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In most of gravity balancing approaches devoted to robot manipulators, the gravity compensation is carried out for cancelling of the static efforts due to robot element masses, as well as a fixed payload. When the payload is variable, i.e. if for each cycle of the robot operation it is different, the known compensation techniques are not efficient. Some solutions permitting to compensate the gravity effects of variable payloads have been developed. However, they have similar drawbacks. To adapt the robot to the changing payload it is necessary: i) to increase the number of actuators and ii) to bring energy inside the system, i.e. the adaption technique is not energy efficient.

This paper deals with a new gravity-compensation system for cancellation of the static loads of the changing payload. It is shown that the adaption to a new manipulated payload does not need to bring energy inside the system, i.e. the adaption technique is energy efficient. Simulations of the suggested mechanism by using ADAMS software are performed and show the efficiency of the proposed solution.

I. Introduction

Any mechanism is statically balanced (also denoted as gravity-balanced) if its potential energy is constant for all possible configurations. With regard to the static balancing in robotics, this term differs from the first definition because in this case, the aim of the balancing is the minimization or cancellation of input efforts of a mechanical system by means of gravitational force balancing. This means that the mechanism is statically stable for any configuration; i.e., zero actuator input efforts due to the static loads are required.

For static balancing of robot mechanisms, different approaches and solutions have been developed and documented. The balancing schemes for robotic systems can be systematized by taking into account the nature of the compensation force:

• with counterweights (group A): this is a classical approach which consists in adding counterweights in order to keep the total centre of mass of moving links stationary [START_REF] Dunlop | Gravity counter balancing of parallel robot for antenna aiming[END_REF][START_REF] Kazerooni | A new architecture for direct drive robots[END_REF][START_REF] Kazerooni | Statically balanced direct drive manipulator[END_REF][START_REF] Gosselin | On the design of gravity-compensated six-degree-of-freedom parallel mechanisms[END_REF][START_REF] Wang | Static balancing of spatial three-degreeof-freedom parallel mechanisms[END_REF][START_REF] Newman | the optimal control of balanced manipulators[END_REF][START_REF] Gosselin | Smart Devices and Machines for Advanced Manufacturing, chapter Gravity compensation, static balancing and dynamic balancing of parallel mechanisms[END_REF][START_REF] Wang | Static balancing of spatial four-degreeof-freedom parallel mechanisms[END_REF][START_REF] Laliberté | Static balancing of 3-DOF planar parallel mechanisms[END_REF].

• with spring (group B): the approaches developed in this group are based on the use of either zero-free length springs or non zero-free length springs [START_REF] Gopalswamy | A new parallelogram linkage configuration for gravity compensation using torsional springs[END_REF][START_REF] Shin | Spring equilibrator theory for static balancing of planar pantograph linkages[END_REF][START_REF] Streit | Equilibrators for planar linkages[END_REF][START_REF] Rahman | A simple technique to passively gravity-balance articulated mechanisms[END_REF][START_REF] Pons | Quasi-exact linear spring counter gravity system for robotic manipulators[END_REF][START_REF] Gosselin | Computational Methods in Mechanical Systems: Mechanism Analysis, Synthesis, and Optimization, chapter On the design of efficient parallel mechanisms[END_REF][START_REF] Herder | Design of spring force compensation systems[END_REF][START_REF] Ebert-Uphoff | Static balancing of spatial parallel mechanisms revisited[END_REF][START_REF] Tuijthof | Design, actuation and control of an antropomorphic robot arm[END_REF][START_REF] Ono | An underactuated manipulation method using a mechanical gravity canceller[END_REF][START_REF] Lin | Design of perfectly statically balanced one-DOF planar linkage with revolute joints only[END_REF][START_REF] Lin | A stiffness matrix approach for the design of statically balanced planar articulated manipulators[END_REF][START_REF] Lu | Passive gravity compensation mechanisms: Technologies and applications[END_REF][START_REF] Lin | Design of statically balanced planar articulated manipulator with spring suspension[END_REF][START_REF] Deepak | Static balancing of a four-bar linkage and its cognates[END_REF][START_REF] Deepak | Perfect static balancing of linkages by addition of springs but not auxiliary bodies[END_REF].

