astrophysical components namely CMB itself, Galactic emissions from dust and synchrotron, Sunyaev-Zel'dovich (SZ) clusters [12] to name a few. In the frequency range used for CMB observations [START_REF] Bouchet | Foregrounds and CMB Experiments: I. Semi-analytical estimates of contamination[END_REF], the observed data combines contributions from distinct astrophysical components the recovery of which falls in the frame of component separation. Following a standard practice in the field of component or source separation, which has physical grounds here, the observed sky is modeled as a linear mixture of statistically independent components. The observation with detector i is then a noisy linear mixture of n independent sources {s j } j=1,••• ,n : x i = n j=1 a ij s j + n i . The coefficient a ij reflects the emission law of source s j in the frequency band of the i-th sensor; n i models instrumental noise. When m sensors provide observations at different frequencies, this linear mixture model can be rewritten in a more convenient matrix formulation :

X = AS + N ( 1 
)
where X is the m × t data matrix the rows of which are the observed data maps in each channel, A is the m × n mixing matrix, S is the n × t source matrix the rows of which are the sources s j , and N is the m × t noise matrix. In practice, both the sources S and their emission laws reflected A may be unknown or only partly known. A component separation technique then aims at estimating both S and A from the data X. This problem refers to Blind Source Separation (BSS). Amongst all the physical components mixed in the observed data, each one raises scientific interest. Thus it would be worthwhile to devise a separation technique able to differentiate effectively between most physical components. Up to now, several source separation techniques have already been used in the field of CMB data studies. In this paper, we concentrate on two particular components: the CMB and the SZ components.

For such processes, state-of-the-art blind separation methods used on CMB data are:

-JADE which is a classical Independent Component Analysis technique based on fourth order statistics. Its effectiveness at extracting non-Gaussian components such as the SZ map was shown in [START_REF] Pires | Sunyaev-Zeldovich cluster reconstruction in multiband bolometer camera surveys[END_REF]. -Spectral Matching ICA (SMICA) (see [START_REF] Delabrouille | Multi-Detector Multi-Component spectral matching and applications for CMB data analysis[END_REF] and [START_REF] Moudden | Blind Component Separation in Wavelet Space: Application to CMB Analysis[END_REF]) has been devised to accurately separate the CMB component. SMICA assumes the case of mixed stationary Gaussian components in a noisy environment. It is based on second order statistics. In the Fourier representation, colored stationary Gaussian components are discernible based on the diversity of their power spectra. SMICA is then well adapted to Gaussian components such as CMB. Neither of the aforementioned techniques are able to effectively extract both the SZ and CMB maps. In this paper we propose a novel sparsity-based component separation technique coined Generalized Morphological Component Analysis (GMCA) which turns out to be well suited to the recovery of CMB and SZ components. Section 1 describes the GMCA model and the algorithm proposed to solve the corresponding optimization problem. Numerical experiments are given which illustrate the astounding performances of GMCA for CMB and SZ extraction in Section 2. Finally, we show in Section 2.2 that GMCA is versatile enough to account for physical priors.

Generalized Morphological Component Analysis

The GMCA model

In the previous section, we introduced the linear mixture model in Equation 1. We further assume that all the protagonists of the model in Equation 1 are random components (variables or vectors). More particularly, the entries of the noise matrix N are assumed to be independently distributed according to a zero mean Gaussian distribution with variance σ 2 i depending on the detector. From physical considerations, N models instrumental noise the level of which varies independently from one detector to another. N is thus a random Gaussian variable with zero mean and covariance matrix Γ N = diag(σ 2 1 , • • • , σ 2 m ). In practice, as the detectors are assumed to be accurately calibrated, Γ N is known with high precision. The log-likelihood function is then the following one :

log P (X A, S, Γ N ) = - 1 2 X -AS 2 2,ΓN + C ( 2 
)
where C is a constant. The notation . 2 2,ΓN stands for the Frobenius norm of Y in the noise covariance metric :

