups and
other related groups.

Lemma 5.7. Let Γ be a countable group acting on a compact space
K by homeomorphisms and let F ⊂ K be a finite subset. Then either
there is finite orbit of Γ on K or there exists an element g ∈ Γ sending
F disjoint from itself (i.e. g(F ) ∩ F = ∅).

Before beginning the proof of Lemma 5.7, we recall the following
basic notions of random walks on groups and harmonic measures.

For a discrete group Γ, let us take a probability measure µ on Γ and
suppose that 〈supp(µ)〉 = Γ. Suppose our group Γ acts continuously
on a compact space X. A harmonic measure in X for (Γ, µ) is a Borel
probability measure ν on X such that µ ∗ ν = ν, where ”∗” denotes
the convolution operator. This means that, for every ν-measurable set
A ⊆ X,

(2) ν(A) =
∑
g∈Γ

ν(g−1(A))µ(g)



DISTORTION AND TITS ALTERNATIVE IN M∞(S,K) 34

A harmonic measure always exists (see the proof below) and one can
think of it as a measure on X that is invariant under the action of Γ
on average (with respect to µ).

Proof of Lemma 5.7. Suppose that there is no element of Γ sending
F disjoint from itself. Let n = |F |. If n = 1, the theorem is obvi-
ous and so we assume n > 1. Consider the diagonal action of Γ on
Kn. Let ~p = (p1, p2, ..., pn) be an n-tuple consisting of the n different
elements of F in some order. We take a probability measure µ sup-
ported in our group Γ such that 〈suppµ〉 = Γ and take a harmonic
probability measure ν on Kn supported in Γ~p. Such a harmonic mea-
sure ν can be obtained as follows: Take the Dirac probability measure
δ~p in Kn supported in {~p} and consider the averages of convolutions

νl := 1
l

∑l
i=1 µ

i∗δ~p (µi is the measure obtained by convoluting µ i times
with itself). Then ν can be taken as any accumulation point of νl in
the space of probability measures in Kn.

Observe that, by our assumption, for each g ∈ Γ, the element g(~p)
is contained in a set of the form K l × {pi} ×Km for some integers i, l
and m such that l +m = n− 1 and therefore:

Γ~p ⊂
⋃

0≤i≤n, l+m=n−1

K l × {pi} ×Km.

As ν(Γ~p) = 1, we can conclude that there exist integers i, l and m such
that ν(K l × {pi} ×Km) > 0.

Let us take q ∈ K such that ν(K l × {q} ×Km) is maximal. We will
show that q has a finite Γ-orbit. Observe that, for g ∈ Γ, g(K l×{q}×
Km) = K l × {g(q)} ×Km and, therefore,

ν(K l × {q} ×Km) =
∑
i

ν(K l × {g−1
i (q)} ×Km)µ(gi).

So we obtain by our maximality assumption that ν(K l×{q}×Km) =
ν(K l×{g−1(q)}×Km) for every g in the support of µ. Hence this also
holds for every g ∈ Γ. But being ν a probability measure this can only
happen if the orbit Γ(q) is finite and so we are done. �

Remark 5.1. One can also conclude with a little bit more of extra work
that, for some i, Γ(pi) is a finite orbit. We will not make use of this
fact.

The following proposition is our main tool to construct free sub-
groups of a subgroup Γ of Vn.
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Proposition 5.8. Suppose f, g ∈ Γ ⊂ Vn are such that Uf and Ug are
disjoint and suppose there is no periodic orbit for Γ in Kn. Then, there
exists a free subgroup on two generators contained in Γ.

Proof. Taking powers of f and g we can suppose that f |Uf = Id,
g|Ug = Id and that the repelling and attracting periodic points of f
and g are fixed by f and g respectively. We will prove that, given
any ε > 0, there exists an element wε ∈ G such that Per0(wε) ∪ Uwε
is contained in Nε(Per0(f) ∪ Per0(g)). First, let us show this implies
Proposition 5.8.

