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Catalytic Tubular Microjet Propulsion Model for Endovascular
Navigation

Bruno Sarkis1, David Folio2 and Antoine Ferreira2

Abstract— This paper describes the propulsion of the cat-
alytic tubular microjet using Navier-Stokes equations. Espe-
cially, the thrust capability of the microjet is outstanding com-
pared with the other microsystems, but remains only partially
understood. Studies have identified the internal precursory
mechanisms of the propulsion of the microjet: its inner wall
catalyzes the dismutation of aqueous hydrogen peroxide, and
an oxygen bubble is then formed and migrates towards its
widest opening. This impulses the propulsion of the microjet
towards the opposite direction. However, the precise propellant
role of the liquid surrounding the jet remains misunderstood.
The same goes for the inner wall of the vessel in which the
jet navigates, especially in narrowed environment. This article
discusses these aspects in a simplified theoretical framework.
Calculations are performed by explicit computation of Navier-
Stokes equations. The obtained theoretical outcome are in good
agreement with experimental results in the literature.

I. INTRODUCTION

Self-propelled microrobots are an important step towards
the design of autonomous microsystems for micromanip-
ulation or biomedical applications [1], [2]. Recently the
catalytic microjets have been investigated [2]–[4]. Micro-
jets are microscopic metal rockets in the shape of quasi-
cylindrical hollow truncated cones. They are part of the
tube-like microswimmers family, that include several forms
of propulsion, such as bubbled, electrophoretic, electric,
magnetic and acoustic ones [2]. Catalytic tubular microjets
are produced by rolling up a superposition of metal sheets,
one of which is the catalyst (see [4]–[7] for the details
of their manufacturing techniques). They draw their fuel,
including hydrogen peroxide (H2O2), strong acids and hy-
drazine, from the surrounding liquid (e.g. water or blood
medium) and convert it into a bubble of gas by chemical
catalysis [7]. The internal surface metal (e.g. platinum: Pt)
is the catalyst of this reaction. Thus, their propulsion is
ensured with no external energy supply, contrary to the other
modes of propulsion, such as magnetic or acoustic ones.
In addition to their efficient propulsion, the orientation of
the direction of the microjets trajectory is relatively safer
compared to other microsystems. For instance, unlike Janus
spherical particles, they exhibit a lower natural deflection [8].
Moreover, the catalytic microjet can be magnetically guided
[5], [9]. In [5] the contact with living tissues is studied.
Therefore, catalytic tubular microjets are prime candidates
for the propulsion of more massive microsystems. They are

1B. Sarkis is an engineer with the city of Paris, France
2D. Folio and A. Ferreira are with INSA Centre Val de Loire, Université
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one of the most promising ways to propel future medical
microrobots, delivery of cargo and many applications [6].

To achieve these goals, it is important to understand the
propulsion mechanism of the catalytic microjet. Previous
studies [2], [6], [7], [10] have initiated the description of
the behavior of the microjet. In particular, its driving motion
is different to similar systems such as nanorods. Whereas for
nanorods the propulsion is generated from the surface tension
created by catalytic reaction [11], the microjet is essentially
propelled via a bubble created by catalysis. In [7] the authors
have identified the jet-internal phenomenon that induces the
propulsion of the microjet: i) creation of a bubble in the head
of the jet, ii) migration of this bubble through this tube, and
iii) its ejection by the largest orifice at the rear of the jet. This
work also proposed to model and to quantify the propulsion
of the jet, via the partial transfer of quantity of momentum
between the microjet and the moving liquid at both orifices.

Nevertheless, it is necessary to properly model and control
the microjet propulsion to ensure the proper execution of
future missions. In particular, this includes the study of the
influence of the geometry and environment of the microjet.
For instance, the dependence of the performance of the jet
with respect to its own geometry is presented in [10]. In [6],
[10] the authors have studied the influence of the chemical
environment on its performance, including the quasi-linear
influence of the concentration of aqueous H2O2 on the veloc-
ity of catalytic microjets which have Pt inner surface. These
works show that the microjet can reach speeds of around
1 mm/s, which is well above the speed of 100 µm/s raised in
[7]. In [6] the authors warn against chemical catalysis brakes.
The geometry of its environment (including the radius of the
blood vessel) also influences the performance of the microjet,
which remains to be studied.

