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SUPER-EXPONENTIAL EXTINCTION TIME OF THE CONTACT
PROCESS ON RANDOM GEOMETRIC GRAPHS

VAN HAO CAN

Abstract. In this paper, we prove lower and upper bounds for the extinction time
of the contact process on random geometric graphs with connection radius tending to
infinity. We obtain that for any infection rate λ > 0, the contact process on these graphs
survives a time super-exponential in the number of vertices.

1. Introduction

We will study the contact process on random geometric graphs (RGGs) in d ≥ 2 dimen-
sions with intensity function g = gn(x) and connection radius R, denoted by G(n,R, g).

A RGG is constructed as follows. The vertex set is composed of the atoms of a Poisson
point process with intensity g on [0, d

√
n]d. Then for any two vertices v 6= w, we draw an

edge between them if ‖v − w‖ ≤ R, where ‖ · ‖ denotes the Euclidean norm in Rd. We
will assume throughout this paper that there are positive constants b and B, such that

0 < b ≤ g(x) ≤ B < +∞ for all x,(1)

here and below, we remove the subscript n in the function gn for simplicity.

The contact process is one of the most studied interacting particle systems and is also
often interpreted as a model to describe the spread of a virus in a network (see for instance
[14]). Mathematically, it can be defined as follows: given a locally finite graph G = (V,E)
and λ > 0, the contact process on G with infection rate λ is a pure jump Markov process
(ξt)t≥0 on {0, 1}V . Vertices of V (also called sites) are regarded as individuals which are
either infected (state 1) or healthy (state 0). By considering ξt as a subset of V via
ξt ≡ {v : ξt(v) = 1}, the transition rates are given by

ξt → ξt \ {v} for v ∈ ξt at rate 1, and
ξt → ξt ∪ {v} for v 6∈ ξt at rate λ|{w ∈ ξt : {v, w} ∈ E}|,

where |A| is the cardinality of a set A.
Originally the contact process was studied on integer lattices or homogeneous trees.

More recently, probabilists started investigating this process on some families of random
networks like configuration models, or preferential attachment graphs, see for instance
[1, 4, 2, 6, 17, 18].

Random geometric graphs have been extensively studied for a long time by many au-
thors, see in particular Penrose’s book [21]. Recently, these graphs have also been con-
sidered as models of wireless networks (see e.g. [13]). Therefore, there has been interest
in processes occurring on them, including the contact process in both theoretical and
practical approaches, see for example [9, 10, 22].
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In this paper, we are in particular interested in the extinction time of the contact
process,

τn = inf{t : ξ1t = ∅},

where (ξ1t ) is the contact process on G(n,R, g) starting with all nodes infected.
It has been shown that the contact process on finite graphs dies out almost surely,

thus τn < ∞ a.s. Now, it is interesting to determine the order of magnitude of τn. For
sparse graphs, i.e. graphs in which the number of edges is of order the number of vertices,
we will show that the extinction time is at most exponential in the number of vertices
(see Lemma 5.1). On the other hand, we will show in Section 2.1 that the extinction
time of the contact process on a complete graph is super-exponential in the number of
vertices. For the random geometric graph G(n, g, R), we observe that w.h.p. the number
of vertices is Θ(n) and the graph locally looks like a complete graph (all vertices in a ball
of radius R/2 form a clique). Hence, we can expect that log τn is super-linear in n as in
the case of the complete graph. (Note that there are graphs which are not sparse but for
which log τn = O(n), for example the configuration model with infinite mean degree, see
Theorem 1.2 (ii) in [6]).

In [10, Theorem 1.2], Ganesan considers the contact process on an equivalent model
of G(n,R, g) in 2 dimensions. Translating to our model, Ganesan proves that if R →∞
and R2 = O(log n), then there exist positive constants c = c(λ) and C = C(λ), such that
w.h.p. Cn log n ≥ log τn ≥ cnR2/ log n.

In our main result, we will prove that in all dimensions larger than or equal to 2, for
any λ > 0 and for all R large enough, w.h.p. log τn = Θ(n log(λRd)).

Theorem 1.1. Let d ≥ 2 and τn be the extinction time of the contact process on the graph
G(n,R, g) with g satisfying (1) starting from full occupancy. Then there exist positive
constants c, C and K depending only on d, b, B, such that the following statements hold.

(i) For any R = R(n) and λ = λ(n) satisfying n ≥ Rd ≥ K/(λ ∧ 1), w.h.p.

τn ≥ exp(cn log(λRd))

and
τn

E(τn)

(L)−→
n→∞

E(1),

with E(1) an exponential random variable with mean one.
(ii) For all R > 0, w.h.p.

τn ≤ exp(Cn log(λRd)).

Part (i) implies that when R tends to infinity, the contact process survives a time super-
exponential in n regardless the value of λ. We usually say that in this case the critical
value of the infection rate is zero. On the other hand, recently in [20] Ménard and Singh
show that when R is fixed, there is a non-trivial phase transition of the contact process on
infinite random geometric graphs (i.e. the vertices are atoms of a Poisson point process on
the whole space Rd). More precisely, they prove that there exists a constant λc > 0, such
that if λ < λc, the contact process dies out a.s. whereas if λ > λc, it survives forever with
positive probability. Moreover, in [5, Section 5.3.3], by slightly improving some details in
the proof of Ménard and Singh, we show that λc(R) = Θ(R−d).

It has been observed in many examples that the contact process on a sequence of finite
graphs, say (Gn), converging locally to some limiting graph, say G, exhibits a phase
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transition at the same critical value of infection rate as on the limit G: in the sub-critical
regime, the contact process on G dies out a.s. (resp. the extinction time τn of the process
on Gn is of order log(|Gn|)), whereas in the super-critical regime, the contact process
survives forever with positive probability (resp. log τn is of order |Gn|), see for instance
[4, 2, 3, 17, 19].

Our theorem 1.1 (i) implies that in the case of random geometric graphs, this phase
transition also holds in a ”highly” super-critical phase, i.e. it holds when λ > Cλc, with
C a positive constant independent of R.

We now make some comments on the proof of Theorem 1.1. The proof of (i) consists of
two main steps. First, we find in G(n,R, g) a key subgraph composed of dcnR−de adjacent
complete graphs, each of size bcRdc, see Lemma 3.2. The proof of this part is based on
the existence of long paths in super-critical site percolation in Zd. Secondly, we study
the extinction time of the contact process on this key subgraph. This part is based on
a comparison between the contact process and a super-critical oriented percolation, see
Section 4. The proof of (ii) follows from a quite general argument: the extinction time
of the contact process on a graph G = (V,E) is at most exp(C|V | log(|E|/|V |)), for some
positive constant C.

The paper is organized as follows. In Section 2, we prove some preliminary results on
the contact process on complete graphs and the oriented percolation in two dimensions.
In Section 3, we prove the existence of a key subgraph mentioned above. In Section 4, we
study the contact process on this key subgraph. In Section 5, we conclude the proof of
Theorem 1.1 by using results in the previous sections. In the last section, we study some
extensions: the case d = 1 and the equivalent model considered in [10].