Y 2 2,ΓN = Trace Y T Γ N -1 Y .
From a Bayesian point of view, adding physical priors should help the separation task. We first assume no particular knowledge about the emission laws of the components modeled by A. For simplicity, we consider that each entry of the mixing matrix A is i.i.d.1 from a uniform zero mean distribution. Note that it would be possible to add some physical constraint on the emission laws reflected in A. In the general case, source separation is merely a question of diversity and contrast between the sources (see [START_REF] Cardoso | The three easy routes to independent component analysis: contrast and geometry[END_REF]). For instance, on the one hand JADE relies on non-gaussianity to distinguish between the sources. On the other, SMICA takes advantage of the diversity of the mixed components' power spectra to achieve the separation task. "Nongaussianity" and "power spectra diversity" are contrasts between the sources. A combination of both characteristics, "Non-gaussianity" and "power spectra diversity", was also proposed to separate CMB from kinetic SZ signal which are otherwise undistinguishable [7]. Recent work has already emphasized on sparsity as a source of diversity to improve component separation (see [START_REF] Zibulevsky | Blind Source Separation by Sparse Decomposition[END_REF] and [START_REF] Bobin | Morphological Diversity and Source Separation[END_REF]). In that setting, each source {s j } j=1,••• ,n is assumed to be sparse in a representation (potentially overcomplete) D. Formally, D is a fixed dictionary of signal waveforms written as a T × t matrix. We define the set of projection coefficients α j such that : ∀j ∈ {1, • • • , n}, s j = α j D. Any source s j is said to be sparse in D if most of the entries of α j are nearly zero and only a few have "significant" amplitudes. When D is overcomplete (T > t), D is called a dictionary. Overcomplete representations attractiveness in image processing theory leans on their potential to generate very sparse representations of data based on their morphological content (see e.g. [START_REF] Donoho | Uncertainty principles and ideal atomic decomposition[END_REF] and references therein). In the field of basic source separation we showed in [START_REF] Bobin | Morphological Diversity and Source Separation[END_REF] that morphological diversity and sparsity are key properties leading to better separation. We noticed that the gist of sparsity-based source separation methods leans on the rationale : "independent sources are distinctly sparse in a dictionary D". In that study, we considered the simple case of morphologically different sources : components were assumed to be sparsely represented in different sub-dictionaries. We illustrated that such sparsity prior provides a very effective way to distinguish between sources. In the present paper, we focus on a more general setting : the sources can have similar morphologies (i.e. all the sources are sparsely represented over the whole D). When the overcomplete dictionary D is made of the union of D orthonormal bases (i.e. D = [Φ 1 , • • • , Φ D ]) then each source is modeled as the linear combination of D so-called morphological components (see [START_REF] Starck | Image Decomposition Via the Combination of Sparse Representation and a Variational Approach[END_REF] for details on Morphological Component Analysis) -each morphological component being sparse in a different orthonormal basis

{Φ 1 , • • • , Φ D }: ∀j ∈ {1, • • • , n}, s j = D k=1 ϕ jk = D k=1 α jk Φ k (3) 
From a statistical viewpoint, we assume that the entries of α jk = ϕ jk Φ T k are i.i.d from a Laplacian probability distribution with scale parameter 1/µ:

P (ϕ jk ) ∝ exp -µ ϕ jk Φ T k 1 (4)
where the 1 -norm .

1 stands for x 1 = t p=1 |x[p]| in which x[p] is the p-th entry of x.
In practice, the Laplacian prior is well adapted to model leptokurtic sparse signals. We classically assume that the morphological components are statistically mutually independent : P (S) = j,k P (ϕ jk ). Estimating the sources S is then equivalent to estimating the set of morphological components {ϕ jk } j=1,••• ,n;k=1,••• ,D . In this Bayesian context, we propose to estimate those morphological components {ϕ jk } and the mixing matrix A from a maximum a posteriori (MAP) leading to the following optimization problem:

{ φjk }, Â = arg max {ϕ jk },A P (X|A, {ϕ jk }, Γ N ) j,k P (ϕ jk )P (A) (5) 
where we further assumed that the morphological components {ϕ jk } are independent of A. Owing to Equations 2 and 4, the mixing matrix A and the morphological components {ϕ jk } are obtained by minimizing the following negative log a posteriori:

