
HAL Id: hal-01160824
https://hal.science/hal-01160824

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling standby redundancies in repairable systems as
guarded preemption mechanisms

Pierre-Yves Piriou, Jean-Marc Faure, Jean-Jacques Lesage

To cite this version:
Pierre-Yves Piriou, Jean-Marc Faure, Jean-Jacques Lesage. Modeling standby redundancies in re-
pairable systems as guarded preemption mechanisms. Dependable Control of Discrete Systems
(DCDS), May 2015, Cancun, Mexico. pp.147-153. �hal-01160824�

https://hal.science/hal-01160824
https://hal.archives-ouvertes.fr


Modeling standby redundancies in
repairable systems as guarded preemption

mechanisms

Pierre-Yves Piriou, Jean-Marc Faure, Jean-Jacques Lesage

LURPA, ENS Cachan, Univ Paris-Sud, F-94235 Cachan, France
(e-mail: {pierre-yves.piriou; jean-marc.faure;

jean-jacques.lesage}@lurpa.ens-cachan.fr).

Abstract: This paper proposes an extension of the BDMP (Boolean logic Driven Markov
Processes) formalism for enriching its capabilities to model replacement and resumption
mechanisms in repairable systems. The implicit assumptions made by the classical BDMP to
describe these mechanisms are first highlighted. An analogy between standby redundancies
management in critical systems and preemption mechanisms in concurrent systems is then
proposed. This permits to formally define an extension of BDMP that allows several replacement
and resumption mechanisms be specified. A case study illustrates the benefits of this proposal.

Keywords: Model Based Safety Analysis, Repairable component, Standby redundancy policies,
Preemption, Boolean logic Driven Markov Process

1. INTRODUCTION

Component redundancy is a widely used design concept to
improve safety of critical systems. It consists in duplicating
a set of components of the system in order to increase the
probability to achieve the aimed functions. For a standby
redundancy, all the redundant components do not work
simultaneously. The so called spare components are acti-
vated only if the so called main components are not able to
perform their functions. When components are repairable,
such a standby redundancy carries out two switching
mechanisms: the replacement and the resumption. The
triggering condition of these two mechanisms depend on a
dysfunctional context. Hence, several redundancy policies
may be defined for a given set of redundant components.

Safety analysis of a dynamic system basically consists in
determining its most critical failure scenarios and assess-
ing their probability of occurrence. These analyses are
based on a model of the possible dysfunctional behavior.
Boolean logic Driven Markov Processes (BDMP), defined
in Bouissou and Bon (2003), is a promising modeling
formalism with regard to its ability to capture the dynamic
aspects that arise with complex systems. Indeed, it is well
suited for dealing with repairable components, and one
of its primitives (the trigger) allows to model standby
redundancies (Carer et al. (2002)). Nonetheless, a unique
redundancy policy can be translated through a BDMP
trigger: the replacement occurs as soon as the main compo-
nents fail, and the resumption occurs as soon as they are
repaired. Moreover, the components which trigger these
switching mechanisms are not represented in the model,
and are then considered faultless.

This paper proposes an extension of the BDMP formalism
for enriching its modeling capabilities. The extension aims
to allow a modeling of standby redundancies more accurate

than with the BDMP formalism. It mainly impacts the def-
inition of the trigger primitive, in order to capture several
redundancy policies, that can be specified as preemption
mechanisms. Indeed, for concurrent systems, preemption
consists in the interruption of a process, in a particular
context, generally in order to trigger another process.
Given that components can be seen as processes, a switch-
ing mechanism is similar to a preemption mechanism that
occurs in a particular dysfunctional context.

What is above mentioned about BDMP formalism is de-
veloped and illustrated on a case study in section 2. Pre-
emption in concurrent systems is next defined in section 3.
This section also proposes an analogy with standby redun-
dancies in critical systems. Section 4 introduces Guarded
BDMP (GBDMP) as an extension of BDMP and illus-
trates its benefits on the case study introduced in section
2. Finally, concluding remarks are given in section 5.