We now fix some notation. We call size of a graph G the cardinality of its set of vertices
and we denote it by |G|. For µ > 0, we denote by Poi(µ) a Poisson random variable with
mean µ and E(µ) an exponential random variable with mean 1/µ. For x > 0, we denote
by bxc (resp. dxe) the greatest (resp. least) integer less (resp. greater) than or equal x.
If f and g are two real functions, we write f = O(g) if there exists a constant C > 0,
such that f(x) ≤ Cg(x) for all x; f = Θ(g) if f = O(g) and g = O(f); f = o(g) if
g(x)/f(x)→ 0 as x→∞. The term w.h.p. means with probability tending to 1.

2. Preliminairies

2.1. Contact process on complete graphs. We denote by Km the complete graph of
size m. Similarly to the results for the contact process on star graphs in [2, 18], we prove
the following.

Lemma 2.1. Assume that λ ≤ 1 and mλ ≥ 640. Then the following assertions hold.
(i) Let (ξt) be the contact process on Km. Then

P
(

inf
Tm/2≤t≤Tm

|ξt| ≥ m/4
∣∣∣ |ξ0| ≥ m/4

)
≥ 1− 2T−1m ,

with Tm = exp(m log(λm)/16).
(ii) Let K1

m and K2
m be two disjoint complete graphs of size m, and Km-m be the graph

formed by adding an edge between these two graphs. Let (ξt) be the contact process
on Km-m. Then

P
(
|ξTm ∩K2

m| ≥ m/4
∣∣∣ |ξ0 ∩K1

m| ≥ m/4
)
≥ 1− 5T−1m .
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Proof. Part (i) follows from the following claims

P
(

inf
0≤t≤Tm

|ξt| ≥ m/4
∣∣∣ |ξ0| ≥ m/2

)
≥ 1− T−1m ,(2)

P
(
∃ t ≤ Tm/2 : |ξt| ≥ m/2

∣∣∣ |ξ0| ≥ m/4
)
≥ 1− T−1m .(3)

First, we observe that |ξt| increases by 1 with rate λ|ξt|(m − |ξt|) and decreases by 1
with rate |ξt|. Therefore, the skeleton of (|ξt|) is a random walk (Ur) trapped at 0, which
satisfies U0 = |ξ0| and

Ur+1 = Ur + 1 with probability p1 =
λ(m− Ur)

λ(m− Ur) + 1
,

Ur+1 = Ur + 1 with probability 1− p1.
We now prove (2). Assume that |ξ0| ≥ m/2. Then U0 ≥ m/2. Moreover, if Ur ∈
(m/4, 3m/4) then p1 ≥ λm/(λm + 4). Hence, when Ur ∈ (m/4, 3m/4), it stochastically
dominates a random walk (Xr) satisfying X0 = m/2 and

Xr+1 = Xr + 1 with probability
λm

λm+ 4
,

Xr+1 = Xr − 1 with probability
4

λm+ 4
.

Then θXr is a martingale, where

θ =
4

λm
.

Let q be the probability that Xr goes below m/4 before hitting 3m/4. It follows from the
optional stopping theorem that

qθm/4 + (1− q)θ3m/4 ≤ θm/2.

Therefore using λm ≥ 640, we get

q ≤ θm/4 = (4/λm)m/4 ≤ T−3m /(2m2).(4)

Hence, the random walk (Xr) (and thus (|ξt|)) makes at least bm2Tmc upcrossings between
m/2 and 3m/4 before hitting m/4 with probability larger than

1− bm2TmcT−3m /(2m2) ≥ 1− T−1m /2.(5)

The law of the waiting time between two upcrossings of (|ξt|) stochastically dominates
E(L), with L = λbm/2c(m− bm/2c) + bm/2c, the waiting time when |ξt| = bm/2c.

Suppose that (|ξt|) makes more than bm2Tmc consecutive upcrossings. Then the time
that (|ξt|) stays above m/4 stochastically dominates S, the sum of bm2Tmc i.i.d. expo-
nential random variables with mean 1/L. By applying Chebyshev’s inequality, we get

P(S < bm2Tmc/2L) ≤ 4/(bm2Tmc) ≤ T−1m /2.(6)

Since L ≤ m2/2, we deduce (2) from (5) and (6).
We now prove (3). Assume that |ξ0| ≥ m/4. Using a similar argument as for (Xr), we

get that when Ur ∈ (m/8,m/2), it stochastically dominates a random walk (Yr) satisfying
Y0 = m/4 and

Yr+1 = Yr + 1 with probability p2 =
λm

λm+ 2
,

Yr+1 = Yr − 1 with probability 1− p2.
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Let us define

σY = inf{r : Yr ≥ m/2} and σ̃Y = inf{r : Yr ≤ m/8}.

Then similarly to (4), we have

P(σ̃Y < σY ) ≤ (2/λm)m/8 ≤ T−1m /3.(7)

Since Yr − (2p2 − 1)r is a martingale, it follows from the optional stopping theorem that

m/4 = E(YσY ∧r)− (2p2 − 1)E(σY ∧ r) ≤ m/2− (2p2 − 1)E(σY ∧ r).

Therefore using mλ ≥ 640, we get

E(σY ∧ r) ≤
m

4(2p2 − 1)
≤ m/3.

Letting t go to infinity, we obtain

E(σY ) ≤ m/3.

Thus using Markov inequality, we have

P(σY ≥ mTm) ≤ E(σY )/mTm ≤ T−1m /3.(8)

Now, let us define

σ = inf{t : |ξt| ≥ m/2} and σ̃ = inf{t : |ξt| ≤ m/8}.

Then by (7),

P(σ̃ < σ) ≤ P(σ̃Y < σY ) ≤ T−1m /3.(9)

On the other hand, when |ξt| ∈ (m/8,m/2) the waiting time at each stage is an exponential
random variable with mean less than 1/M , with M = λbm/8c(m− bm/8c) + bm/8c, the
mean of the waiting time when |ξt| = bm/8c. Therefore

σ1(σ < σ̃) �
σY∑
i=1

Ei,

where (Ei) is a sequence of i.i.d. exponential random variables with mean 1/M and inde-
pendent of σY . Hence

P(Tm/2 ≤ σ < σ̃) ≤ P(σY ≥ mTm) + P

bmTmc∑
i=1

Ei ≥ Tm/2


≤ 2T−1m /3.(10)

Here, we have used (8) to bound the first term, and for the second one we note that

E(Ei) = 1/M ≤ 64/(7λm2) ≤ 1/(70m),

thus using a standard large deviation result, we get a bound for this term. Now, it follows
from (9) and (10) that

P (σ ≥ Tm/2) ≤ T−1m ,

which proves (3).
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For (ii), let u and v be two vertices in K1
m and K2

m respectively, such that there is an
edge between u and v. Let (ξ′t) (resp. (ξ′′t )) be the contact process on K1

m (resp. K2
m). By

(i), we have

P
(
ξ′Tm 6= ∅

∣∣∣ |ξ′0| ≥ m/4
)
≥ 1− 2T−1m .(11)

We now claim that

P
(
∃ t ≤ m2/2 : |ξ′′t | ≥ m/4

∣∣∣ ξ′m2/2 6= ∅
)
≥ e−m/4.(12)

To prove (12), it amounts to show that

P
(
∃ t ≤ m/2 : |ξ′′t | ≥ m/4

∣∣∣ |ξ′′0 | = 1
)
≥ 2e−m/4,(13)

and

P
(
v gets infected before m2/4

∣∣∣ ξ′m2/4 6= ∅
)
≥ 1/2.(14)

For (13), observe that when |ξ′′t | ≤ m/4, it increases by 1 in the next stage with probability

λ(m− |ξ′′t |)
λ(m− |ξ′′t |) + 1

≥ 3λm

3λm+ 4
> 0.9,

as λm ≥ 640. Moreover, the waiting time to the next stage is an exponential random
variable with mean less than 1. Therefore, the probability that in all the dm/4e first
stages, |ξ′′t | increases and the waiting time is less than 1, is larger than(

0.9(1− e−1)
)dm/4e ≥ 2e−m/4,

which implies (13). For (14), we note that

{ξ′m2/4 6= ∅} ⊂
bm2/8c−1⋂

i=0

Ei,

where

Ei = {∃ vi ∈ K1
m : ξ′2i(vi) = 1}.