By Lemma 5.7, we can find an element h ∈ Γ sending Per0(f) ∪
Per0(g) disjoint from itself. Hence, if ε is small enough, h sendsNε(Per0(f))∪
Nε(Per0(g)) disjoint from itself, which implies that the sets Per0(wε)∪
Uwε and h(Per0(wε) ∪ Uwε) are disjoint. By Lemma 5.6, Γ contains a
free subgroup.

We will prove that our desired element wε can be taken of the form
wε := gm1fm2 . To illustrate the idea of the proof of this fact, sup-
pose first that Per0(f) and Per0(g) are disjoint. In this case, let
us define the set V := Vf − Nε(Rep(f)). Take ε small enough so
that, for a point p ∈ Att(f) either Nε(p) ⊂ Ug or Nε(p) is con-
tained in Vg \ Nε(Rep(g)). Also, take ε small enough so that the sets
Nε(Att(f)), Nε(Rep(f)), Nε(Att(g)) and Nε(Rep(g)) are pairwise dis-
joint. By Lemma 5.5, we can take m large enough so that fm(V ) ⊂
Nε(Att(f)) and gm(Nε(Att(f))) ⊂ Nε(Att(f) ∪ Att(g)). As a conclu-
sion, we obtain that:

(3) gmfm(V ) ⊂ Nε(Att(f)) ∪Nε(Att(g)).

Also, if we consider the set U := Uf \Nε(Rep(g)), taking m larger if
necessary, we have

(4) gmfm(U) = gm(U) ⊂ gm(Vg \Nε(Rep(g))) ⊂ Nε(Att(g)).

As we are assuming for the moment that the sets Per0(f) and Per0(g)
are disjoint, we also obtain that

(5) gmfm(Nε(Att(f)) ∪Nε(Att(g))) ⊂ Nε(Att(f)) ∪Nε(Att(g))

Inclusions 3, 4 and 5 imply that, for ε small enough and m suffi-
ciently large, all the periodic points of wε := gmfm in K \Nε(Rep(f)∪
Rep(g)) ⊂ U ∪ V must be contained in Nε(Att(f)) ∪ Nε(Att(g)) and
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therefore the periodic points of wε must be contained in Nε(Per0(f))∪
Nε(Per0(g)) as we wanted.

To finish the proof of Proposition 5.8, we need to deal with the case
where Per0(f) and Per0(g) have points in common. This case is signif-
icantly trickier but the proof is similar to the one above. We include
this case as an independent lemma:

Lemma 5.9. Let f , g be elements of Vn such that Uf and Ug are dis-
joint. For every ε > 0, we can find an element wε ∈ Vn of the form
wε = gm1fm2 such that all the periodic points of wε ( i.e. Uwε∪Per0(wε))
are contained in Nε(Per0(f) ∪ Per0(g)).

Proof. We can suppose all the periodic points of f and g are fixed and,
taking ε > 0 small enough, we can suppose that for p ∈ Per0(f) ∪
Per0(g), the sets Nε(p) are pairwise disjoint and entirely contained in
the sets Uf , Vf , Ug, Vg if p intersects such a set.

Let ε0 := ε and take an integer n large enough such that

gn(Vg \Nε0(Rep(g))) ⊂ Nε0(Att(g)).

Choose 0 < ε1 < ε0 small enough so that

Nε1(Att(g) ∩ Rep(f)) ⊂ gn(Nε0(Att(g) ∩ Rep(f)))

and
gn(Nε1(Rep(g) ∩ Att(f))) ⊂ Nε0(Rep(g) ∩ Att(f)).

Finally choose an integer m large enough so that

fm(Vf \Nε1(Rep(f))) ⊂ Nε1(Att(f)).

We can now define the sets

Wg := Vg \Nε0(Rep(g) ∪ (Att(g) ∩ Rep(f)))

and

Aε0,ε1 := Nε0(Att(g) ∩ Rep(f)) \Nε1(Att(g) ∩ Rep(f)).

We observe that by our choices of ε0, ε1 and n, we have:

(6) gn(Wg) ⊂ Nε0(Att(g) \ Rep(f)) ∪ Aε0,ε1 .
We will show that the element wε := gnfm has the desired properties.