2. PROBLEM STATEMENT

This section introduces first the case study illustrating the
work. Secondly, it provides a recall on BDMP formalism
and its benefits for performing Model Based Safety Ana-
lysis (MBSA). Finally, the modeling of standby redundan-
cies by triggers is discussed, and illustrated on the case
study.

2.1 Motivating example

The Coolant Feeding Water System (CFWS) is a crucial
system of every nuclear power plant. It aims to supply
cool water to the steam generator. Figure 1 provides a
simplified view of this system that performs two sub-
functions. First, three extraction pumps (Ex1, Ex2 and
Ex3) provide a sufficient flow of cool water. Two out of the
three must be available to fulfill the service requirements.



Second, two redundant Feeding Turbo Pumps (FTP1 and
FTP2) pressurize the cool water. At least one of these
pumps must be faultless.

Fig. 1. A simplified view of the CFWS

Each component of this system can fail and be repaired, ei-
ther in active or inactive mode. Furthermore, two different
redundancy policies have been defined:

• When the main component (Ex1 or Ex2 for extrac-
tion pumps, and FTP1 for turbo pumps) is faulty and
the spare component (Ex3 for the extraction pumps
and FTP2 for the turbo pumps) is faultless, the main
is replaced by the spare in both cases.

• The resumption conditions of the main component
are not the same however. When an extraction pump
is activated, it remains active until it fails; this implies
that a main extraction pump is reactivated only if it
has been repaired and the spare pump has failed. On
the other hand, as FTP1 has better performances
than FTP2, it is reactivated after a failure as soon as
it has been repaired, even if FTP2 has not failed.

The objective of this work is to perform a MBSA of this
system, that takes into account these two redundancy
policies.

2.2 Recall on BDMP formalism

BDMP is a formalism defined in Bouissou and Bon (2003)
to perform safety analysis of complex systems, and in par-
ticular repairable systems. A BDMP model can be implic-
itly defined as a multi-top coherent tree structure whose
leaves are triggered Markov Processes. It is used to capture
the failure scenarios of a critical system. To build such
a model, the dysfunctional behavior of each component
has first to be specified. It must be modeled by a trigger
Markov process, that is defined as two Markov chains
and two transfer matrices. One Markov chain specifies
the dysfunctional behavior of the component in the active
mode, and the other specifies its dysfunctional behavior
in the inactive mode. A component can be activated or
deactivated through the transfer matrices which give a
probability distribution from the states of one chain to
the states of the other. Figure 2 shows a representation
(adapted from Bouissou and Bon (2003)) of a trigger
Markov Process that specifies the behavior of a standard
BDMP leaf (called SF leaf). λS , λ are failure rates and µ
is a repair rate. It has been assumed that the failure rates
are different in the two modes, and the repair rates are
similar.

The system architecture is then translated into a fault
tree. Activation and deactivation of a component are
provoked by triggers that are defined from an origin
node (leaf or logic gate output) to a destination one:

��
��
S

-λS

�
µ ��
��
F1 ��
��
W

-λ

�
µ ��
��
F2

S
F1

WF2[
1 0
0 1

]
U

[
1 0
0 1

]
W
F2

S F1K

Inactive mode Active mode

Fig. 2. Trigger Markov Process of the SF leaf

the destination is activated when the origin fails, and
deactivated when the origin is repaired. A trigger is mainly
used to model standby redundancies from the origin node
to the destination one (cf. Carer et al. (2002)). The fault
tree structure and the triggers determine the mode of
each leaf, and the corresponding trigger Markov process
determines its faulty status. Finally, the faulty status of
each component is propagated through the fault tree to
determine the occurrence of the top event.

SF
Leaf

Ex1

SF
Leaf

Ex2

SF
Leaf

Ex3

SF
Leaf

FTP1

SF
Leaf

FTP2

FailEx1|2

2/3 FailEx FailFTP

FailSystem

te

Fig. 3. BDMP model of the CFWS

The BDMP model of the CFWS is shown in Figure 3. It
expresses that the system fails if 2 out of 3 extraction
pumps or the 2 turbo pumps fail. The dysfunctional
behavior of each pump is modeled by a SF leaf. The
standby redundancies are modeled by the triggers:

• Ex3 is activated when Ex1 or Ex2 fails and is
deactivated when the failed pump is repaired.