We define

Ii = Ei ∩ {there is no recovery at ui in [2i, 2i+ 1] and there is an infection spread from
ui to u in [2i, 2i+ 1], there is no recovery at u in [2i, 2i+ 2] and there is an
infection spread from u to v in [2i+ 1, 2i+ 2]}.

If ui ≡ u, we only consider the recovery in u and the infection spread from u to v. We see
that if one of (Ii) occurs then v gets infected beforem2/4 and for any i = 0, . . . , bm2/8c−1

P
(
Ii
∣∣ ∩ij=0 Ej

)
≥ e−3(1− e−λ)2 ≥ λ2/(4e3),(15)
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as λ ≤ 1. Therefore, by using induction we have

P
(
v is not infected before m2/4

)
≤ P

bm2/8c−1⋃
i=0

Ii

c

∩

bm2/8c−1⋂
i=0

Ei


≤ (1− λ2/(4e3))bm2/8c

≤ 1/2,(16)

since λm ≥ 640. Thus (14) follows.
We now prove (ii) by using (12). Suppose that ξ′Tm 6= ∅. We divide the time interval

[0, Tm/2] into bTm/m2c small intervals of length m2/2. Then (12) implies that in each
interval with probability larger than e−m/4, there is a time s, such that that |ξ′′s | ≥ m/4.
Hence, similarly to (16) we have

P
(
∃ s ≤ Tm/2 : |ξ′′s | ≥ m/4

∣∣∣ ξ′Tm/2 6= ∅
)
≥ 1− (1− e−m/4)bTm/m2c ≥ 1− T−1m .(17)

Suppose that |ξ′′s | ≥ m/4 with s ≤ Tm/2. Then (i) implies that |ξ′′Tm| ≥ m/4 with
probability larger than 1− 2T−1m . Combining this with (11) and (17), we get (ii). �

2.2. Oriented percolation on finite sets. For any positive integer `, we consider an
oriented percolation process on [0, `] with parameter q defined as follows. Let

Γ = {(i, k) ∈ [0, `]× N : i+ k is even}.
For each pair of sites (i, k) and (j, k + 1) with j = i ± 1, we draw an arrow from (i, k)
to (j, k + 1) with probability p, all these events being independent. Given the initial
configuration A ⊂ [0, `], the oriented percolation (ηt)t≥0 is defined by

ηAt = {i ∈ [0, `] : ∃ j ∈ A s.t. (j, 0)→ (i, t)} for t ∈ N,

where the notation (j, 0) → (i, t) means that there is an oriented path from (j, 0) to
(i, t). If A = {x}, we simply write (ηxt ). We call (ηt) a Bernoulli oriented percolation with
parameter q.

The oriented percolation on Z, denoted by (η̄t), was investigated by Durrett in [7].
Using his results and techniques, we will prove the following.

Lemma 2.2. Let (ηt) be the oriented percolation on [0, `] with parameter q. Then there
exist positive constants ε and c, independent of q and `, such that if q ≥ 1 − ε then the
following statements hold.

(i) For any `, and x ∈ [0, `]

P
(
∃ r, s ≤ 2`, s.t. ηxr (0) = 1, ηxs (`) = 1

)
≥ c.

(ii) For any `,
P(η1t` 6= ∅) ≥ 1− 1/t`,

where t` = b(1−q)−c`c and (η1t ) is the oriented percolation starting with η10 = [0, `].

(iii) There exist a positive constant β ∈ (0, 1) and an integer s` ∈ [exp(c`), 2 exp(c`)],
such that

P
(∣∣η1s` ∩ [(1− β)`/2, (1 + β)`/2]

∣∣ ≥ 3β`/4
)
≥ 1− exp(−c`).
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Proof. Part (i) is similar to Theorem B.24 (a) in [14] and (ii) can be proved using a contour
argument as in [7, Section 10].

We now prove (iii). Let (η̄t) be the oriented percolation on Z. Then
α = P(η̄t

0 6= ∅∀ t)→ 1 as q → 1.

Hence we can assume that α > 3/4. Now we define

`1 = b(8− α)`/16c, `2 = b(8 + α)`/16c and `3 = b`/4c.
We claim that there exists a positive constant c, such that for any A ⊂ [`1, `2] with
|A| ≥ 3α`/32,

P
(∣∣ηA`3 ∩ [`1, `2]

∣∣ ≥ 3α`/32
)
≥ 1− exp(−c`).(18)

Suppose that (18) holds for a moment, we now prove (iii). Let A0 be an arbitrary subset
of [`1, `2] satisfying |A0| ≥ 3α`/32. Then we define

M1 =
{∣∣ηA0

`3
∩ [`1, `2]

∣∣ ≥ 3α`/32
}
.

It follows from (18) that

(19) P(M1) ≥ 1− exp(−c`).
Moreover, if M1 happens, ηA0

`3
∩ [`1, `2] contains a subset A1 whose cardinality is larger

than 3α`/32. Thus we can define

M2 =M1 ∩
{∣∣ηA1,`3

2`3
∩ [`1, `2]

∣∣ ≥ 3α`/32
}
,

where for all 0 ≤ s ≤ t and A ⊂ [0, `],

ηA,st =
{
i ∈ [0, `] : ∃ j ∈ A s.t. (j, s)→ (i, t)

}
.

Similarly, for all k ≥ 2 we define

Mk+1 =Mk ∩
{∣∣ηAk,k`3

(k+1)`3
∩ [`1, `2]

∣∣ ≥ 3α`/32
}
,(20)

where Ak is a subset of ηAk−1,(k−1)`3
k`3

∩ [`1, `2] satisfying |Ak| ≥ 3α`/32.
By (18), we have for all k ≥ 1

P
(
Mk+1

∣∣Mk

)
≥ 1− exp(−c`),

or equivalently

(21)
P(Mk+1)

P(Mk)
≥ 1− e−c`.

Using (19) and (21), we obtain that for k` = bec`/2c,

(22) P(Mk`) ≥
(
1− e−c`

)k` ≥ 1− 1/k`.

We have

(23) Mk` ⊂
{∣∣η1s` ∩ [`1, `2]

∣∣ ≥ 3α`/32
}
,

where s` = `3 × k`.
On the other hand, if β = α/8, then `1 = b(1 − β)`/2c and `2 = b(1 + β)`/2c. Hence

using (22) and (23), we get

P
(∣∣η1s` ∩ [(1− β)`/2, (1 + β)`/2]

∣∣ ≥ 3β`/4
)
≥ 1− exp(−c`/2),

which implies that (iii) holds with β = α/8.
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Now it remains to prove (18). First, we observe that for all t ≤ `3,

η̄
[`1,`2]
t ⊂ [`1 − t, `2 + t] ⊂ [`1 − `3, `2 + `3] ⊂ [0, `],

where (η̄t) is the oriented percolation on Z. Therefore, for any A ⊂ [`1, `2](
η̄At
)
0≤t≤`3

≡
(
ηAt
)
0≤t≤`3

.