To improve the understanding of the propulsion of the cat-
alytic microjet, it is still necessary to consider the following
three points. First, the motion of the surrounding liquid has to
be related to the thrust mechanism. This allows its systemic
study and integration to the understanding of the movements
of groups of microjets and the interaction with any other
object in the surrounding environment, such as blood cells,
bacteria, and so on. Secondly, the various aqueous force
fields which help propel the microjet have to be identified
and distinguished through Navier-Stokes (N.-S.) equations,
for the future control of its motion. Thirdly, it should be
understood how the geometry of surrounding environment
(here blood vessels) influences the microjet propulsion. This
allows selecting the most relevant biomedical application
framework, and compensating any physicochemical barrier



to the propulsion. This article aims to address briefly these
issues through a qualitative analysis by simplified analytical
calculation of the N.-S. equation, in the case of a cylindrical
microjet navigating on the centerline of a slender cylinder
filled with liquid. Especially, this study will focus on the
use of catalytic microjet for future biomedical application
through the cardiovascular system [12]. The proposed ana-
lytical framework provides a simple understanding of how
the ”jet-liquid-wall” system parameters help and influence
the propulsion of the microjet.

This paper is organized as follows. After describing the
context of our study in Section II, Section III presents a
modeling of the microjet. The influence of the radius of the
vessel on the geometry of flow (and thus the velocity gradi-
ents, pressures, shear and microjet propulsion), is studied in
Section IV. Finally, Section V discusses the results and some
open issues. This study is concluded in Section VI.

II. BACKGROUNDS

Among proposed microsystems, catalytic tubular microjets
are a promising microtool for future biomedical applica-
tions, as they are self-propelled and do not require any
supply of energy except for their guidance [1], [2], [13].
Particularly, it is established that such microsystem can be
used in innovative minimally invasive surgical procedures
[2], [12]. Hence, when the microjets are propelled in the
blood circulatory system, a very large number of remote
locations in the human body become accessible. However,
the human vascular network hemodynamics changes with
the vessel radius [12]: from arteries with a large radius
of about R = 10 mm, a viscosity of η = 3 mPas and a
flow velocity of vf = 400 mm/s; to capillaries with small
radius of R = 10 µm, a viscosity of η = 6.5 mPas and a
flow less than vf ≤ 1 mm/s (see Fig. 1). Thus, it is still
challenging driving suitably such wireless microdevices in
the human cardiovascular system [12], [14]. Improving the
understanding of the interaction of the microsystem in a
vascular environment is an important issue.

The basic propulsion principle of a catalytic microjet is
as follows: gas is produced by catalysis, and rapidly forms
one (or several) bubble(s). This bubble migrates towards
the widest opening of the jet, and propels it towards the
opposite direction. Fig. 1 illustrates a hydrogen peroxide
(H2O2) fueled catalytic tubular microjet in blood vessels. If
the phenomenon is qualitatively identified, to date we do
not know the quantitative influence of the vessel geometry
on the microjet motion. To understand this impact, it is
necessary to analyze the jet-bubble-liquid-wall interactions.
The flow generates both the propulsion and the brakes of the
microjet by its pressure on the bubble and through the shear
stress exerted on its inner and outer walls. To quantify these
motor and brake, the flow around the microjet should be first
characterized. In the reference frame of the microjet which
navigates at speed vjet, Fig. 2 represents the flow around
the microjet as the superposition of two components: i) the
driving flow, due to the migration of the bubble at speed
vb towards the rear of the microjet; and ii) the drag flow,
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Fig. 1. Schematic representation of (left) the vascular network and (right)
the motion of a microjet with hydrogen peroxide in a blood vessel.
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Fig. 2. Flow structure around a microjet, viewed in its reference frame.
Flow is the superposition of two components: (green) the migration of the
bubble propelling the microjet; (red) the consequence of the motion of the
microjet that tends to drag it. Relatively to the microjet, the blood vessel
moves at speed −vjet, and the bubble moves at speed −vb.

caused by the recoil velocity of the vessel relatively to the
microjet. Due to the migration of the bubble, the driving
flow induces an overpressure at the rear of the microjet. In
addition, the incompressibility of the flow implies an external
backflow around the jet outer wall. These two phenomena
tend to propel the microjet. Nevertheless, an induced internal
wall shear stress occurs and leads to a brake that pulls back
the microjet. Their superposition and impact on the microjet
(force and speed) are modeled in the following sections.