• FTP2 is activated when FTP1 fails and is deacti-
vated when it is repaired.

BDMP has many benefits to perform MBSA. It is a tree-
oriented formalism, easy to understand through its graph-
ical representation. Moreover, trigger is an appropriate
primitive to model standby redundancies.

BDMP formalism was initially developed for power plant
applications, but is also used in other domains like com-
puter security (Pietre-Cambacedes and Bouissou (2010),
Kriaa et al. (2012)). Moreover Chaux et al. (2012) proposes
a formalization of the BDMP semantics using finite state
automata, in order to extract minimal cut sequences.



2.3 Discussion

The BDMP semantics is not sufficient to address all the
issue introduced in subsection 2.1. Indeed, the behavior
captured in BDMP is constrained by three implicit as-
sumptions in its definition. These assumptions are formu-
lated below.

First, the switching mechanisms handled by triggers refer
to a unique redundancy policy: the spare is activated
whenever the main is faulty. In other words, the replace-
ment occurs as soon as the main fails, and the resumption
occurs as soon as the main is repaired. Moreover, both re-
placement and resumption are not truly switching mecha-
nisms, because the main is not deactivated. Because of this
choice, in particular, the redundancy policies described in
subsection 2.1 cannot be translated into the model.

Second, the switching mechanisms handled by triggers
cannot be lost. However in reality, these mechanisms can-
not be triggered without a ”controller” (human operator,
electronic devices...). This ”controller” can also be faulty,
what would prevent the achievement of the mechanisms.

Finally, BDMP gates focus only on the dysfunctional sta-
tus of their inputs. Then a non-faulty component is always
considered as available even if it is inactive. Nevertheless,
there are two ways for a component to be unavailable:
either it is faulty or it cannot be activated. This as-
sumption is not more discussed in this section, because
the difficulties it implies will appear only when the two
previous other assumptions are relaxed.

Because of these three assumptions, BDMP does not pro-
vide a mean to model relevantly all the possible manage-
ment policies of standby redundancies. Hence it is not
modeled, what leads to approximations in the results of
the analysis. This claim is exemplified next.

In a previous paper (Piriou et al. (2014)), the authors
tried to consider the trigger’s controller in a BDMP model,
as an additional condition to achieve the function. In
order to recall this approach, let us extend the example
introduced in subsection 2.1. As depicted Figure 4, we
consider now that standby redundancies are managed by
two control functions called RA and RB . These functions
are each implemented on a couple of active redundant
Programmable Logic Controller (PLC), that communi-
cate through two active redundant communication buses.
These devices should be integrated in the BDMP model
as controllers of the triggers in the BDMP.

Fig. 4. The controlled CFWS (process on the left, control
on the right)

For the considered example, as shown by Figure 5, a
group of controlled pumps are considered faulty if the
pumps fail or the control function that manage the standby
redundancy is lost (because of failures of the control
devices necessary to its achievement). The part of BDMP
that models the loss of the control functions is darkened.
But this modeling provides a too pessimistic knowledge
concerning the role of the controller in the redundancy
management. Indeed, a control of the trigger is required
only when a switching mechanism should occur.

SF
Leaf

Ex1

SF
Leaf

Ex2

SF
Leaf

Ex3

SF
Leaf

PLCA1

SF
Leaf

PLCA2

SF
Leaf

BUS1

SF
Leaf

BUS2

SF
Leaf

PLCB1

SF
Leaf

PLCB2

SF
Leaf

FTP1

SF
Leaf

FTP2

FailEx1|2

FailPLCA FailBUS FailPLCB

2/3 FailEx Loss RA Loss RB
FailFTP

FailControlledEx FailControlledFTP

FailSystem

te

Fig. 5. BDMP model of the controlled CFWS

BDMP formalism is particularly important for MBSA
because it is the only tree-based formalism that deals with
the replacement, the reparation and the resumption of the
components. Nevertheless, the implicit assumptions made
in its definition prevent to capture in the model every
redundancy policies, and their possible loss. This paper
proposes to extend this formalism in order to enrich its
modeling capabilities. This extended formalism will permit
in particular to take into account the standby redundancy
management. Next section proposes an analogy between
standby redundancy and preemption, in order to reach
this goal.