Hence, to simplify notation, we use (ηt) for the both processes in the interval [0, `3]. To
prove (18), it suffices to show that there exists a positive constant c, such that

P
(∣∣ηx`3 ∩ [`1, `2]

∣∣ ≥ 3α`/32
∣∣ ηx`3 6= ∅

)
≥ 1− exp(−c`) for all x ∈ [`1, `2],(24)

P
(
ηA`3 6= ∅

)
≥ 1− exp(−c`) for all A ⊂ [`1, `2] with |A| ≥ 3α`/32.(25)

To prove (24), we define for any A ⊂ Z and t ≥ 0

rAt := sup{x : ∃y ∈ A, (y, 0)→ (x, t)}
lAt := inf{x : ∃y ∈ A, (y, 0)→ (x, t)}.

Then (24) is a consequence of the following claims.
(a) If [`1, `2] ⊂ [lx`3 , r

x
`3

], then

η1`3 ∩ [`1, `2] ≡ ηx`3 ∩ [`1, `2].

(b) P
(∣∣η1`3 ∩ [`1, `2]

∣∣ ≥ 3(`2 − `1)/4
)
≥ 1− exp(−c`), as 3/4 < α.

(c) P
(

[lx`3 , r
x
`3

] ⊃ [`1, `2]
∣∣∣ ηx`3 6= ∅

)
≥ 1− exp(−c`).

We start with the claim (a). Suppose that [`1, `2] ⊂ [lx`3 , r
x
`3

]. Then there exists y ≤ `1
and z ≥ `2 together with two oriented paths: γ1 from (x, 0) to (y, `3), and γ2 from (x, 0)
to (z, `3). Now, let u be any element of η1`3 ∩ [`1, `2]. Then `1 ≤ u ≤ `2 and there exists
a vertex v ∈ Z and an oriented path γ′ from (v, 0) to (u, `3). The path γ′ is forced to
intersect γ1 or γ2. In both cases, this implies the existence of an oriented path from (x, 0)
to (u, `3). Hence u ∈ ηx`3 ∩ [`1, `2]. We have just proved that

η1`3 ∩ [`1, `2] ⊂ ηx`3 ∩ [`1, `2].

The reverse is trivial, hence we obtain (a).
The claim (b) follows from a result of Durrett and Schonmann [8, Theorem 1]. (Note

that in [8], the result is proved for the contact process, but as mentioned by the authors
the proof works just as well for oriented percolation). In fact, it still holds if we replace
3/4 by any α′ < α. To prove (c), we observe that if ηx`3 6= ∅ then

rx`3 = r
(−∞,x]
`3

.

Moreover, by the main result of Section 11 in [7], there is a positive constant c, such that
for all integer x,

P
(
r
(−∞,x]
`3

≤ x+ α`3/2
)
≤ exp(−c`).

Therefore if x ∈ [`1, `2], then

P
(
rx`3 ≥ `2

∣∣ ηx`3 6= ∅
)
≥ 1− exp(−c`),
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since x+ α`3/2 ≥ `1 + α`3/2 ≥ `2. Similarly

P
(
lx`3 ≤ `1

∣∣ ηx`3 6= ∅
)
≥ 1− exp(−c`).

Then the claim (c) follows from the last two estimates.
Now we prove (25) by using the same arguments as in Section 10 in [7]. We say that

A is more spread out than B (and write A � B) if there is an increasing function ϕ from
B into A such that |ϕ(x) − ϕ(y)| ≥ |x − y| for all x, y ∈ B. (Note that this implies
|A| ≥ |B|). In [7], Durrett proves that there is a coupling such that if A � B then

ηAt � ηBt for all t ≥ 0,

and as a consequence |ηAt | ≥ |ηBt | for all t. Hence
P(ηAt = ∅) ≤ P(ηBt = ∅).

On the other hand, by (ii)

P
(
η
[`1,`1+`4]
`3

= ∅
)
≤ exp(−c`),

with `4 = b3α`/32c − 1. We observe that A � [`1, `1 + `4] for any A with |A| ≥ 3α`/32.
Thus (25) follows from the last two inequalities. �

3. Existence of a key subgraph

In this section, by using a result on the existence of long paths in a super-critical
site percolation, we will show that the random geometric graph contains a key subgraph
composed of dcn/Rde complete graphs of size bcRdc, with some c > 0.

The Bernoulli site percolation on Zd with parameter p is defined as usual: designate
each vertex in Zd to be open independently with probability p and closed otherwise. A
path in Zd is called open if all its sites are open. Then there is a critical value psc(d) ∈ (0, 1),
such that if p > psc(d), then a.s. there exists an infinite open path (cluster), whereas if
p < psc(d), a.s. there is no infinite cluster.

Lemma 3.1. Consider the Bernoulli site percolation on [0, n]d with d ≥ 2 and p > psc(2).
Then there exists a positive constant ρ = ρ(p, d), such that w.h.p. there is an open path
whose length is larger than ρnd.

Now, we define the key subgraph. For `,m ∈ N, we denote by C(`,m) the graph
obtained by glueing a complete graph of size m to each vertex in a path of length `.

Lemma 3.2. Suppose that d ≥ 2 and g satisfies (1). Then there exist positive constants
c and C, such that if n ≥ Rd ≥ C then w.h.p. G(n,R, g) contains as a subgraph a copy of
C(dcnR−de, bcRdc).

Proof. If n/Rd is bounded from above, then w.h.p. G(n,R, g) contains a clique of size of
order n and thus the result follows. Indeed, by definition the vertices in A = [0, R/

√
d]d

form a complete graph. Moreover the number of vertices in A is a Poisson random variable
with mean

∫
A
g(x)dx = Θ(Rd) = Θ(n), and hence w.h.p. it is of order n.

We now assume that n/Rd tends to infinity. Let ` = b d
√
n/(R/2

√
d)c, we divide the box

[0, d
√
n]d into `d smaller boxes of equal size, numerated by (Ea)a∈[1,`]d , whose side length

is R/(2
√
d). We see that if v and w are in the same small box or in adjacent ones, then

‖v −w‖ ≤ R, hence these two vertices are connected. This implies that the vertices on a
small box form a clique and two adjacent cliques are connected.
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For any a ∈ [1, `]d, let us denote by

Xa = #{v : v ∈ Ea}

the number of vertices located in Ea. Then (Xa) are independent and Xa is a Poisson
random variable with mean

µa =

∫
Ea

g(x)dx ≥ b

(
R

2
√
d

)d
=: µ,(26)

since g(x) ≥ b for all x. For any a, we define

Ya = 1({Xa ≥ µ/2}).

Since P(Poi(µ) ≥ µ/2) → 1 as µ → ∞, it follows from (26) that P(Ya = 1) → 1 as
R→∞. Therefore there is a positive constant C, such that if Rd ≥ C, then

P(Ya = 1) ≥ p := (1 + psc(2))/2.