• with a complementary actuator which can be a pneumatic or hydraulic cylinder, electromagnetic device, etc. (group C): In this case, a pneumatic or hydraulic cylinder is connected with some manipulator links [START_REF] Bayer | Industrial robot with a weight balancing system[END_REF][START_REF] Belyanin | Balanced manipulators[END_REF][START_REF] Fahim | Performance enhancement of robot arms through active counterbalancing[END_REF][START_REF] Yamamoto | Load balancer with automatic lifting force compensation[END_REF] or directly with the moving platform [START_REF] Wildenberg | Compensating system for a hexapod[END_REF]. There are also some approaches based on special counterweights, which are fluid reservoirs. Continuous gravity compensation is achieved by the pumping of fluid from the first reservoir-counterweight to the second.

The main drawbacks of the mentioned solutions when applied to robotics is that they ensure the gravity balancing of the robot for a given gravity load. However, when this load is varying (for example, during a palletizing task), they cannot ensure the cancellation of the gravity effects due to change of the payload. To overcome this difficulty, a few solutions have been proposed. The most resourceful ones are listed below:

• The use of active counterweights, such as in [START_REF] Fahim | Performance enhancement of robot arms through active counterbalancing[END_REF][START_REF] Carricato | A statically balanced Gough/Stewart-type platform: Conception, design, and simulation[END_REF] where the position of the counterweights on the balanced links varies and is modified through the use of additional actuators. This leads to the increase of the number of actuators and, obviously, to the development of a more complex controller.

• In [START_REF] Takesue | Design and prototype of variable gravity compensation mechanism[END_REF], a variable gravity compensation mechanism is proposed. It uses two types of linear springs and changes the equilibrium position of one of these. This also leads to the considerable increase of the number of actuators and the achievement of more complex controllers.

• The gravity compensation technique developed in [START_REF] Lauzier | Adaptive gravity compensation of decoupled parallel and serial manipulators using a passive hydraulic transmission[END_REF][START_REF] Lacasse | On the design of a statically balanced serial robot using remote counterweights[END_REF][START_REF] Laliberté | Closed-loop actuation routings for cartesian scara-type manipulators[END_REF] uses remote counterweights connected to the robot via a hydraulic transmission. As it has been shown in [START_REF] Lacasse | On the design of a statically balanced serial robot using remote counterweights[END_REF] the built prototype of the 7-degrees-of-freedom (DOF) robot is able to adapt its balancing counterweights to a payload of up to 10 kg, which was a maximal payload for the tested prototype. The main drawbacks of this technique is the use of hydraulic power systems (while the robot energy is provided by electricity) and the increase of the system footprint.

An additional drawback of all these techniques is the fol- lowing. When the payload is changing from a mass m 1 to a mass m 2 , there is a change of potential energy in the system equal to ∆V = gz(m 2 -m 1 ) (where g is the gravitational constant and z the altitude at which the load is changed). Therefore, if m 2 > m 1 , energy must be brought in the system to be able to adapt and to compensate the new payload. If m 2 < m 1 , if the robot was ideal, it should be able to stock the non necessary energy in capacitors or batteries. However, even if most robot actuators are now equipped with four-quadrant amplifiers which are able to stock additional energy in capacitors, as the stocking performance of capacitors is limited, many energy is still dissipated (under the form of heat) to avoid the overload of the capacitors.