{ φjk }, Â = arg min {ϕ jk },A X -AS 2 2,ΓN + 2µ n j=1 D k=1 ϕ jk Φ T k 1 (6) 
where ∀j ∈ {1, • • • , n}, s j = D k=1 ϕ jk . Equation 6 leads to the GMCA estimates of the sources and the mixing matrix in a general sparse component separation context. Interestingly, in the case of CMB data, the sources we look for (CMB, galactic dust and SZ) are quite sparse in the same unique orthonormal wavelet basis. The dictionary D then reduces to a single orthonormal basis Φ. In that case, since Φ is unitary, Equation 6 can be rewritten as follows :

α, Â = arg min α,A XΦ T -Aα 2 2,ΓN + 2µ α 1 = arg min α,A f µ (α, A) = arg min α,A f 0 (A, α) + 2µf 1 (α) (7) 
where α = SΦ T . Note that the estimation is done in the sparse representation Φ requiring a single transform of the data XΦ T . To remain computationally efficient, GMCA relies on practical transforms which generally involve fast implicit operators (typical complexity of O (t) or O (t log t)). In [START_REF] Zibulevsky | Blind Source Separation by Sparse Decomposition[END_REF], the authors also used a unique orthonormal wavelet basis. While a gradient descent is used in [START_REF] Zibulevsky | Blind Source Separation by Sparse Decomposition[END_REF], we use a fast and efficient iterative thresholding optimization scheme which we describe in the next section.

Solving the optimization problem

The maximum a posteriori estimates of the coefficients α and the mixing matrix in Equation 7 lead to a non-convex minimization problem. Note that in Equation 7 the functional to be minimized suffers from several invariances : any permutation or rescaling of the sources and the mixing matrix leaves the product Aα unaltered. The scale invariance is computationally alleviated by forcing the columns of A to have unit 2 norm : ∀i ∈ 1, • • • , n, a i T a i = 1 where a i is the i-th column of A. As solutions of problem (7) have no explicit formulation, we propose solving it by means of a block-coordinate relaxation iterative algorithm such that each iteration (h) is decomposed into two steps : (i) estimation of the sources S assuming the mixing matrix is fixed to its current estimate Â(h-1) and (ii) estimation of the mixing matrix assuming the sources are fixed to their current estimates Ŝ(h) . It is not difficult to see that the objective MAP functional in ( 7) is continuous on its effective domain and has compact level sets. Moreover, this objective function is convex in the source coefficient vectors (α 1 , . . . , α n ), and f 0 has an open domain, is continuous and Gâteaux differentiable. Thus by [13, Theorem 4.1], the iterates generated by our alternating algorithm are defined and bounded, and each accumulation point is a stationary point of the MAP functional. In other words, our iterative algorithm will converge. Hence, at iteration (h), the sources are estimated from a maximum a posteriori assuming A = Â(h-1) . By classical ideas in convex analysis, a necessary condition for α to be a minimizer is that the zero is an element of the subdifferential of the objective at α. We calculate2 :

∂ α f µ (α, A) = -2A T Γ N -1 (XΦ T -Aα) + 2µ∂ α α 1 (8) 
where ∂ α α 1 is defined as (owing to the separability of the prior):

∂ α α 1 =    U ∈ R n×t U j, k = sign(α j,k ), α j,k = 0 U j, k ∈ [-1, 1], α j,k = 0    .
Hence, Equation 8 can be rewritten equivalently as two conditions leading to the following (proximal) fixed point equation:

αj,k = 0, if A T Γ N -1 XΦ T j,k ≤ µ A T Γ N -1 (XΦ T -A α) = µ sign ( α) , otherwise. (9) 
Unfortunately, Equation 9has no closed-form solution in general. It must be iterated and is thus computationally demanding. Fortunately, it can be simplified when A has nearly orthogonal columns in the noise covariance matrix (i.e.