We note that the Bernoulli random variables (Ya) are independent. Hence if we say the
small box Ea open when Ya = 1 and closed otherwise, then we get a site percolation
on [1, `]d which stochastically dominates the Bernoulli site percolation on [1, `]d with
parameter p > psc(2). Then Lemma 3.1 gives that w.h.p. there is an open path of length
ρ`d = Θ(nR−d). On the other hand, in each open box, there is a clique of size µ/2Θ(Rd)
and these cliques in adjacent open boxes are connected. Hence, the result follows by
taking c small enough. �

Proof of Lemma 3.1. We set m = bn1/4c. For n, d ≥ 2, we say that the box [0, n]d is
ρ-good if the site percolation cluster on it satisfies:

there exist two vertices x in {m} × [0, n]d−1 and y in {n−m} × [0, n]d−1 and an open
path composed of three parts: the first one included in [0,m]× [0, n]d−1 has length larger
than m and ends at x; the second one included in [m,n−m]× [0, n]d−1 has length larger
than ρnd, starts at x and ends at y; the third one included in [n−m,n]× [0, n]d−1 starts
at y and has length larger than m.

We now prove by induction on d that if p > psc(2), there is a positive constant ρd =
ρ(p, d), such that w.h.p. the box [0, n]d is ρd-good. Then Lemma 3.1 immediately follows.

When d = 2, the statement is proved by Grimmett in [12, Theorem 1]. We will prove
it for d = 3, the proof for d ≥ 4 is exactly the same and will not be reproduced here.

For 1 ≤ i ≤ n, let Λi = {i} × [2m,n− 2m]2. We define

n1 = n− 4m and m1 = bn1/4
1 c.

We say that the ith plane is nice (or Λi is nice) if the site percolation on this plane
satisfies: Λi is ρ2-good (we consider Λi as a box in Z2), and in each of the rectangles
{i} × [m, 2m + m1] × [0, n] and {i} × [n − 2m − m1, n − m] × [0, n], there is a unique
connected component of size larger than m1, see Figure 1 for a sample of a nice plane.

The result for d = 2 implies that w.h.p. Λi is ρ2-good. On the other hand, we know
that w.h.p. in the percolation on a box of size n there is a unique open cluster having
diameter larger than C log n for some C large enough (see for example Theorem 7.61 in
[11]). Thus w.h.p. there is a unique open cluster of size larger (C log n)d. Hence Λi is nice
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Figure 1. Gluing two long paths.

w.h.p. for all i = 1, . . . , n. Moreover, the events {Λi is nice} are independent since the
planes are disjoint. Therefore An holds w.h.p. with

An = {#{i : m ≤ i ≤ n−m,Λi is nice} ≥ n/2}.

On An, there are more than n/2 disjoint open paths (they are in disjoint planes), each
of which has length larger than ρ2n

2
1. Thus, to obtain an open path of length of order

n3, we will glue these long paths using shorter paths in good boxes of nice planes. To do
that, we define
Bn = { for all 1 ≤ i ≤ bn/2c, there exist open paths: `2i−1 ⊂ {2i− 1}× [m, 2m]× [0, n]

whose end vertices are u and v with third coordinates 0 and n respectively; `′2i−1 ⊂
{2i− 1}× [n− 2m,n−m]× [0, n] whose end vertices are u′ and v′ with third coordinates
0 and n respectively; `2i ⊂ {2i} × [m, 2m] × [0, n] whose end vertices are z and t with
second coordinates m and 2m respectively; `′2i ⊂ {2i} × [n − 2m,n −m] × [0, n] whose
end vertices are z′ and t′ with second coordinates n− 2m and n−m respectively }.

We observe that `2i−1 is a bottom-top crossing and `2i is a left-right crossing in two
consecutive rectangles. Then they intersect when we consider only the last two coordi-
nates, and the same holds for `′2i−1 and `′2i. Hence on Bn, for all 1 ≤ i ≤ n− 2, there exist
ai ∈ [m, 2m]× [0, n] and bi ∈ [n− 2m,n−m]× [0, n], such that

(i, ai) ∈ `i and (i+ 1, ai) ∈ `i+1,

(i, bi) ∈ `′i and (i+ 1, bi) ∈ `′i+1.

In other word, we can jump from the ith plane to the next one in two ways. Moreover,
on An for all i such that the ith plane is nice, the first part of the long open path in Λi is
connected to `i (as these paths are in the same rectangle {i} × [m, 2m+m1]× [0, n] and
have length larger than m1), and similarly the third part is connected to `′i, see Figure 1.

On An∩Bn, we can find in [m,n−m]× [0, n]2 a path of length larger than ρ2n3/3. Indeed,
let i be the first index, such that i ≥ m and Λi is nice. We start at an end point, from the
right for example, of the long path in Λi, then go along this long path towards the other
end point. Then we can go to `i and arrive at (i, ai). Now we jump to (i + 1, ai) (recall
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that it is a neighbor of (i, ai)). If the (i + 1)th plane is not nice, we go to (i + 1, ai+1)
to jump to the next plane (note that both (i + 1, ai) and (i + 1, ai+1) are in `i+1). If the
(i+ 1)th plane is nice, we now can touch and then go along to the long path in this plane
and arrive at (i+1, bi+1) to jump to the next plane. By continuing this procedure, we can
go through all the long paths of nice planes in the definition of An. The resulting path is
in [m,n−m]× [0, n]2 and has length larger than ρ2n3/3.

Moreover, in the slabs [0,m] × [0, n]2 and [n −m,n] × [0, n]2, w.h.p. we can find two
paths of length larger than m which are connected to the long path we have just found
above. These paths form the required three-parts long path. Therefore on An∩Bn, w.h.p.
the box [0, n]3 is ρ3-good with ρ3 = ρ2/3.

Now it remains to show that Bn holds w.h.p. We observe that the probability of the
existence of such a path `i is larger than 1 − exp(−cm) for some c > 0 (see for instance
(7.70) in [11]). Thus Bn holds w.h.p.

We summary here the change of proving the induction from d − 1 to d when d ≥ 4.
First, in the definition of a nice box, we consider

Λi = {i} × [2m,n− 2m]d−1,

and the uniqueness of the connected component of size larger than m1 in the slabs {i} ×
[m, 2m+m1]×[0, n]d−2 and {i}×[n−2m−m1, n−m]×[0, n]d−2. Secondly, in the definition
of Bn, we consider `i ⊂ {i} × {m}d−3 × [0, n]2 and `′i ⊂ {i} × {n −m}d−3 × [0, n]2, two
bottom-top (resp. left-right) crossings in the last two coordinates when i is odd (resp.
even). �

4. Contact process on the key subgraph

In this section, we study the extinction time and the metastability of the contact process
on key subgraphs defined in the previous section.

Lemma 4.1. Let τ`,M be the extinction time of the contact process on C(`,M) starting
from full occupancy. Then there exist positive constants c and K independent of λ, such
that if λ̄M ≥ K, then

P
(
τ`,M ≥ exp

(
c`M log(λ̄M)

))
≥ 1− exp

(
− c`M log(λ̄M)

)
,(27)

with λ̄ = λ ∧ 1.

Proof. Let (ξt) be the contact process on C(`,M) with parameter λ > 0. It is sufficient
to consider the case λ ≤ 1, since the contact process is monotone in λ. We assume also
that Mλ ≥ 640.

For i ∈ [0, `], we say that i is lit at time t (the term is taken from [2]) if the number of
infected vertices in its attached complete graph at time t is larger than M/4.