Thus, all existing adaptive gravity-compensation systems of robots are not energy efficient. Please note that the energy efficiency of machines (but not only machines) in EU will becomes soon an important research problem as the ac-tual european policy is to target a decrease of 20% of consumed energy for 2020 (and 40% for 2030). In the present paper, taking into account that many robots used for the pick-and-place operations of heavy devices (such as palletization operations) are 4-DOF industrial robots such as the Kuka KR 700 PA presented in Fig. 1, we present an active balancing system able to compensate the gravity effects of a variable payload without the need of bringing additional energy in the whole robotic system. In the Section II, we show that it is possible to fully balance the gravity effects on the manipulator. Then, in Section III, we present the adaptive-gravity balancing system able to compensate the gravity effect of variable payloads. In Section IV, numerical validations made with the software ADAMS are performed. Finally, in Section V, conclusions are drawn.

It should be noticed that a patent on the proposed balancing system is currently pending [START_REF] Briot | Dispositif déquilibrage de charge pour bras articulé, appareil et procédé de manipulation de charge associé[END_REF].

II. Gravity-balacing of the manipulator only

A. Description of the robot architecture to balance without payload

Let us consider the kinematic architecture of the 4-DOF industrial robot depicted at Fig. 1(b). This architecture, made of revolute (R) joints only, allows the robot to perform Schönflies motions (i.e. its effector located at point P is able to carry out three translations along the base frame axes x 0 , y 0 and z 0 and one rotation around z 0 ). These four DOF are controlled through the actuation of motors linked to the R joints located at points A, B (two R joints are located at this point, one controlling the angle α, the second one the angle β) and P .

The links attached to the R joints located at: • B, C, F and E, • B, C, G and I, • C, D, H and G, form articulated planar parallelograms (also denoted as Π joints). The Π joints BCGI and CDHG ensure the axis of the R joints located at point P to be always vertical, while the Π joint BCF E allows for remoting the actuation of the link CD as close as possible to the base.

In the following of the paper, the gravity field g is equal to g= [0 0 -g] T (g > 0) and is directed along z 0 . Moreover, we denote as:

• S i the centre of mass of the link i, • m i the mass of the link i,

• ℓ QR the length between two arbitrary points Q and R, • z Q the position along the z 0 axis of anarbitrary point Q.

B. Computation of the gravitational potential energy

The robot (without payload) gravitational potential energy V is given by:

V = g 10 i=1 m i z Si (1)
in which

z S1 = z B + ℓ BS1 cos α (2) z S2 = z B + ℓ BS2 cos β (3) z S3 = z B + ℓ BE cos β + ℓ ES3 cos α (4) z S4 = z B + ℓ BC cos α -ℓ CS4 cos β (5) z S5 = constant (6) z S6 = z I + ℓ IS6 cos α (7) z S7 = z B + ℓ BC cos α + l CS7 (8) z S8 = z B + ℓ BC cos α + l CG -ℓ GS8 cos β (9) z S9 = z B + ℓ BC cos α -ℓ CD cos β + ℓ DS9 (10) z S10 = z B + ℓ BC cos α -ℓ CD cos β (11) 
taking into account that z B and z I have constant values. Introducing ( 2)-( 11) into (1), and simplifying, we obtain

V = a cos α + b cos β + c (12) with a =g(m 1 ℓ BS1 + m 3 ℓ ES3 + m 4 ℓ BC + m 6 ℓ IS6 ) + g(m 7 ℓ BC + m 8 ℓ BC + m 9 ℓ BC + m 10 ℓ BC ) (13) b =g(m 2 ℓ BS2 + m 3 ℓ BE -m 4 ℓ CS4 -m 8 ℓ GS8 ) -g(m 9 ℓ CD + m 10 ℓ CD ) (14) 
c =g z B ( 4 
i=1 m i + 10 i=7 m i ) + g(m 5 z S5 + m 6 z I ) + g(m 7 l CS7 + m 8 l CG + m 9 ℓ DS9 ) = const (15) 

C. Balancing of the manipulator

The gravity balancing of the manipulator will be achieved if and only if the potential energy becomes constant. For that, two usual methods are possible:

• the addition of two counterweights on links BC and EB (Fig. 2(a)),

• the addition of two zero-free length springs on links BC and EB (Fig. 2(b)).