3. PREEMPTION MECHANISMS FOR MODEL
BASED SAFETY ANALYSIS

This section presents the notion of preemption in con-
current systems, and discusses the analogy with standby
redundancy in critical systems.

3.1 Preemption in concurrent systems

Concurrent systems deal with processes whose application
depends on shared resources. The access of the processes
to the resources is managed by coordination mechanisms.
Preemption mechanism is one of them. It consists in inter-
rupting a process in a particular context, generally in order
to trigger another process. It is a key concept for many
applications. For example, it is widely used in real-time
programming in order to schedule the execution of pro-
cesses sharing a unique processor (Baruah et al. (1990)).
In a similar way, the consequences of an emergency stop on
a distributed reactive system can be described by preemp-
tion mechanisms (Andre (1996)). It is also a fundamental
concept in traffic management. For example it allows to
specify strategies for easing the locomotion of emergency
vehicle (Hall et al. (1996)). Let us remark that control is



the common idea behind these applications of preemption
mechanisms.

A formal definition and characterization of preemption is
proposed in Berry (1993). This work is based on the zero-
delay paradigm, which is used by synchronous languages.
In this framework, a concurrent system is described as a
set of processes that interact through flows of events. A
process receives input signals and emits output signals.
An input (resp. output) event is a subset of all input
(resp. output) signals. So the subset of received inputs
signals at a given time is an input event. A process is then
define as a mapping from the sequences of input events to
the sequences of output events. The zero-delay hypothesis
asserts that parallel processes always see the same inputs
on the signals they share. Preemption mechanism is then
seen as a way to control the right to work to a process,
depending on the emitted signals. It distinguishes two kind
of preemption (p is a process and s is a signal in what
follows):

• abortion: ”denying the right to work to a process
permanently” (abort p when s)
• suspension: ”denying the right to work to a process

temporarily” (suspend p whenever s is present)

Next subsection explains how a standby redundancy can
be seen as a preemption mechanism.

3.2 Analogy between standby redundancy and preemption

A standby redundancy manages the activation and deac-
tivation of two parts of the process that perform the same
function (called main and spare). A standby redundancy
between non repairable components can easily be seen as
an abortion:

• abort main when main is faulty and trigger spare.

However when components are repairable, two switching
mechanisms have to be considered: the replacement and
the resumption. The replacement can only occur after the
failure of the main part, and the resumption can only occur
after its reparation. A redundancy policy defines the ad-
ditional conditions required for applying these switchings.
Both replacement and resumption can be applied as soon
as possible, i.e. without additional required conditions. But
they also can wait for a specific context to be applied. Next
it is considered that redundancies focus only on a Boolean
dysfunctional status of main and spare. Let us denote re-
spectively FM and FS these Boolean dysfunctional status
(FM (respectively FS) is True when main (respectively
spare) is faulty). Only four particular policies can then be
defined:

• Pee (earliest replacement, earliest resumption): re-
placement occurs as soon as FM is True, and then
resumption occurs as soon as FM is False.
• Ple (latest replacement, earliest resumption): replace-

ment occurs when FM is True and FS is False, and
then resumption occurs as soon as FM is False.
• Pel (earliest replacement, latest resumption): replace-

ment occurs as soon as FM is True, and then resump-
tion occurs when FM is False and FS is True.
• Pll (latest replacement, latest resumption): replace-

ment occurs when FM is True and FS is False, and

then resumption occurs when FM is False and FS is
True.

Each of these policies can be seen as a suspension. In what
follows, let s(C1 → C2) denotes the signal that becomes
present when the Boolean C1 becomes True and stays
present until the Boolean C2 becomes True. Let us remark
that a policy is then exactly specified by the two contexts
C1 and C2.