III. MICROJET MODELING

A. The Microjet and its Bubbles

Let the parameters rmin, rmax and l resp. denote the mini-
mum and maximum radius, and the length of the microjet, as
depicted in Fig. 3. The radii, of few micrometers, are close
to each other, and the length is a few tens of micrometers.
This geometry ensures a low conical angle, in the order of
ϕ ∼ 0.01 rad [7].

The microjet, in its own reference frame, is oriented along
a Gz-axis, where G is the middle of the segment AP (cf.
Fig. 3). At t = 0 a bubble forms at a random position within
the jet, probably closer to the front A than the rear P . This
bubble becomes tangent to the jet at t0 > 0 and begins to
migrate to P . The migration speed of the bubble mainly
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Fig. 3. Schematic representation of a microjet and its bubble.
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Fig. 4. The two driving forces of the microjet, from those generated by
the flow around the jet, due to the migration of a bubble: (a) pressure force;
and (b) shear forces.

depends on its growth rate and on the geometry of the jet.
Let zb denote the abscissa of the center of gravity of the
bubble, and vb = −vb · ez its speed, where ez is the unit
vector of the Gz-axis and vb ≡ ‖vb‖. Finally, the bubble is
ejected at t1 � t0 at P with the velocity vb = 1.2 mm/s
[7].

When the bubble reaches the inner wallWint, the microjet
is a microswimmer, and thus has their usual properties. In
particular, the distance traveled during a stroke, here the
migration of the bubble, is independent of its run time. This
suggests a relationship of the type:

vjet ∝ vb (1)

B. Qualitative Assessment of Forces at Equilibrium

By migrating, the bubble pushes the liquid situated at the
rear P of the microjet, and swallows the flow at the front
A. It creates a pressure differential between A and P : the
pressure at the rear P is p∞ + ∆p1 , whereas the pressure
at the front A is p∞ − ∆p2 (e.g. ∆p1 > 0 and ∆p2 > 0).
Thus, the difference established, ∆p = ∆p1 + ∆p2, is the
first motor f∆p of the jet, and is depicted in Fig. 4(a). The
pressure differential can also be written as follows:

∆p = ∆pint + ∆pext (2)

where ∆pint and ∆pext are formed resp. inside and outside
of the microjet. The external component ∆pext can be
decomposed as:

∆pext = ∆pext, rect. + ∆pext,curv. (3)

where ∆pext, rect. and ∆pext,curv. are components defined
resp. at the level, and upstream/downstream of the jet. From
these pressure components result resp. the f∆pint , f∆pext ,
f∆pext, rect. and f∆pext,curv.

forces. Moreover, the backflow
caused by the external flow creates a shear stress σext which
also contributes to the microjet propulsion, and is illustrated
in Fig. 4(b). The resulting force fσext is then the second jet’s
engine. Furthermore, due to the conservation law the internal
engine f∆pint is compensated by the internal shear stress
force fσint

, that is: f∆pint + fσint
= 0. Thus, the thrust of

the jet is defined as:

fjet ≡ f∆pext + fσext
(4)

Finally, at equilibrium, we have:

fjet = −fd (5)
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Fig. 5. Representation of (a) the microjet and the inner flow, and
(b) pressure (dashed-lines) and flow streamlines (dotted-lines), under the
simplifying approximations.

C. Assumptions

To simplify the analytical fluidic calculations, in the fol-
lowing the microjet is considered as a cylindrical microtube
of radius r and length l, as illustrated in Fig. 5a. The created
bubble is spherical with a radius rb = r. The blood vessel is
assumed to be a cylindrical microchannel of radius R with an
infinite length. It is filled with a liquid (e.g. blood) considered
to be with viscosity η. In the jet, the bubble generates an
influence zone which is assumed to be cylindrical with length
2r. Outside of this bubble influence area, the microjet inner
flow behaves as a Poiseuille flow and has a parabolic speed
profile. At the level of the jet, the flow speeds are permanent,
parallel to the Gz-axis and independent of z. The only non-
permanent variable is the pressure within the jet (see Fig. 5b).