C.1 Balancing of the manipulator by adding counterweights

Let us denote as (Fig. 2(a)): • m cw1 the mass of the counterweight on link BC which is located at the distance r cw1 of the R joint at point B,

• m cw2 the mass of the counterweight on link EB which is located at the distance r cw2 of the R joint at point B.

The potential energy V cw of the counterweights is given by:

V cw = -g(m cw1 r cw1 cos α + m cw2 r cw2 cos β) (16)
The total potential energy V + V cw is thus constant (i.e. the robot is gravity-balanced) if and only if the counterweights are designed such that: 

m cw1 = a/(g r cw1 ) (17) m cw2 = b/(g r cw2 ) (18) A B C D P E F G H I x 0 z 0 y 0 O β α m cw2 m cw1 r cw1 r cw2 (a) A B C D P E F G H I x 0 z 0 y 0 O β α k 1 k 2 Q 1 Q 2 R 2 R 1 (b)

C.2 Balancing of the manipulator by adding zero-free length springs

Let us denote as (Fig. 2(b)):

• k 1 the stiffness of the spring on link BC acting between the points Q 1 and Q 2 ,

• k 2 the stiffness of the spring on link EB acting between the points R 1 and R 2 .

The potential energy V sp of the zero-free length springs is given by: Noting the fact that:

V sp = k 1 ℓ 2 Q1Q2 + k 2 ℓ 2 R1R2 2 (19) 
ℓ 2 Q1Q2 = ℓ 2 BQ1 + ℓ 2 BQ2 -2ℓ BQ1 ℓ BQ2 cos α (20) ℓ 2 R1R2 = ℓ 2 BR1 + ℓ 2 BR2 -2ℓ BR1 ℓ BR2 cos β (21) 
and introducing it into [START_REF] Ono | An underactuated manipulation method using a mechanical gravity canceller[END_REF], we get:

V sp = -k 1 ℓ BQ1 ℓ BQ2 cos α-k 2 ℓ BR1 ℓ BR2 cos β +d (22)
where d is a constant equal to

d = k 1 (ℓ 2 BQ1 + ℓ 2 BQ2 ) + k 2 (ℓ 2 BR1 + ℓ 2 BR2 ) 2 (23) 
The total potential energy V + V sp is thus constant (i.e. the robot is gravity-balanced) if and only if the springs are designed such that:

k 1 ℓ BQ1 ℓ BQ2 = a (24) k 2 ℓ BR1 ℓ BR2 = b (25) 
Now that we have considered the balancing of the robot, let us consider the balancing of the variable payload.

III. Adaptive gravity-balacing system

In the following of this Section, we consider that the robot manipulator is self-balanced using one of the method proposed in the previous Section (the balancing solutions will not be drawn on the following pictures for reason of drawing clarity) and we only focus on the balancing of the variable payload.

A. Description of the adaptive gravity-balacing system

In order to ensure the balancing of the variable payload, it is necessary to achieve the following modifications to the robot architecture.

First, we slightly modify the robot architecture by adding a revolute joint on the link EF at a new point J defined such that the points B, D and J are aligned (Fig. 3). With the new design, the robot becomes a pantograph linkage [START_REF] Arakelian | équilibrage des manipulateurs manuels[END_REF] with a magnification factor p = ℓ EF /ℓ EJ which links the position of point D to the position of point J such that:

z D -z B = p(z B -z J ) (26) 
Thanks to this design and the well-kown pantograph properties [START_REF] Briot | Paminsa: a new family of decoupled parallel manipulators[END_REF], it is possible to cancel the gravity effect of a mass m applied at point P (f = m g) by applying a vertical balancing force of magnitude f bal = p g m at point J.