ÂT Γ N -1 Â diag ÂT Γ N -1 Â ). Let C = ÂT Γ N -1 Â -1
A T Γ N -1 XΦ T , Equation 9 boils down to the following set of

equations ∀j ∈ {1, • • • , n}: αj,k = 0, if |C j,k | ≤ µ (h) σ 2 j αj = [C] j -µσ 2 j sign ( αj ) , otherwise. (10) 
where [Y] j is the j-th row of Y. In practice, even if the approximation we make is not strictly valid, such a simplification leads to good computational results. These equations are known as soft-thresholding with threshold µ (h) σ 2 j . We define ST δ (.), the softthresholding operator with threshold δ. At iteration (h), the sources are thus estimated such that: α(h)

j = ST µ (h) σ 2 j [C] j (11) 
The jth source is reconstructed as ŝ(h)

j = α(h) j Φ.
The mixing matrix A is then estimated by a maximum likelihood estimate amounting to a simple least-squares update assuming S is fixed. The GMCA algorithm is then described as follows :

1. Set the number of iterations Imax and thresholds δ (0) j = µ (0) σ 2 j 2. While each µ (h) is higher than a given lower bound µ min (e.g. can depend on the noise variance), -Proceed with the following iteration to estimate source coefficients α at iteration h assuming A is fixed:

α(h) j = ST µ (h) σ 2 j ÂT Γ N -1 Â -1 ÂT Γ N -1 XΦ T j :
-Update A assuming α is fixed :

Â(h) = XΦ T αT αα T -1
-Decrease the threshold µ (h) following a given strategy Note that the overall optimization scheme is based on an iterative and alternate thresholding algorithm involving a coarse to fine estimation process. Indeed, coarse versions of the sources (i.e. containing the most "significant" features of the sources) are first computed with high values of µ (h) . In the early stages of the algorithm, the mixing matrix is then estimated from the most "significant" features of the sources which are less perturbed by noise. The estimation of A and S is then refined at each iteration as µ (h) (and thus the thresholds {µ (h) σ 2 j } j=1,••• ,n ) decreases towards a final value µ min . We already used this minimization scheme in [START_REF] Bobin | Morphological Diversity and Source Separation[END_REF] where this optimization process provided robustness and helped convergence even in a noisy context. Experiments in Section 2 illustrate that it achieves good results with GMCA as well.

Application to CMB and SZ reconstruction

Blind component separation

The method described above was applied to synthetic data composed of m = 6 mixtures of n = 3 sources : CMB, galactic dust emission and SZ maps illustrated in Figure 1 and 2. The synthetic data mimic the observations that will be acquired in the six frequency channels of Planck-HFI namely : 100, 143, 217, 353, 545 and 857 GHz featured Figure 2. White gaussian noise N is added with diagonal covariance matrix Γ N reflecting the foreseen Planck-HFI noise levels. Experiments were led with 7 global noise levels with SNR from 1.7 to 16.7dB such that the experimental noise covariance Γ N was proportional to the nominal noise covariance. Note that the nominal Planck-HFI global noise level is about 10dB. Each measurement point was computed from 30 experiments involving random noise, randomly chosen sources from a data set of several simulated CMB, galactic dust and SZ 256 × 256 maps. Separation was obtained with GMCA using a single orthonormal wavelet basis. Figure 3 depicts the average correlation coefficients over experiments (with ±σ bars) between the estimated source map and the true source map. Figure 3 upper left panel shows the correlation coefficient between the true simulated CMB map and the one estimated by JADE (dotted line with 2), SMICA (dashed line with •) and GMCA (solid line). The CMB map is well estimated by SMICA, which indeed was designed for the blind separation of stationary colored Gaussian processes, but not as well using JADE as one might have expected. GMCA turns out to perform similarly to SMICA. In upper right panel of Figure 3, galactic dust is well estimated by both GMCA and SMICA. The SMICA estimates seem to have a slightly higher variance than GMCA estimates for higher global noise levels (SNR lower than 5 dB). Finally, the lower left panel shows that GMCA gives better estimates of the SZ map than SMICA when the noise variance increases. At first sight GMCA is a general method for providing simultaneously good SZ and CMB estimates as it seems to perform similarly to state-ofthe-art blind component separation techniques for CMB data. In a noisy context, assessing separation techniques turns out to be more accurate using a mixing matrix criterion. We define the mixing matrix criterion ∆ A = I -P Â-1 A 1,1 (where P is a matrix that reduces the scale/permutation indeterminacy of the mixing model, and . 1,1 is the entrywise 1 matrix norm). Indeed, when A is perfectly estimated, it is equal to  up to scale and permutation. As we entirely manage our experiments, the true sources and mixing matrix are known and thus P can be computed easily. The mixing matrix criterion is thus strictly positive unless the mixing matrix is perfectly estimated up to scale and permutation. This mixing matrix criterion is experimentally much more sensitive to separation error. The bottom right panel of Figure 3 illustrates the behavior of the mixing matrix criterion ∆ A with JADE, SMICA and GMCA as the global noise variance varies. GMCA clearly outperforms SMICA and JADE when applied to CMB data.