Let T = exp(M log(λM)/16). For r ≥ 0 and i, j ∈ [0, `] s.t. |i − j| = 1 and i + r is
even, we define

Zr
i,j =1({i is not lit at time rT})

+1({i is lit at time rT and i lights j at time (r + 1)T}),

where "i lights j at time (r + 1)T" means that

|{y ∈ C(j) : ∃x ∈ C(i) ∩ ξrT s.t. (x, rT )←→ (y, (r + 1)T ) inside C(i) ∪ C(j) ∪ {i, j}}|
≥M/4,
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with C(i) the complete graph attached at i. Then (Zr
i,j) naturally define an oriented

percolation by identifying

{Zr
i,j = 1} ⇔ {(i, r)→ (j, r + 1)}.

It follows from Lemma 2.1 (ii) that

P
(
Zr
i,j = 1

∣∣FrT ) ≥ 1− 5T−1 ∀ r ≥ 0 and |i− j| = 1,

where Ft denotes the sigma-field generated by the contact process up to time t.
Moreover if x 6= i and y 6= j, then Zr

x,y is independent of Zr
i,j. Hence by a result of

Liggett, Schonmann and Stacey [15] (see also Theorem B26 in [14]) the distribution of
the family (Zr

i,j) stochastically dominates the measure of a Bernoulli oriented percolation
with parameter

q ≥ 1− T−γ,
with γ ∈ (0, 1). Moreover, if λM is large enough, then 1 − T−γ > 1 − ε, with ε as in
Lemma 2.2.

In summary, when λM is large enough, the distribution of (Zr
i,j) stochastically domi-

nates the one of an oriented percolation on [0, `] with density close to 1. On the other
hand, it follows from Lemma 2.2 (ii) that the oriented percolation process survives up to
the step

b(1− q)−c`c ≥ bT cγ`c ≥ exp(cγ`M log(λM)),

with probability larger than

1− exp(−cγ`M log(λM)),

for some constant c > 0. Hence the result follows. �

We now prove a metastablity result for connected graphs containing a copy of C(`,M).

Lemma 4.2. Let (G0
n) be a sequence of connected graphs, such that |G0

n| ≤ n, for all n.
Let τn denote the extinction time of the contact process on G0

n starting from full occupancy.
Assume that G0

n contains a subgraph Hn, which is isomorphic to C(`n,M). Then there
exists a positive constant K, such that if M ≥ K/(λ ∧ 1) and

`n
dn ∨ log n

→∞,(28)

where dn = maxv∈G0
n
d(v,Hn), then

τn
E(τn)

(L)−→
n→∞

E(1).

Proof. According to a result of Mountford [16, Proposition 1.2], it suffices to show that
there exists a sequence (an), such that an = o(E(τn)) and

sup
v∈Vn

P(ξvan 6= ξan , ξ
v
an 6= ∅) = o(1),(29)

where (ξt)t≥0 denotes the process starting from full occupancy.
Set λ̄ = λ ∧ 1. By Lemma 4.1, we get that if λ̄M is large enough, then

E(τn) ≥ exp(c`nM log(λ̄M)),(30)

with c as in this lemma. By (28), there is a sequence (ϕn) tending to infinity, such that
`n
kn
→∞,(31)



CONTACT PROCESS ON RANDOM GEOMETRIC GRAPHS 15

with

kn = b(log n ∨ dn)ϕnc.
Now define

bn = sknT and an = 2bn + 1,

with skn as in Lemma 2.2 (iii) and T = exp(M log(λ̄M)/16).
Then (30) and (31) show that an = o(E(τn)), so it remains to prove (29) for this choice

of (an). To this end it is convenient to introduce the dual contact process. Given some
positive real t and A a subset of the vertex set Vn of Gn, the dual process (ξ̂A,ts )s≤t is
defined by

ξ̂A,ts = {v ∈ Vn : (v, t− s)←→ A× {t}},
for all s ≤ t. For any v, we have

P(ξvan 6= ξan , ξ
v
an 6= ∅)

= P(∃w ∈ Vn : ξvan(w) = 0, ξvan 6= ∅, ξ̂w,anan 6= ∅)

≤
∑
w∈Vn

P
(
ξvan 6= ∅, ξ̂w,anan 6= ∅, and ξ̂w,anan−t ∩ ξ

v
t = ∅ for all t ≤ an

)
,(32)

So let us prove now that the last sum above tends to 0 when n→∞.

By the hypothesis, G0
n contains a subgraph Hn which is isomorphic to C(kn,M). Hence,

Hn contains a chain of kn + 1 vertices x0, . . . , xkn , such that xi is connected to xi+1 for
all 0 ≤ i ≤ kn − 1. Moreover, the vertex xi is attached a complete graph of size M , say
C(xi), for all 0 ≤ i ≤ kn.

Now we slightly change the definition of a lit vertex, and say that xi is lit if the number
of its infected neighbors in C(xi) is larger than M/4 for i = 0, . . . , kn.

We first claim that for any v

P
(
A(v)c, ξvbn 6= ∅

)
= o(1/n),(33)

where

A(v) =
{
ξvbn 6= ∅, |{i ∈ [(1− β)kn/2, (1 + β)kn/2] : xi is lit at time bn}| ≥ 3βkn/4

}
,

with β as in Lemma 2.2.
Suppose for a moment that (33) holds. Then we also have

P
(
Â(w)c, ξ̂w,2bn+1

bn
6= ∅

)
= o(1/n),(34)

with

Â(w) =
{
ξ̂w,2bn+1
bn

6= ∅, ∃S ⊂ [(1− β)kn/2, (1 + β)kn/2] with |S| ≥ 3βkn/4 and

Wi ⊂ C(xi) with |Wi| ≥M/4∀ i ∈ S : (x, bn + 1)←→ (w, 2bn + 1) ∀x ∈ ∪i∈SWi

}
.

Note thatA(v) and Â(w) are independent for all v and w. Moreover, onA(v)∩Â(w), there
are more than βkn/2 vertices which are lit in both the original and the dual processes.
More precisely, there is a set S ⊂ [(1 − β)kn/2, (1 + β)kn/2] with |S| ≥ βkn/2 and sets
Ui,Wi ⊂ C(xi) with |Ui|, |Wi| ≥M/4 for all i ∈ S, such that

(v, 0)←→ (x, bn) for all x ∈ ∪i∈SUi
(y, bn + 1)←→ (w, 2bn + 1) for all y ∈ ∪i∈SWi.
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It is not difficult to show that there is a positive constant c, such that for any non-empty
sets Ui,Wi ⊂ C(xi),

P
(
Ui × {bn}

C(xi)←→Wi × {bn + 1}
)
≥ c,

where the notation
Ui × {bn}

C(xi)←→Wi × {bn + 1}
means that there is an infection path inside C(xi) from a vertex in Ui at time bn to a
vertex in Wi at time bn + 1.

Moreover, conditionally on the sets Ui,Wi, these events are independent. Therefore,

P
(
∃i : Ui × {bn}

C(xi)←→Wi × {bn + 1}
∣∣∣ Ui,Wi

)
≥ 1− (1− c)βkn/2 = 1− o(1/n),

by our choice of kn. This implies that

P
(
A(v), Â(w), ξ̂w,anan−t ∩ ξ

v
t = ∅ for all t ≤ an

)
= o(1/n).(35)

Combining (33), (34) and (35) we obtain (32). Hence, now it remains to prove (33).
Fix a vertex v ∈ G0

n. We call i∗ an index, such that

(36) d(v, xi∗) ≤ d(v,Hn) + 1 ≤ dn + 1.