Assuming that the microjet is on the centerline of the
microchannel, the forces are coaxial with the jet. The flow
rate has no retroactive effect on the bubble motion. The latter
and its influence zone are perfect mechanical transmitters
of the pressure forces to the jet. The contribution of the
overpressure in the bubble is neglected, according to its
sphericity. Similarly, the steric, the Brownian, the electro-
static and the Van der Waal’s microforces are neglected [15].

The microjet propelling force fjet through the drag force
fd, given in (5), is first considered as being linked to jet
velocity vjet by [7]:

fjet =
2π η l

ln (l/r)− 0.72
vjet (6)

with r = rmax = rmin the radius of the cylindrical microjet.
An alternative calculation, not using this formula, is then
carried out in a comparative perspective.

D. Pressure Line

The pressure along the Gz-axis, when the bubble is
in the center of the jet, is shown in Fig. 6(a). It appears
a discontinuity in the bubble influence area. Actually the



Δpint/2

Δpint/2

Δpext
Δp-l/2

l/2 zG

-l/2

l/2G

(a) (b)

Δp=Δpint+Δpext

Δpext

Fig. 6. Pressure line along the Gz-axis, when (a) the bubble is in the
center of the jet, and (b) the bubble is positioned further to the rear of the
jet (at the end of its migration).

pressure is not defined when ∀z ∈]− r; r[. Let us notice that
inside the jet, the pressure has a linear behavior. When the
bubble moves back, the discontinuity shifts toward the rear
P of the jet, as depicted in Fig. 6(b). Finally, let us notice
that the external pressure differential ∆pext remains constant
when the bubble moves inside the microjet.

IV. PROPULSION OF THE MICROJET

Considering the previous approximations, the microjet
propulsion involves mainly the surrounding flow. Hence,
the Navier-Stokes (N.-S.) equations together with the flow
incompressibility allow the modeling of the microjet’s en-
gines. In this context, with the velocity vector expanded as
v = (vx, vz)

t, the N.-S. equations in cylindrical coordinates
could be written as: η

(
∂2
zvx + 1

x∂x (x∂xvx)− vx
x2

∂2
zvz + 1

x∂x (x∂xvz)

)
=

(
∂xp
∂zp

)
∂zvz + 1

x∂x (xvx) = 0
(7)

with x ∈ [0;R] the radial distance of the flow, and z the
component along the Gz-axis.The following is devoted to
the study of the microjet’s engines in its reference frame,
first considering a static flow for the sake of simplicity.

A. Engine Flow Outside of the Microjet

In the backflow zone, the flow can be analytically calcu-
lated. Indeed, under the assumptions made in Section III, the
N.-S. (7) system could be reduced as:

∃λ > 0
[Pa/m]

,


−∂zp ≡ λ = ∆pext, rect./l

∂x (x∂xvz) = −λxη(
∂xp, ∂

2
zp
)T ≡ (0, 0)T

(8)

Thus, there is a velocity field of the form v = vz(x) · ez .
Let Λ = R/r denote the vessel (R)/microjet (r) radii

ratio. In the backflow zone, the motor flow speed vz(x) is
expressed by solving (8) as follows:

vz(x) =
λr2

4η

((
Λ2 − 1

) ln(x/r)

ln Λ
+ 1−

(x
r

)2
)

(9)

In the upstream and downstream of the jet, it is difficult to
fully analytically characterize the driving flow. However, its
velocity norm remains less than the bubble speed vb. In the
backflow zone, let vmax denote the maximum motive speed,
and xmax ∈ [r;R] defined such as vz(xmax) = vmax. Hence,

a dimensional analysis shows that the component ∆pext,curv.

of ∆pext (3) is in the order of:

∆pext,curv. ≈ 2η
vmax

xmax
(10)

The computation of the pressure gradient λ = ∆pext, rect./l
is performed by writing the flow conservation between the
flow inside the jet and the backflow zone, which leads to:

λ =
8η

r2

ln(Λ) vb

(Λ2 − 1) ((Λ2 + 1) ln(Λ) + 1− Λ2)
(11)

B. The Two Motors of the Microjet

1) The pressure engine: The pressure force f∆p exerted
on a cylindrical microjet is bound to the pressure difference
∆p through the linear equation:

f∆p = πr2∆p (12)