• Pee: suspend main whenever s((FM = True) →
(FM = False)) is present and trigger spare.

• Ple: suspend main whenever s((FM = True) ∧
(FS = False) → (FM = False)) is present and
trigger spare.

• Pel: suspend main whenever s((FM = True) →
(FM = False) ∧ (FS = True)) is present and
trigger spare.

• Pll: suspend main whenever s((FM = True) ∧
(FS = False) → (FM = False) ∧ (FS = True))
is present and trigger spare.

For the sake of clarity, such redundancy policies can be
illustrated with timing diagrams (Figure 6). An arbitrary
evolution of FM and FS is represented on this diagram.
The demanded part of process according to this evolution
is also represented for the two most different policies: Pee

and Pll. The dashed line expresses that the part of process
is demanded but cannot perform the function (because it
is faulty). Let us explain this diagram:

(0) Initially, for the two policies, the function is per-
formed by main.

(1) A failure of spare occurs without consequences.
(2) A failure of main occurs: the replacement switching

occurs for the policy Pee, and does not occur for
the policy Pll (because spare is faulty). For the two
policies, the function is not achieved.

(3) A reparation of spare occurs: the replacement switch-
ing occurs for the policy Pll (because main is faulty
and not spare). For the two policies, the function is
performed by spare.

(4) A reparation of main occurs: the resumption switch-
ing occurs for the policy Pee, and does not occur
for the policy Pll (because spare is not faulty, then
still able to perform the function). The function is
performed by main for the policy Pee, and by spare
for the policy Pll.

(5) A failure of spare occurs: the resumption switching
occurs for the policy Pll (because spare is faulty
and not main). For the two policies, the function is
performed by main.

(6) A reparation of spare occurs without consequences.

Let us remark that in the considered scenario, the achieve-
ment of the expected function does not depend on the
policy. Nevertheless, it can even though have a significant
impact on safety because the dysfunctional behavior of a
component is generally different when it is active or not
(such is the case for the SF leaves, see Figure 2: the failure
rate changes). Then the activation of one part or another
according to particular dysfunctional context can have



(0) (1) (2) (3) (4) (5) (6)

6

-

-

-

-

time

K

e

K

e

K

K

e

K

K

e
FM

FS

Pee

spare

main

Pll

spare

main

Fig. 6. Example of timing diagrams for illustrating the
behavior associated to redundancy policies

different consequences on system safety. More complex
redundancy policies can be defined while considering more
knowledge on the dysfunctional context (failure modes,
mission phases...), but their characterization is out of the
scope of this paper.

This study has shown that every redundancy policy can be
specified in terms of preemption mechanism. Next section
exploits this analogy to extend the definition of the trigger
primitive in BDMP.

4. AN EXTENSION OF BDMP FOR MODELING THE
REDUNDANCY MANAGEMENT

This section proposes an extension of the BDMP forma-
lism, for integrating the management of standby redun-
dancies according to preemption mechanisms into the
safety models.

4.1 Definition of GBDMP

The proposed extension has to solve two modeling issues:

• How to develop the definition of a trigger, to make
possible the modeling of any redundancy policies?
• How to make the occurrence of switchings conditional

upon the availability of the trigger’s controller?

The first point has been discussed in last section: a
trigger can be characterized by a preemption mechanism
that expresses the redundancy policy. For the second
point, we propose to ”guard” the triggers by a node of
the BDMP. Therefore a switching can be applied by a
trigger only if its guard node is not faulty. Moreover, as
it was mentioned in subsection 2.3, BDMP gates focus
only on the dysfunctional status of their inputs. Then
if a trigger fails to activate a non faulty component
(because of the failure of its guard), the component is
even though considered available. Hence the proposal
changes the interpretation of the failure of the gates, to
consider that a non demanded component cannot perform
its function whatever its dysfunctional status.