As in Lemma 4.1, we define an oriented percolation (η̃r)r≥0 on [0, kn] as follows. For
0 ≤ i, j ≤ kn and r ≥ 0, such that |i − j| = 1 and i + r is even, we let Zr

i,j = 1 (or
equivalently (i, r)→ (j, r+ 1)) if either xi is not lit at time rT or xi is lit at time rT and
xi lights xj at time (r + 1)T .

As in Lemma 4.1, there exists a positive constant K, such that if λ̄M ≥ K, then (η̃r)
stochastically dominates a Bernoulli oriented percolation with parameter 1− ε, with ε as
in Lemma 2.2.

Assume that dn is even, if not we just take the smallest even integer larger than dn.
Then we set

d̃n = dn + 2kn.

Now define for k ≥ 0,

Ck =
{
∃ r, s ∈ [kd̃n + dn, (k + 1)d̃n] s.t. η̃i∗,kd̃n+dnr (0) = 1, η̃i∗,kd̃n+dns (kn) = 1

}
,

where for any A ⊂ [0, kn] and t ≥ s ≥ 0,

η̃A,st = {x ∈ [0, kn] : ∃y ∈ A, (y, s)→ (x, t)}.
Then using Lemma 2.2 (i), we get

P
(
Ck

∣∣∣ Fkd̃n+dn) ≥ c.(37)

Using the same arguments for the claim (a) in Lemma 2.2, we observe that on Ck,

η̃1r = η̃i∗,kd̃n+dnr for all r ≥ (k + 1)d̃n.(38)

Define

E =
{∣∣η̃1skn ∩ [(1− β)kn/2, (1 + β)kn/2]

∣∣ ≥ 3βkn/4
}
,

with skn as in Lemma 2.2 (iii). Using (38), we get that on Ck ∩ E , if (k+ 1)d̃n ≤ skn then∣∣η̃i∗,kd̃n+dnskn
∩ [(1− β)kn/2, (1 + β)kn/2]

∣∣ ≥ 3βkn/4.(39)
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Let Kn = bskn/d̃nc and for any 0 ≤ k ≤ Kn − 1, we define

Ak = {ξv
kd̃n
6= ∅},

and

Bk =
{
ξv
kd̃n
× {kd̃n} → (xi∗ , (kd̃n + dn − 1)T )

}
∩
{
xi∗ is lit at time (kd̃n + dn)T

}
∩ Ck.

We have

{ξvbn 6= ∅} ⊂
Kn−1⋂
k=0

Ak.(40)

On the other hand, if xi∗ is lit at time rT and η̃i∗,rs (i) = 1 for s > r, then xi is lit at
time sT . Hence by (39) on E , if one of the events (Ak ∩ Bk) happens then A(v) occurs.
Combing this with (40), we get

{ξvbn 6= ∅} ∩ A(v)c ⊂ Ec ∪

(
Kn−1⋂
k=0

Ak ∩Bc
k

)
.(41)

Using Lemma 2.2 (iii), we obtain a bound for the first term

P(Ec) ≤ exp(−ckn) = o(1/n),(42)

by the choice of kn. For the second term, by using (36) and a similar argument as for
(15), we have

P ((v, t)→ (xi∗ , t+ (dn − 1)T )) ≥ exp(−C(dn − 1)T ) for any t ≥ 0,

for some constant C > 0. On the other hand, if xi∗ is infected at time t then it is lit at
time t+ T with probability larger than exp(−CT ). Therefore combing with (37), we get
that for any k ≤ Kn − 1,

P
(
Bc
k

∣∣∣ Gk)1(Ak) ≤ 1− c exp(−CdnT ),

where Gk = Fkd̃n . Iterating this, we get

P

(
Kn−1⋂
k=0

Ak ∩Bc
k

)
≤ (1− c exp(−CdnT ))Kn−1 = o(1/n),(43)

where the last equality follows from the definition of skn . Combining (41), (42) and (43)
we get (33) and finish the proof. �

5. Proof of Theorem 1.1

5.1. Proof of (i). We first prove the lower bound on τn. By Lemma 3.2, there are
positive constants c and K, such that if Rd ≥ K/(λ ∧ 1), then w.h.p. G(n,R, g) contains
a subgraph Hn which is isomorphic to C(`n,M), with `n = dcnR−de and M = bcRdc.

If `n is bounded (or Rd = Θ(n)), then C(`n,M) contains a complete graph of size
of order n. Then Lemma 2.1 (i) implies that w.h.p. the extinction time is larger than
exp(cn log(λn)), for some c > 0.

If `n tends to infinity, then the result follows from Lemma 4.1.
To prove the convergence in law of τn/E(τn), we recall some known results about the

diameter of the giant component and the size of small components in RGGs. There is a
positive constant R0, such that if R > R0, then w.h.p.
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(a) the diameter of the largest component is Dn = O(n1/d/R),

(b) the size of the second largest component is O((log n)d/(d−1)).
The first claim is proved by Friedrich, Sauerwald and Stauffer in [9, Corollary 6] and the
second one is proved in Penrose’s book [21, Theorem 10.18] when g ≡ 1. It is not hard to
generalize these results for our model with g bounded both from below and above.

The second claim together with Lemma 5.1 below show that w.h.p. the extinction time
of the contact process on Gn and on G0

n - the largest component - are equal. We are now
in a position to complete the proof of (i).

• If Rd = o(n/ log n), then

nR−d

log n
→∞ and

nR−d

Dn

→∞,

since by (a), Dn = O((nR−d)1/d). On the other hand, `n = Θ(nR−d) and dn =
maxv∈G0

n
d(v,Hn) ≤ Dn. Thus

`n
dn ∨ log n

→∞.

Therefore, Lemma 4.2 implies the convergence in law of τn/E(τn).

• If n/ log n = O(Rd), then Hn contains a complete graph of size larger than
√
n.

On the other hand, for all k, ` ∈ N the complete graph of size k` always contains
a copy of C(k, `). Hence, G0

n contains a copy of C(bn1/4c, bn1/4c). We have

bn1/4c
dn ∨ log n

→∞,

since
dn ≤ Dn = O

( (
nR−d

)1/d )
= O

(
(log n)1/d

)
.

Thus the result follows from Lemma 4.2.
�

5.2. Proof of (ii). We prove an upper bound on the extinction time of the contact
process on an arbitrary graph.

Lemma 5.1. Let τG be the extinction time of the contact process on a graph G = (V,E)
starting from full occupancy. Then

(a) P(τG ≤ F (|V |, |E|)) ≥ 1− exp(−|V |),

(b) E(τG) ≤ 2F (|V |, |E|)
with

F (|V |, |E|) = |V |
(

2 +
4λ|E|
|V |

)|V |
.

Proof. Observe that (b) is a consequence of (a) and the following. For any s > 0

E(τG) ≤ s

P(τG ≤ s)
.

This result is Lemma 4.5 in [17].
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We now prove (a). Let us denote by (ξt) the contact process on G starting with full
occupancy. By using Markov’s property and the monotonicity of the contact process, it
suffices to show that

P(ξ1 = ∅) ≥ exp(−|V | log(2 + 4λ|E|/|V |)).(44)

Observe that the process dies at time 1 if for any vertex v, it heals before 1 and does
not infect any neighbor. Let σv be the time of the first recovery at v, then σv ∼ E(1).
Let σv→ be the time of the first infection spread from v to one of its neighbors. Then
it is the minimum of deg(v) i.i.d. exponential random variables with mean λ and thus
σv→ ∼ E(λ deg(v)). Moreover σv and σv→ are independent. Therefore

P(σv < min{σv→, 1}) =
1− e−(1+λ deg(v))

1 + λ deg(v)
≥ 1

2(1 + λ deg(v))
.