Then, in order to apply the vertical balancing force at point J, we add the balancing module to the robot (see Fig. 4). This module is made of four joints (three prismatic (P) joints located at points K, L and N and one revolute (R) joint at point M ) and one zero-free length spring of stiffness k p attached at points T 1 and T 2 with the lengths ℓ M T1 and ℓ M T2 always constant. In this module:

• the P joint at point K is passive but it integrates a brake that is activated when the robot is manipulating a constant load and deactivated when the balancing module is adapting to a new payload,

• the P joint at point N integrates a motor plus a brake: when the robot manipulates a constant load, the brake is activated and the motor is shut down, while, when the balancing module is adapting to a new payload, the motor is activated and the brake is deactivated,

• the R joint at point M and the P joint at point L are passive but they integrate brakes that are deactivated when the robot is manipulating a constant load and activated when the balancing module is adapting to a new payload. This adaptive module is able to ensure the balancing of the variable payload for any robot configuration. Moreover, the adaption does not need to bring additional energy as all the requested energy is already stored in the spring of stiffness k p . In the following sections, we explain how it works.

B. Balancing conditions B.1 For a payload mass m

As mentioned previously, during the manipulation of a constant payload of mass m, the P joints at points K and N are fixed via brakes, while the other joints are passive, and the resulting mechanism is depicted at Fig. 5. When the P joints at points K and N are fixed, the balancing module has two planar passive DOF which makes it possible to follow the displacement of the point J. Moreover, • the length ℓ M J becomes constant and will be denoted as ℓ M J = ℓ m , • the altitude z M of the point M becomes constant.

Let us show that under certain conditions, the balancing module ensure the gravity compensation of the payload. We define the angle γ as γ∠T 1 M T 2 (γ is not constant and depends on the robot configuration). The energy of the zerofree length spring with a stiffness k p is equal to:

V bal = k p ℓ 2 T1T2 2 (27) 
or also, when considering that

ℓ 2 T1T2 = ℓ 2 M T1 + ℓ 2 M T2 - 2ℓ M T1 ℓ M T2 cos γ V bal = e -k p ℓ M T1 ℓ M T2 cos γ (28) 
where

e = k p (ℓ 2 M T1 + ℓ 2 M T2 ) 2
For reasons of simplicity of computation, we consider that the centre of mass:

• of the link between points M and N is located at M ,

• of the link between points N and J is located at J and has a mass m J . Such conditions can be obtained through a proper link design and, eventually, the use of counterweights. Note that these conditions are not necessary, but simplifies the explanation of the ways the balancing module works.

The potential energy of the payload mass plus the balancing module is

V m = m g z P + m J z J + m mod g z M ( 29 
)
where m mod is the total mass of the links a, b, c and d, and z M is the constant altitude of the point M . Noting the fact that z P = z D and introducing ( 26) into ( 29), we get

V m =m g (p(z B -z J ) + z B ) + m J g z J + m mod g z M =h + (m J -p m) g z J (30) 
with h = m g (p + 1)z B + m mod g z M = constant. Finally, as

z J = z M -ℓ M J cos γ = z M -ℓ m cos γ, we get V m =h + (m J -p m) g (z M -ℓ m cos γ) =l + (p m -m J ) g ℓ m cos γ (31) 
with l = h + (m J -p m) g z M = constant.
The balancing module can cancel the gravity effects of the payload mass m if the total potential energy V tot = V m + V bal is equal to a constant, which can be obtained if and only if (for fixed lengths ℓ M T1 , ℓ M T2 and stiffness k p ):

ℓ m = k p ℓ M T1 ℓ M T2 (p m -m J ) g (32) 
resulting in V tot = e + l = constant. Thus, by properly fixing the length ℓ m = ℓ M J , we can balance the payload mass. Note that in general, (p mm J ) > 0, which means that ℓ m > 0.

B.2 Adaption to a new payload mass m ′

If now we want to balance a payload mass m ′ , by using the equation ( 32), we see that the length ℓ M J should adapt to a new constant length ℓ ′ m defined as:

ℓ ′ m = k p ℓ M T1 ℓ M T2 (p m ′ -m J ) g (33) 
This adaption can be energy-free by using the following procedure. First, the robot must be stopped at the position the payload should be changed (fig. 6(a)). Thus, the altitude z P becomes constant. Then, the R joint at point M is also fixed while the brake of joint K is deactivated such that the global system is equivalent to the one depicted in Fig. 6. Note that, when the R joint at point M is fixed, this also fix the length ℓ P1P2 of the spring. As a result, during the adaption phase, the spring energy is totally stored (no energy dissipation).