Adding some physical constraint : the versatility of GMCA

In practice, the separation task is only partly blind. Indeed, the CMB emission law is extremely well-known. In this section, we illustrate that GMCA is versatile enough to account for such prior knowledge. In the following experiment, CMB-GMCA has been designed by constraining the column of the mixing matrix A related to CMB to its true value. This is equivalent to placing a strict prior on the CMB column of A; that is P (a cmb ) = δ(a cmb -a cmb 0 ) where δ(.) is the Dirac measure and a cmb 0 is the true simulated CMB emission law in the frequency range of Planck-HFI. Figure 4 shows the correlation coefficients between the true source maps and the source maps estimated using GMCA with and without the CMB prior. As expected, the top left picture of Figure 4 that assuming a cmb 0 is known improves the estimation of CMB. Interestingly, the galactic dust map (top right of Figure 4) is also better estimated. As a matter of fact, CMB and galactic emission both have large scale structures a better estimate of CMB automatically results in a better reconstruction of the galactic signal. Furthermore, the CMB-GMCA SZ map estimate is likely to have a lower variance (lower panel of Figure 4). Moreover, it is likely to provide more robustness to the SZ and galactic dust estimates thus enhancing the global separation performances.

Conclusion

In this paper we underlined that recovering information from CMB data requires solving a blind source separation issue (BSS). Several BSS techniques have already been applied to CMB data without providing good global performances. In this paper, we provide a sparsity-based source separation method coined Generalized Morphological Component Analysis (GMCA) which turns to give astounding results to effectively recover both CMB and SZ maps. In that context, sparsity enhances the contrast between the sources leading to an improved separation task even in a noisy context. In the blind case, when no prior knowledge is assumed on the emission laws of the components, GMCA outperforms state-of-the-art blind component separation techniques already applied to CMB data. Furthermore, GMCA is versatile enough to easily include some prior knowledge of the emission laws of the components. This is an extremely valuable feature of the proposed method in the case of CMB data analysis. Indeed, the CMB has a known black-body spectrum. Including this information in the GMCA algorithm enhances the source separation globally. Future work will be devoted to taking advantage of GMCA's versatility to adapt to more complex physical models.
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 1 Fig. 1. The simulated sources -Left: CMB. Middle: galactic dust emission. Right: SZ map.
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 2 Fig. 2. The observed CMB data -global SNR = 2.7dB
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 3 Fig. 3. Correlation coefficients between the estimated source map and the true source map -Top left: CMB. Top right: galactic dust. Bottom left: SZ map. Bottom right: mixing matrix criterion ∆ A Legend : JADE : dotted line with 2 -SMICA : dashed line with • -GMCA : solid line. Abscissa : SNR in dB.
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 4 Fig. 4. Correlation coefficients between the estimated sources and the true sources -Top left: CMB. Top right: galactic dust. Bottom: SZ map. Legend : CMB-GMCA : dashed line with -GMCA : solid line. Abscissa : SNR in dB. Ordinate : correlation coefficient.
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Independently and identically distributed.

For clarity, we drop the upper script (h -1) and write  = Â(h-1) .