Because of the attribution of a guard to the trigger,
this extended formalism is called Guarded Boolean logic

Driven Markov Process (GBDMP). A GBDMP is a 4-tuple
< F , te, T, (Mi) > where (differences with the BDMP
formalism are written in bold):

• F is a multi-top coherent fault-tree, i.e. a 3-tuple
< N,E, k > where:
· N = G ∪ L, a set of nodes composed of a set of

gates and a set of leaves, such as G ∩ L = ∅
· E ⊂ G × N , a set of oriented edges such as
< N,E > is a directed non-cyclical graph, and
∀Gi ∈ G, ({Gi} ×N) ∩ E 6= ∅.
· k : G −→ N∗, a function that determines the kind

of the gates. If k(Gi) = 1 then Gi is an OR gate.
If k(Gi) = Card(({Gi} ×N) ∩ E) then Gi is an
AND gate.

• te ∈ G is a particular gate called the top-event.
• T is a set of oriented edges called triggers. A trigger
Ti is defined as a 4-tuple < oi, gi, di, Pi > where:
· oi ∈ N\{te} is the origin,
· gi ∈ N\{te} is the guard,
· di ∈ N\{te} is the destination,
· Pi is a policy specified as a preemption

mechanism.
• (Mi) is a set of triggered Markov processes associated

to the leaves.

The solicitation of the nodes origin and destination of a
trigger is determined by referring to the specified redun-
dancy policy. It is necessary to the activation of a node.
Moreover, the activation of any node requires that at least
one of its output nodes is active (if their exist). The failure
of the leaves are determined by the associated trigger
Markov process (see Bouissou and Bon (2003) for the
formal definition). The failures of the gates are determined
by the state of its inputs: if the number of the input nodes
of the gate Gi that are faulty or not demanded is greater
than k(Gi), then Gi is faulty.

Finally, a switching of solicitation can occurs through
a trigger only if its guard is not faulty. Of course the
guard can be a never failed leaf (i.e. a leaf whose trigger
Markov process does not have any faulty state). Since any
policy can be associated to triggers, then in particular it
is the case for the policy implicitly associated to BDMP
triggers. Hence each BDMP (with BDMP triggers) has an
equivalent GBDMP.

In order to prevent inconsistencies, two construction rules
are added. The oriented graph < N,E >, for which links
are added between origin and destination of triggers, must
be without cycle. Indeed, the activation and failure of a
node cannot depend on themselves. Moreover, each node
can be associated to at most one trigger. If this rule is
not satisfied, the activation of a node can be associated to
different redundancy policies that can be incompatible.

Due to the lack of space, the formal elicitation of the
GBDMP semantics will not be described in this paper.

4.2 Modeling with GBDMP

In order to illustrate the benefits of this extension of
BDMP formalism, the example introduced in subsection
2.1 is now modeled by a GBDMP.



SF
Leaf

Ex1

SF
Leaf

Ex2

SF
Leaf

Ex3

SF
Leaf

FTP1

SF
Leaf

FTP2

2/3 FailEx FailFTP

FailSystem

FailEx1|2

te

F
Leaf

PLCA1

F
Leaf

PLCA2

F
Leaf

BUS1

F
Leaf

BUS2

F
Leaf

PLCB1

F
Leaf

PLCB2

FailPLCA FailBUS FailPLCB

Loss RA Loss RB

Pll

Ple

Fig. 7. The GBDMP model of the controlled CFWS

Figure 7 shows the GBDMP model of the controlled
CFWS (see Figure 4). Each standby redundancy is mo-
deled by a trigger guarded by the controller that controls
it. Thereby the condition for switching between (Ex1 or
Ex2) and Ex3 is that RA is not lost (i.e. the gate Loss RA

is not faulty). The condition for switching between FTP1
and FTP2 is that RB is not lost (i.e. the gate Loss RB is
not faulty). Moreover, a redundancy policy is associated
to each trigger, according to the specifications given in the
subsection 2.1:

• For the redundancy between the extraction pumps,
the replacement must occur when FailEx1|2 is faulty
and Ex3 is not faulty, and the resumption must occur
when Ex3 is faulty and FailEx1|2 is not faulty.
This specification correspond to the policy Pll called
”latest replacement, latest resumption” in subsection
3.2.