The P joints at points K and L are passive while the P joint at point N is actuated. A simple mobility analysis shows that the balancing module has thus 1 DOF which can be controlled by the actuator in the P joint located at point N . This active P joint will be used to adapt the length ℓ M J to become equal to ℓ ′ m (Fig. 6(b)). The robot being fixed, when the active P joint is moving, the change of potential energy is only due to the displacement of the links of the balancing module during its adaption. This variation ∆V of energy is equal to:

∆V = m mod g ∆z M (34) 
where ∆z M is the variation of altitude of the point M due to the module adaption. This variation of potential energy can be cancelled through a proper balancing system such as the one presented in [START_REF] Arakelian | Dynamic balancing of the scara robot[END_REF] which is depicted at Fig. 7. Thus, as the variation of potential energy is null during the adaption phase, the robot does not need (theoretically) any additional energy to adapt to the new payload m ′ , that will be compensated thanks to the optimal adjustment of the length ℓ ′ m defined in [START_REF] Lauzier | Adaptive gravity compensation of decoupled parallel and serial manipulators using a passive hydraulic transmission[END_REF]. Once the adaption is done, the robot is gravity-balanced for the new payload m ′ , i.e. the robot actuators do not need to compensate the gravity effects of the mass m ′ (Fig. 6(c)).

C. Discussion

In the previous Section, it has been mentioned that, during the adaption phase, the robot must be stopped, which will lead to a increase of the operation cycle time. However, in the other techniques [START_REF] Fahim | Performance enhancement of robot arms through active counterbalancing[END_REF][START_REF] Carricato | A statically balanced Gough/Stewart-type platform: Conception, design, and simulation[END_REF][START_REF] Takesue | Design and prototype of variable gravity compensation mechanism[END_REF][START_REF] Lauzier | Adaptive gravity compensation of decoupled parallel and serial manipulators using a passive hydraulic transmission[END_REF][START_REF] Lacasse | On the design of a statically balanced serial robot using remote counterweights[END_REF][START_REF] Laliberté | Closed-loop actuation routings for cartesian scara-type manipulators[END_REF] able to balance a variable load, the robot should also be stopped during the adaption. Thus, stopping the robot is not a drawback due to our balancing technique, but to all adaptive balancing techniques. In order to overcome this drawback, the adaption can be down when the robot is moving. However, this does 14th World Congress in Mechanism and Machine Science, Taipei, Taiwan, 25-30 October, 2015 OS13-038 not ensure anymore the system to be energy-free during the adaption phase.

Please note also that we claim that the adaption is energyfree. However, we do not take into account the fact that the actuator in the P joint located at point N needs energy to move against the friction in the joint. However, our experience in the field has shown that the friction effects are usually very small with respect to the gravity effects which have been compensated.

Finally, the conditions of balancing for the payload described in [START_REF] Takesue | Design and prototype of variable gravity compensation mechanism[END_REF] show that, if m = 0, the length ℓ M should be negative, which is unconvenient from a design point of view. In order to overcome this difficulty, two ways are proposed: 1. we can put a load m c > m J on the robot end-effector that will never be removed to ensure that the length ℓ M will be always positive. 2. it is possible to show in Section II-C that a partial gravity-balancing of the robot architecture can be achieved with counterweights and/or springs so that the potential gravitational energy of the robot becomes a linear function of z P only, i.e. the robot potential energy has the form V = m P z P + constant, with m P > 0. In such a case, the balancing condition (32) can be rewritten as:

ℓ m = k p ℓ M T1 ℓ M T2 (p (m + m P ) -m J ) g (35) 
As a result, an optimal design of the robot can ensure that the term (p m + m P -m J ) is always positive.