Similarly, the same goes for the pressure differential compo-
nent given by (2) and (3). As mentioned, calculations show
that the internal forces counteract each other. Furthermore,
in small capillaries, the pressure differential (10) and the
resulting force f∆pext,curv. could be neglected in comparison
with the pressure differential ∆pext, rect. and its induced force
f∆pext, rect. respectively. Thus (12) becomes: f∆p = πr2lλ.
Hence, the pressure force is then:

f∆pext, rect. =
8πη l vb ln(Λ)

(Λ2 − 1) ((Λ2 + 1) ln(Λ) + 1− Λ2)
(13)

2) The backflow engine: The backflow driving force fσext

is given by the integration of the stress σext related to the
external wall of the catalytic microjet, and we get:

fσext
=

4πη l vb

(
Λ2 − 1− 2 ln(Λ)

)
(Λ2 − 1) ((Λ2 + 1) ln(Λ) + 1− Λ2)

(14)

3) The thrust of the microjet: Summing up the driving
forces (13) and (14), we obtain the microjet propelling force:

fjet =
4πη l vb

(Λ2 + 1) ln(Λ) + 1− Λ2
(15)

In arteries the shear force fσext
is more significant than

the pressure force f∆pext, rect. , but these two driving forces
are both very weak, as depicted in Fig. 7. In capillaries
these forces are maximum, and remain in the same order
of magnitude. As the propelling forces are related to the
flow viscosity, obviously the jet force is more significant in
blood flow where classically the viscosity is in the range of
η ∈ [2.9; 6.5]mPas in capillaries (R ∈ [6; 60]µm), against
aqueous solution with η = 1.13 mPa s [7].

To compare the two microjet’s engines, let us first examine
their ratio:

fσext

f∆pext, rect.

=
1

2

(
Λ2 − 1

ln(Λ)
− 2

)
(16)

This result exhibits a dependency only in Λ. The study of
this function shows that in small vessel (e.g. in capillaries),
these driving forces contribute equivalently. Finally, let us
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define the ratio that exhibits the relative contribution of the
pressure force, that is:

τ =
f∆pext, rect.

fjet
=

2 ln(Λ)

Λ2 − 1
(17)

Fig.8 shows the evolution of the pressure force contribution
as function of the ratio Λ. In large vessel, where Λ� 1, the
pressure force is less efficient.
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Fig. 8. The relative contribution of the pressure force.

C. The link between the velocities of the bubble and the
microjet

1) Applying the standard drag formula: Combining
Eq. (6) and (15), the relationship (1) can be specified as:

vjet =
2 (ln(l/r)− 0.72)

(1 + Λ2) ln(Λ) + 1− Λ2
· vb (18)

As one can see, it appears that vjet is independent of the
liquid’s viscosity η, and is mainly related to the geometry
of the jet and the vessel’s size. Thus, the jet presents some
scale invariance. Furthermore, the smaller the ratio Λ is, the
higher is the velocity of the microjet.

For instance, with Λ = 2 and l/r = 50/3 the microjet
velocity is about vjet ≈ 9vb. Considering a bubble moving
at vb = 1.2 mm/s the jet speed is about vjet ≈ 10.8 mm/s,
as illustrated in Fig. 9 with the red dashed-line. Compared
to the literature [6]–[10], [13], these results are about ten
times higher. The explanation for this discrepancy is due
to two main reasons. First, the considered environments
are different. In previous work, the authors have conducted
their experiments mainly in water and infinite extent (i.e.
without microjet/wall influence). Secondly, the jet propelling
force formula (6) does not take into account the geometrical
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Fig. 9. Velocity of the microjet vjet as function of Λ, with l/r = 50/3
and the bubble’s velocity vb = 1.2 mm/s, computed from (18) and (21).

characteristics of its environment. Therefore is not always
appropriate, especially in thin vessels.