• For the redundancy between the turbo pumps, the
replacement must occur when FTP1 is faulty and
FTP2 is not faulty, and the resumption must occur
as soon as FTP1 is repaired. This specification cor-
respond to the policy Ple called ”latest replacement,
earliest resumption” in subsection 3.2.

4.3 Partial qualitative analysis

Now a comparison of the behavior described by the
GBDMP model and the BDMP model (cf. subsection 2.3)
is performed through two particular sequences.

First sequence: a sequence to check that the failure of a
trigger’s guard prevents the occurrence of the correspond-
ing switchings (in particular the resumption):

0
f−FTP1−→ 1

f−Loss RB−→ 2
r−FTP1−→ 3

f−FTP2−→ 4

For saving space, the event f − Loss RB aggregates all
sequences of basic events that lead to lose the function
RB . The expected behavior described by this sequence is
reported below:

(0) Initially, the pressurization function is performed by
the pump FTP1.

(1) After the failure of FTP1: the replacement occurs
from FTP1 to FTP2. The function is performed by
the pump FTP2.

(2) After the loss of RB : nothing happens.
(3) After the reparation of FTP1: the resumption should

occur, but it cannot because of the loss of RB . The
function is still performed by the pump FTP2.

(4) After the failure of FTP2: FTP1 is not faulty but the
control has failed in activating it. Then the function
is not achieved (i.e. the gate FailFTP is faulty).

Table 1 compares the behaviors specified by the BDMP
and GBDMP models for this sequence with the expected
one. The name of a pump is written in black if the pump
is demanded and in gray else, and is struck through if it
is faulty. This table confirms the ability of GBDMP to
make the occurrence of switchings conditional upon the
availability of the trigger’s controller.

Table 1. State of FTP pumps during a partic-
ular dysfunctional sequence according to the
BDMP and GBDMP models, and the reality.

sequence 0
f−FTP1−→ 1

f−Loss RB−→ 2
r−FTP1−→ 3

f−FTP2−→ 4

BDMP
Fig. 5

FTP1,
FTP2

FTP1,
FTP2

FTP1,
FTP2

FTP1,
FTP2

FTP1,
FTP2

GBDMP
Fig. 7

FTP1,
FTP2

FTP1,
FTP2

FTP1,
FTP2

FTP1,
FTP2

FTP1,
FTP2

expected FTP1,
FTP2

FTP1,
FTP2

FTP1,
FTP2

FTP1,
FTP2

FTP1,
FTP2

Second sequence: a sequence to check that the redun-
dancy policies have been correctly translated into the
models:

0
f−Ex3−→ 1

f−Ex1−→ 2
r−Ex3−→ 3

r−Ex1−→ 4
f−Ex3−→ 5

The expected behavior described by this sequence is re-
ported below:

(0) Initially, the extraction function is performed by the
pumps Ex1 and Ex2.

(1) After the failure of Ex3: nothing happens.
(2) After the failure of Ex1: the replacement does not

occur because Ex3 is faulty then cannot perform the
function anyway. The function is performed only by
Ex2 (that is not sufficient to achieve it).

(3) After the reparation of Ex3: the replacement occurs.
The function is performed by Ex2 and Ex3.

(4) After the reparation of Ex1: the resumption does not
occur because Ex3 is not faulty then can still perform
the function. The function is still performed by Ex2
and Ex3.

(5) After the failure of Ex3: the resumption occurs. The
function is performed by Ex1 and Ex2.

Table 2 confirms the ability of GBDMP to capture redun-
dancy policies different than the policy implicitly associa-
ted to BDMP trigger.



Table 2. State of Ex pumps during a partic-
ular dysfunctional sequence according to the
BDMP and GBDMP models, and the reality.

sequence 0
f−Ex3−→ 1

f−Ex1−→ 2
r−Ex3−→ 3

r−Ex1−→ 4
f−Ex3−→ 5

BDMP
Fig. 5

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

GBDMP
Fig 7

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

expected Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Ex1,
Ex2,
Ex3

Finally, this brief analysis shows that the GBDMP model
complies with the expected behavior contrary to the
BDMP model. More generally, this case study illustrates
that GBDMP overcomes the BDMP limitations for ad-
dressing the issue introduced in subsection 2.1.