One should have in mind that m is chosen much bigger than n in order
to guarantee that all the points in Att(f)∩Rep(g) are attractors for wε.
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We define the set:

X := Nε0(Att(f)) ∪Nε0(Att(g) \ Rep(f)) ∪ Aε0,ε1 .
First, we show that X is attracting most of K towards itself. More
concretely, we show the following:

Lemma 5.10. For the set X defined above, the following properties
hold:

(1) gnfm(X) ⊂ X (Invariance)
(2) gnfm(K \Nε0(Rep(f) ∪ Rep(g))) ⊂ X. (Contractivity)

Proof. We start by proving item (1). X was defined as the union of
the sets Nε0(Att(f)), Nε0(Att(g)\Rep(f)) and Aε0,ε1 , we will show that
when we apply gnfm to each of these sets, the resulting set is still
contained in X. Let us start with Nε0(Att(f)). We have:

gnfm(Nε0(Att(f))) ⊂ gn(Nε1(Att(f))).

To understand gn(Nε1(Att(f))), we consider each of the cases whether
Att(f) intersects the sets Per0(g), Ug or none of them. Observe the fol-
lowing:

• By our choice of ε1, we have:

gn(Nε1(Att(f) ∩ Rep(g))) ⊂ Nε0(Att(f) ∩ Rep(g)) ⊂ X.

• As g is attracting in Nε1(Att(g)), we have:

gn(Nε1(Att(f) ∩ Att(g))) ⊂ Nε1(Att(f) ∩ Att(g)) ⊂ X.

• As g|Ug = Id, we have:

gn(Nε1(Att(f)) ∩ Ug) = Nε1(Att(f)) ∩ Ug ⊂ X

• As Vg \ Nε(Per0(g)) ⊂ Wg and by Inclusion 6 we know that
gn(Wg) ⊂ Nε0(Att(g) \ Rep(f)) ∪ Aε0,ε1 ⊂ X, we have:

gn(Nε1(Att(f)) ∩ (Vg \Nε(Per0(g)))) ⊂ gn(Wg) ⊂ X.

As s consequence, we obtain that gn(Nε1(Att(f))) ⊂ X and therefore
gnfm(Nε0(Att(f))) ⊂ X as we wanted.

We now consider the set Nε0(Att(g) \ Rep(f)). We distinguish two
cases, whetherNε0(Att(g)\Rep(f)) intersects Uf , or Vf . Let us consider
the former case first. Observe that:

(7) fm(Nε0(Att(g) \ Rep(f)) ∩ Uf ) = Nε0(Att(g) \ Rep(f)) ∩ Uf .
We clearly have:

(8) gn(Nε0(Att(g) \ Rep(f))) ⊂ Nε0(Att(g) \ Rep(f)).



DISTORTION AND TITS ALTERNATIVE IN M∞(S,K) 38

From Inclusions 7 and 8 we obtain:

(9) gnfm(Nε0(Att(g) \ Rep(f)) ∩ Uf ) ⊂ X.

Now we consider the set Nε0(Att(g) \ Rep(f)) ∩ Vf . We have:

gnfm(Nε0(Att(g) \ Rep(f)) ∩ Vf ) ⊂ gnfm(Vf \Nε0(Rep(f))).

Observe that fm(Vf \Nε0(Rep(f))) ⊂ Nε1(Att(f)). We have already
proved that gn(Nε1(Att(f))) ⊂ X and so together with Inclusion 9 we
have

gnfm(Nε0(Att(g) \ Rep(f))) ⊂ X

as we wanted.

It remains to show that gnfm(Aε0,ε1) ⊂ X. Observe that Aε0,ε1 ⊂
Vf \ Nε1(Rep(f)) and also that fm(Vf \ Nε1(Rep(f))) ⊂ Nε1(Att(f)).
Using the fact that gn(Nε1(Att(f))) ⊂ X as we proved before, we
obtain:

gnfm(Aε0,ε1) ⊂ gn(Nε1(Att(f))) ⊂ X.