2) Using drag force with the Navier-Stokes equations: To
overcome the weakness of the above modeling, we propose
to replace the standard jet propelling force formula (6) with
one derived from the analytical treatment of the N.-S. equa-
tions. To compute the drag influence, the flow estimation
in the backflow zone is approximately carried out. Hence,
similar calculations to those relating to the engine flow are
realized. The drag force fd is considered as the sum of a
shear and pressure forces, that is:

fd = fdσ + fd∆p (19)

Furthermore, the drag pressure is assumed constant over
the whole section of each orifice of the jet, and equal to
the nearest shear pressure in the backflow zone. After all
computations, the following drag force is obtained:

fd = −
2πηl

(
Λ2 + 1

)
(Λ2 + 1) ln(Λ) + 1− Λ2

vjet (20)

Using (20) with (15), it is straightforward to obtain a
simple formula that relates vjet and vb, and the proposed
relationship (1) becomes:

vjet =
2 vb

Λ2 + 1
(21)

Hence, for a bubble motion at vb = 1.2 mm/s the micro-
jet velocity remains vjet ≤ 1.2 mm/s, as represented in
Fig. 9 with the blue plain-line. This result is consistent with
previous studies [6]–[10], [13]. Particularly, a maximal jet
velocity of about vjet ≤ 1500 µm/s has been reported [8],
[10]. On the other hand, the impact of the drag pressure
is more significant in capillaries, but is negligible in larger
vessels. Nevertheless, it allows bounding the jet speed.
Finally, contrary to (18), in Eq. (21) vjet depends mainly
on the ratio Λ. In this case, the microjet aspect ratio l/r
becomes less relevant. This also exhibits a scale invariance
in the microjet motion.

D. The Microjet’s Geometry, Forces and Velocities Analysis

Fig. 10 represents the evolution of the ratios (τ, vjet/vb)
for different geometry factors Λ (see also Fig. 8). Thus, it
links the relative contribution of the pressure force f∆pext, rect.



to the microjet velocities. Both ratios are varying between
0 to 1. This curve clearly shows that they are positively
correlated. Secondly for Λ ≤ Λ0 (with Λ0 = 1.874), the
pressure force is the main driving force of the microjet. In
this study, Λ ≥ 2 has been mainly focused with respect to
the considered approximations (blue plain line in Fig. 10).
In particular, these approximations consider the available
manufactured microjets conical angles. For smaller values
of Λ (red dashed line in Fig. 10), lower conical angles
have to be designed. Thus, these microjets would be the
most efficient ones. Actually the microjet’s propulsion would
mainly choose the most efficient way: the pressure way.
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Fig. 10. Curve of the ratios (τ, vjet/vb) for different geometry Λ.
The speed ratio vjet/vb is an increasing function of the pressure force
contribution, which is maximum for the weakest values of Λ.

V. DISCUSSIONS
The proposed microjet propulsion model is simple under

the considered approximations. The associated calculations
are conducted thanks to approximations of the N.-S. equa-
tions, which can be gathered in three groups: i) geometrical
and mechanical aspects that concern mainly the walls of the
microjet and the vessel, and influence the force approxi-
mations; ii) flow with its behavior around the jet; and iii)
forces approximations, which involve their orientations and
the link between the drag force and the velocity of the
microjet. Furthermore, the obtained results had to be in good
agreement with the literature. For instance Eq.(21) matches
suitably the numerical and experimental results presented in
[6]–[10], [13].

Some hypothesis could be further investigated, such as
the bubble’s sphericity, or its mechanical contact with the jet
wall and its growing speed, as suggested in [7]. The geometry
flaw of the microjet has to be considered in relation to the
study realized in [8]. Especially, in [11], [16] the authors
have shown that the microjet has a natural deflection as
nanorods. This mechanism makes microjet propulsion very
interesting since, up to now, microtubular jets have generated
higher propulsion forces compared to nanorods, spherical
Janus particles, or microhelices [7], [10].

VI. CONCLUSION
Catalytic tubular microjets are a promising candidates

for innovative biomedical applications. They are thin, fast,

powerful in small vessels, self-propelled, cheap to produce,
weakly deflected and easily remote-controllable. Hence, they
seem to be the ideal candidate to go into capillary and carry
drugs to specified cells, long ahead other microsystems, such
as controlled microorganism (e.g. magnetotactic bacteria).
Their functioning remains not fully understood but the rough
calculus performed in this article suggest how efficient
these microswimmers are. This new understanding, in good
agreement with the literature, needs to be further investi-
gated to get closer to their real behavior. Some numerical
simulations shall be performed to precise flow calculations.
Especially, the exact contribution of the curved part of the
flow streamlines has to studied.
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