5. CONCLUSION

In order to improve the representativeness of BDMP for
performing relevant MBSA, this paper questions the abi-
lity of this formalism to model any standby redundancy
policy, and its possible loss. It appears the BDMP forma-
lism is not adapted for addressing this issue. The implicit
assumptions made by the BDMP definition, that explain
this limitation, have been explicitly formulated. Hence
the Guarded BDMP has been defined as an extension of
BDMP formalism to enrich its modeling capabilities. This
extension is based on a refinement of BDMP triggers and
on a new interpretation of the gates failure. A guard -
defined as a sub-tree of the GBDMP- has been added to
the triggers. Moreover the switching policy followed by a
trigger can be freely specified. The specification is based
on an analogy between standby redundancies -defined for
repairable critical systems- and preemption mechanisms -
defined for concurrent systems-. Finally a case study com-
ing from nuclear power industry has been considered for
illustrating the benefits of GBDMP compared to BDMP
to address the above-mentioned issue.

A natural perspective of this work is the development
of methods to assess qualitative and quantitative safety
attributes, based on a GBDMP model. But to apply
these formal analysis, the semantics has to be formally
described. This task will be addressed in the authors
next publication. In parallel to this theoretical work,
the authors are developing a prototype software tool to
support the approach. This tool aims to implement the
GBDMP formalism, a model library, a consistency checker,
a graphical discrete event simulator, and two classical
formal analysis: the minimal cut sequences extraction, and
an availability assessment based on the generation of a
Markov chain.

ACKNOWLEDGEMENTS

This work is funded by the French Investment of Future
Program: Generic Components of Embedded Software as
part of the CONNEXION project.

REFERENCES

Andre, C. (1996). Representation and analysis of reactive
behaviors: A synchronous approach. In Symposium on
discrete events and manufacturing systems, 21 pages.
Lille (Paris).

Baruah, S.K., Rosier, L.E., and Howell, R.R. (1990).
Algorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one processor.
Real-Time Systems, 2(4), pp. 301–324.

Berry, G. (1993). Preemption in concurrent systems. In
13th Conference on Foundations of Software Technology
and Theoretical Computer Science, pp. 72–93. Bombay
(India).

Bouissou, M. and Bon, J.L. (2003). A new formalism that
combines advantages of fault trees and markov models:
Boolean logic Driven Markov Processes. Reliability
Engineering and Systems Safety, 82(2), pp. 149–163.

Carer, P., Bellvis, J., Bouissou, M., Domergue, J., and
Pestourie, J. (2002). A new method for reliability assess-
ment of electrical power supplies with standby redun-
dancies. In 7th International Conference on Probabilistic
Methods Applied to Power Systems (PMAPS02). Napoli
(Italy). 6 pages.

Chaux, P., Roussel, J.M., Lesage, J.J., Deleuze, G., and
Bouissou, M. (2012). Systematic extraction of minimal
cut sequences from a BDMP model. In 21th European
Safety & Reliability Conference (ESREL’12). Helsinki
(Finland). Session 16B, 8 pages.

Hall, T., Schwartz, M., and Hamer, S. (1996). Gps-based
traffic control preemption system. US Patent 5,539,398.

Kriaa, S., Bouissou, M., and Pietre-Cambacedes, L.
(2012). Modeling the stuxnet attack with BDMP: To-
wards more formal risk assessments. In 7th Interna-
tional Conference on Risk and Security of Internet and
Systems (CRiSIS). Cork (Ireland). 8 pages.

Pietre-Cambacedes, L. and Bouissou, M. (2010). Attack
and defense modeling with BDMP. In Computer Net-
work Security, volume 6258 of Lecture Notes in Com-
puter Science, pp. 86–101. Springer.

Piriou, P.Y., Faure, J.M., and Lesage, J.J. (2014). Control-
in-the-loop model based safety analysis. In 24th Euro-
pean Safety & Reliability Conference (ESREL’14), pp.
655–662. Wroclaw (Poland).