We have shown so far that gnfm(X) ⊂ X. Along the way we also
proved that gnfm(Vf \ Nε0(Rep(f))) ⊂ X. To conclude the proof of
Lemma 5.10, we only need to show that gnfm(Uf \Nε0(Rep(g))) ⊂ X.

As the set Uf is contained in the set Vg (because Uf and Ug are
disjoint) and so the inclusion Uf \Nε0(Rep(g)) ⊂ Wg holds, we obtain:

gnfm(Uf \Nε0(Rep(g))) = gn(Uf \Nε0(Rep(g))) ⊂ gn(Wg)

and by Inclusion 6 we have:

gn(Wg) ⊂ Nε0(Att(g) \ Rep(f)) ∪ Aε0,ε1 ⊂ X

and so we are done with the proof of Lemma 5.10. �

Now, to finish the proof of Lemma 5.9 observe that as X ⊂ K \
Nε(Rep(f) ∪Rep(g)) and wε(K \Nε(Rep(f) ∪Rep(g))) ⊂ X, we have
that all the periodic points of wε contained in K \Nε(Rep(f)∪Rep(g))
are actually contained in X, which is a subset of Nε(Att(f) ∪ Att(g)).
Therefore the periodic points of wε (namely the set Uwε ∪ Per0(wε))
must be contained in Nε(Per0(f) ∪ Per0(g)) as we wanted. �

�

As a consequence of Proposition 5.8, for any group Γ ⊂ Vn, either
there is a finite orbit, a free subgroup, or for every pair of elements f, g
in Γ, we have Uf ∩ Ug 6= ∅. We will generalize Proposition 5.8 to an
arbitrary number of group elements of Γ. For any finite set F ⊂ Γ, we
define the set KF := ∩g∈FUg.
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Proposition 5.11. Suppose the action of Γ ⊂ Vn on the Cantor set
Kn does not have a finite orbit. Then, for every finite set F ⊂ Γ, there
exists a finite set SF ⊂ K such that, for any ε > 0, there exists an
element hε ∈ Γ with the following properties:

(1) the set Uhε ∪ Per0(hε) (the set of periodic points of hε) is con-
tained in KF ∪Nε(SF ).

(2) hε fixes point-wise KF .

Proof. The proof is by induction on the size of the set F . The proposi-
tion is clearly true if the set F contains only one element. Suppose the
result is true for a set F and let F ′ = F ∪{g}. By induction hypothesis,
we can find a finite set SF for F with the desired properties. Consider
the set SF ′ := SF ∪ Per0(g). Given ε > 0 we can find hε that fixes
KF whose periodic points are contained in KF ∪Nε/2(SF ). By taking
powers of hε, we can suppose that hε fixes point-wise the clopen set
Uhε . We can also suppose that Ug is fixed by g by replacing g with a
power gk. Observe that both hε and g fix the set K ′ := Uhε ∩ Ug, and
so we have two elements g and hε preserving the clopen set C := K\K ′.

We now consider the actions of g and hε on our new Cantor set C.
Restricted to C, we have Uhε ∩ Ug = ∅ and so we are in position to
apply Proposition 5.9 (see Remark 5.2 below) to find an element h′ε
in the subgroup 〈hε, g〉 ⊆ Γ such that all the periodic points of h′ε in
C are contained in the set Nε/2(Per0(hε) ∪ Per0(g)). As Per0(hε) ⊂
Nε/2(SF ), we obtain that Per0(h′ε) ⊂ Nε(SF ′) and that Uh′ε is contained
in (Uhε ∩ Ug) ∪Nε(SF ′), which is a subset of KF ′ ∪Nε(SF ′) and so we
are done. �

Remark 5.2. Even though Proposition 5.9 is stated for our original
Cantor set Kn, it works equally well for actions on clopen sets C ⊂ Kn.