IV. Numerical validations

In this Section, we present numerical validations made with ADAMS showing that the balancing system is able to compensate a variable payload. We will consider in the following of the Section that the robot is self-balanced by using one of the techniques of Section II. This assumption is made because the paper does not focus on the balancing of the robot itself (which is achieved trough the use of very common techniques which have already been validated in the past) but on the gravity-compensation obtained by the use of the adaptive module.

The simulated robot has the following characteristics: • the origin of the base frame is at point B, and the point P (position of the end-effector) is superposed with the point D,

• the robot length are: tem designed in Fig. 7 with counterweights of total mass equal to 10 kg,

ℓ BC = 1.3 m, ℓ CD = 1.3 m, ℓ GH = 1.3 m, ℓ BE = 0.3 m, ℓ CF = 0.3 m, ℓ BI = 0.3 m, ℓ CG = 0.
• the total centre of mass of links b, c and d is located at point M ,

• the mass of the link e is m J = 5 kg and its centre of mass is located in point J,

• the spring has a stiffness k p = 20000 N/m. First, the robot has to manipulate a payload of mass m = 100 kg. As a result, the length ℓ M J of the module should be equal to ℓ M = 0.467 m to balance the gravity effects of the payload m. The payload is manipulated by the robot on the trajectory defined in Fig. 8. The results in terms of robot input torques (Fig. 9) required for manipulating this payload without the gravity-compensation module (full line) and with the gravity-compensation module with the length ℓ M J equal to ℓ M = 0.467 m (dotted line) show that, with the use of the adaptive module, no input torques are required to move the payload.

Then, at the end of the trajectory defined in Fig. 8 (at the point x P = 1.35 m, y P = 0 m and z P = 0.63 m), we change the load and the robot must be able to carry out a mass of m ′ = 300 kg. As a result, the length ℓ M J of the module should be equal to ℓ ′ M = 0.155 m to balance the gravity effects of the payload m ′ . We do not show here the variation of potential energy during the process of adaption to the new length because it is equal to zero all the time, i.e. the compensation module does not bring energy to adapt to the new length. The new payload is manipulated by the robot on the trajectory defined in Fig. 10. The results in terms of robot input torques (Fig. 11) required for manipulating this payload without the gravity-compensation module (full line) and with the gravity-compensation module with the length ℓ M J equal to ℓ M = 0.467 m (dotted line) show that, with the use of the adaptive module, no input torques are required to move the payload.

V. Conclusion

In this paper, a new gravity-compensation module for 4-DOF robot manipulating variable and heavy loads has been proposed. The new balancing scheme allows for the compensation of the gravity effects of the manipulated payload which may vary. Contrary to most of gravity balancing techniques able to compensate the gravity effects of variable loads, this compensation module is energy efficient, i.e. the adaption to the new manipulated payload does not require to bring energy inside the system.

Simulations of the mechanism with ADAMS have been performed and have shown the efficiency of the proposed approach.

Future works will concern the optimal design of a prototype in order to experimentally validate this balancing technique which can find wide applications to the solution of practical problems. 
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 1 Fig.1. The Kuka KR 700 PA able to carry out variable payloads up to 700 kg.

Fig. 2 .

 2 Fig. 2. Balancing of the robot manipulator under consideration. (a) via counterweights, (b) via zero-free length springs
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 34 Fig.3. Modification of the robot architecture so that it becomes a pantograph linkage.
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 5 Fig. 5. The robot with the adaptive balancing module and a payload mass m: the P joints at points K and N are fixed while the others joints of the adaptive module are passive.
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 67 Fig. 6. Adaption of the balancing system

Fig. 8 .

 8 Fig. 8. Trajectory during the manipulation of the payload m = 100 kg, defined for y P = 0 m.
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 9 Fig. 9. Input torques for manipulating the payload m = 100 kg: without (full line) and with (dotted line) the gravity-compensation module.
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 1011 Fig. 10. Trajectory during the manipulation of the payload m ′ = 300 kg, defined for y P = 0 m.
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