By applying Lemma 5.7, we have the following corollary generalizing
Proposition 5.8:

Corollary 5.12. For every subgroup Γ ⊂ Vn one of the following holds:

(1) The action of Γ on Kn has a finite orbit.
(2) Γ contains a free subgroup on two generators.
(3) The set KΓ := ∩g∈ΓUg is non-empty.

Proof. Suppose Γ does not have a finite orbit and KΓ = ∅. By the finite
intersection property for compact sets, there is a finite set F ⊂ Γ such
that KF = ∅. By Proposition 5.11, we can find a finite set SF ⊂ K
such that, for every ε > 0, there is an element hε in Γ whose periodic
points are contained in Nε(SF ). By Lemma 5.7, we can find an element
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t sending SF disjoint from itself and therefore also sending Nε(SF )
disjoint from itself for ε small enough, which implies by Lemma 5.6
that there is a free group on two generators contained in Γ and we are
done.

�

We will finish the proof of Theorem 5.1 by proving the following
lemma. It is important to point out that it is the only place where we
use the finite generation condition on Γ.

Lemma 5.13. If Γ is a finitely generated subgroup of Vn and KΓ :=
∩g∈ΓUg 6= ∅, then the action of Γ on K has a finite orbit.

Proof. Observe that KΓ is Γ-invariant and therefore there is a minimal
closed set Λ ⊂ KΓ which is invariant under the action of Γ on K. If
the minimal set Λ is a finite set, then Γ has a finite orbit and we are
done. We will now show that if Λ were infinite, then there would exist
an element g in Γ with an attracting fixed point in Λ, contradicting
that Λ ⊂ KΓ ⊂ Ug.

Let S be a finite generating set for Γ. We can take ε0 > 0 such that
for any g ∈ S and any elementary interval I of size less than ε0, the
element g maps affinely I into the elementary interval g(I). We also
take ε1 < ε0, such that for any elementary interval I of size less than
ε1 and g ∈ S, we have that g(I) is an elementary interval of size less
than ε0.

Take x ∈ Λ. For every elementary interval In of length less than ε1
containing x, we will show arguing by contradiction that there exists
gn ∈ Γ such that ε1 ≤ |gn(In)| ≤ ε0 and such that gn|In is affine. Sup-
pose that there is no such gn in Γ. In this case, proceeding by induction
on the word length of g ∈ Γ, we can see that for every g ∈ Γ, g|In is an
affine map and that |g(In)| < ε1.

As the orbit Γ(x) is dense in Λ and as Λ is infinite, the point x is a
non-trivial accumulation point of Γ(x). Hence, for every In containing
x, there exists hn ∈ Γ such that hn(x) ∈ In and therefore the inter-
section hn(In) ∩ In is non-trivial. Furthermore, we can suppose that
hn(x) 6= x. Remember that for any pair of elementary intervals In, Im,
either one is contained in the other one or they are disjoint.

Therefore as the elementary intervals In and hn(In) intersect, ei-
ther hn(In) = In or one interval is contained strictly in the other
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one. If In = hn(In), then hn|In = Id because hn is affine, contra-
dicting that hn(x) 6= x. We can then suppose that hn(In) is contained
strictly into In. As the map hn|In is affine, hn is a contraction inside
In and therefore hn has exactly one contracting fixed point y ∈ In.
This implies that y does not belong to Uhn , contradicting the fact that
y = liml→∞ h

l
n(x) ∈ Λ ⊂ KΓ.

In conclusion, we found a contradiction for the non-existence of gn
and so for every elementary interval In of size less than ε1 containing x,
there exists gn ∈ Γ such that gn(In) is an elementary interval, gn|In is
affine and ε1 ≤ |gn(In)| ≤ ε0. As there is a finite number of elementary
intervals satisfying ε1 ≤ |I| ≤ ε0, there exist two intervals Im, Il, one
contained strictly in the other (Let’s say Il ⊂ Im) such that gm(Im) =
gl(Il). This implies the element g := g−1

l gm is affine on Im and hence
g|Im is a contraction, which implies that there is a unique contracting
fixed point y for g in Im. Hence y 6∈ Ug, but y = limn→∞ g

n(x) and
therefore y also belongs to Λ. This contradicts the inclusion Λ ⊂ KΓ ⊂
Ug. Therefore, we obtain a contradiction to the fact that Λ is infinite.

�

References

[1] Bleak, Collin, et al. ”Centralizers in R. Thompson’s group Vn.” arXiv
preprint arXiv:1107.0672 (2011).

[2] Bavard, Juliette. ”Hyperbolicite du graphe des rayons et quasi-morphismes
sur un gros groupe modulaire.” arXiv preprint arXiv:1409.6566 (2014).

[3] Brin, Matthew G. ”Higher dimensional Thompson groups.” Geometriae
Dedicata 108.1 (2004): 163-192.

[4] Calegari Danny, Blogpost: https://lamington.wordpress.com/2014/10/24/mapping-
class-groups-the-next-generation/

[5] Cannon, James W., William J. Floyd, and Walter R. Parry. ”Introduc-
tory notes on Richard Thompson’s groups.” Enseignement Mathmatique
42 (1996): 215-256.

[6] Horbez, Camille. ”A short proof of Handel and Mosher’s alternative for
subgroups of textOut(FN ).” arXiv preprint arXiv:1404.4626 (2014).

[7] Horbez, Camille. ”The Tits alternative for the automorphism group of a
free product.” arXiv preprint arXiv:1408.0546 (2014).

[8] Fisher, David. ”Groups acting on manifolds: around the Zimmer program.”
arXiv preprint arXiv:0809.4849 (2008).

[9] J. Franks, M. Handel, Distortion elements in group actions on surfaces,
Duke Math. J. 131 (2006), no 3, 441-468.

[10] J. Franks, M. Handel, Periodic points of Hamiltonian surface diffeomor-
phisms, Geom. Topol. 7 (2003), 713-756.

[11] Funar, Louis, and Yurii Neretin. ”Diffeomorphisms groups of Cantor sets
and Thompson-type groups.” arXiv preprint arXiv:1411.4855 (2014).



DISTORTION AND TITS ALTERNATIVE IN M∞(S,K) 42

[12] Farb, Benson, Alexander Lubotzky, and Yair Minsky. ”Rank-1 phenomena
for mapping class groups.” Duke Mathematical Journal 106.3 (2001): 581-
597.

[13] A. Fathi, F. Laudenbach, V. Poenaru, Travaux de Thurston sur les surfaces,
Astrisque vol. 66, SMF, Paris, France.

[14] Ghys, Etienne. ”Groups acting on the circle.” Enseignement Mathema-
tique 47.3/4 (2001): 329-408.

[15] M. Gromov Asymptotic invariants of infinite groups. Geometric group the-
ory. Volume 2 Cambridge Univ. Press, Cambridge(1993), 1-295

[16] de La Harpe, Pierre. Topics in geometric group theory. University of
Chicago Press, 2000.

[17] M. W. Hirsch, Differential Topology, Graduate texts in Mathematics,
Springer.

[18] Margulis, Gregory. ”Free subgroups of the homeomorphism group of the
circle.” Comptes Rendus de l’Acadmie des Sciences-Series I-Mathematics
331.9 (2000): 669-674.

[19] Navas, Andres. Groups of circle diffeomorphisms. University of Chicago
Press, 2011.

[20] Salazar-Daz, Olga Patricia. ”Thompsons group V from a dynamical view-
point.” International Journal of Algebra and Computation 20.01 (2010):
39-70. APA

[21] Robert J. Zimmer, Ergodic theory and semisimple groups


	1. Introduction
	1.1. Distortion
	1.2. Tits alternative
	1.3. Outline of the article

	2. Distorted elements in smooth mapping class groups
	2.1. Reduction to Dehn twists
	2.2. Obstructions to distortion
	2.3. Proof of Theorem 2.1

	3. Independence of the surface
	4. Standard Cantor set
	5. Tits alternative
	5.1. Elements of Vn and tree pair diagrams
	5.2. Revealing pairs
	5.3. Proof of Theorem 5.1

	References