On the other hand, these events {σv < min{σv→, 1}}v are independent. Then using
Cauchy’s inequality, we get that

P(ξ1 = ∅) ≥
∏
v∈V

(2 + 2λ deg(v))−1

≥
(

2|V |+ 2λ
∑

v∈V deg(v)

|V |

)−|V |
=

(
2 +

4λ|E|
|V |

)−|V |
,

which implies (44). �

Proof of Theorem 1.1 (ii). The upper bound on τn follows from Lemma 5.1 and the
following: w.h.p. G(n,R, g) = (Vn, En) with

• |Vn| ≤ 2Bn

• |En| ≤ CnRd, for some C = C(d,B).
The first claim is clear, since |Vn| is a Poisson random variable with mean∫

[0, d
√
n]d
g(x)dx ≤ Bn.

For the second one, let ` = d d
√
n/Re. We cover [0, d

√
n]d using translations by R/2 for

each coordinate, accounting for (2`− 1)d boxes of volume Rd. We observe that points at
distance larger than R are not connected. Hence, |En| is less than the sum of the number
of edges in the covering small boxes.

These small boxes are partitioned into 2d groups such that each group contains at most
`d disjoint boxes with the same volume Rd.

The number of vertices in each box is stochastically dominated by Z, a Poisson random
variable with mean BRd, since the integral of g on a box is smaller than BRd (as g(x) ≤ B
for all x). Hence, the number of edges in a box is stochastically dominated by Z2.

Moreover, in each group the numbers of edges are independent, as the boxes are disjoint.
Therefore, using Chebyshev’s inequality, the total number of edges in a group is w.h.p.
smaller than

2`dE(Z2) = 2`d(BRd)(BRd + 1).
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Hence, |En| is w.h.p. less than
2d+1`d(BRd)(BRd + 1) ≤ CnRd,

for some C = C(d,B) large enough. �

6. Some extensions

6.1. The one-dimensional case. When d = 1, RGGs are also called random interval
graphs, see for instance [23]. We have the following result.

Proposition 6.1. Let d = 1. Consider the contact process on one-dimensional random
geometric graphs G(n,R, g) with g satisfying (1). Then there exist positive constants
κ, K, c and C depending only on b and B, such that the following statements hold.

(i) If R ≤ κ log n, then w.h.p. the number of vertices in the largest component is
o(n2/3). Thus log τn = o(n) w.h.p.

(ii) If R ≥ K log n, then w.h.p. the graph is connected and

cn log(λR) ≤ log(τn) ≤ Cn log(λR),

and
τn

E(τn)

(L)−→
n→∞

E(1).

Proof. For (i), it is sufficient to consider R = κ log n with κ chosen later. We divide [0, n]
into bn/Rc intervals of length R, denoted by I1, . . . , Ibn/Rc. Then the number of vertices
in Ii is a Poisson random variable with mean

∫
Ii
g(x)dx = Θ(R). Therefore

P(#{vertices in Ii} ≤ R2 for all i = 1, . . . , bn/Rc) = 1− o(1),(45)

as R = Θ(log n). On the other hand, since
∫
Ii
g(x)dx ≤ BR for all i, the probability for

an interval to be empty is larger than e−BR. Hence

P
(
there are at most b

√
nc consecutive non-empty intervals

)
≥ 1− bn/Rc(1− e−BR)b

√
nc

= 1− o(1),(46)

with R = κ log n and κ small enough.
We observe that if an interval is empty, then there is no edge between vertices in the

left-hand side and the right-hand side of this interval. Thus, it follows from (45) and (46)
that w.h.p. the number of vertices in any component is smaller than R2b

√
nc = o(n2/3).

We now prove (ii). If R = Θ(n), then the graph contains a complete graph of size of
order n. Thus using Lemma 2.1 (i), we get the lower bound on τn. Assume that R = o(n).
We divide [0, n] into b2n/Rc intervals of length R/2, denoted by J1, . . . , J[2n/R]. Then the
numbers of vertices in these intervals form a sequence of independent Poisson random
variables with mean larger than bR/2. For all i ≤ b2n/Rc, we define

{Ji is good} = {the number of vertices in Ji is larger than bR/4}.
We have

P(Poi(bR/2) ≥ bR/4) ≥ 1− exp(cR),

for some constant c = c(b) > 0. Therefore

P(Ji is good for all i ≤ b2n/Rc) ≥ 1− b2n/Rce−cR = 1− o(1),(47)
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with R ≥ K log n and K large enough. This implies that w.h.p. G(n,R, g) contains as a
subgraph a copy of C(b2n/Rc, bbR/4c) (note that the vertices in the same interval or in
adjacent ones are connected). Thus similarly to Theorem 1.1, we get the lower bound on
τn. The upper bound also follows from the same argument as in Theorem 1.1.

For the connectivity, since all vertices in an interval Ji or in adjacent ones are connected,
we observe that

{Ji is good for all i ≤ b2n/Rc} ⊂ {Ji is non-empty for all i ≤ b2n/Rc} ⊂ {Gn is connected}.

Therefore by (47), when R ≥ K log n with K large enough, w.h.p. Gn is connected. In
addition, its diameter is dn ≤ d2n/Re.

For the convergence in law of τn/E(τn), we note that C(`,M) always contains a copy of
C(`bM/M1c,M1) if M ≥M1. Moreover, w.h.p. Gn contains a copy of C(b2n/Rc, bbR/4c).
Therefore, w.h.p. Gn contains a copy of C(bcnc,M) for some c > 0 and M as in Lemma
4.2. Hence, Gn satisfies the hypothesis in Lemma 4.2 and the result follows. �

6.2. An equivalent model. We consider another version of random geometric graphs
with density function f and connection radius r, denoted by G′(n, r, f). It is defined as
follows: place independently n points in [0, 1]d according to f , then connect two points u
and v by an edge if ‖u− v‖ ≤ r. Suppose that

0 < b ≤ f(x) ≤ B < +∞ for all x.(48)

Similarly to the results for G(n,R, g), we have the following.

Proposition 6.2. The results of Theorem 1.1 and Proposition 6.1 hold for the graph
G′(n, r, f) with f satisfying (48) by replacing Rd by nrd in the statements.

Proof. First, we observe that the law of a Poisson point process with intensity g on a set
A conditionally on its number vertices, say N , is the same as that of the process defined
by placing independently N points in A with density g/

∫
A
g.

Therefore, the graph G(n,R, g) conditionally on its size |G| is isomorphic to G′(|G|, r, f)
with

r = R/ d
√
n and f(x) = g

(
x d
√
n
)
.

To prove the lower bound on τn, we consider G1 = G(n1, R1, g1), where

n1 = bn/(2B)c, R1 = r d
√
n1 and g1(x) = f

(
x

d
√
n1

)
.

Since |G1| is a Poisson random variable with mean less than n/2, w.h.p. |G1| is less than
n. Therefore w.h.p. G1 can be coupled as a subgraph of G′(n, r, f). This domination
together with Theorem 1.1 and Proposition 6.1 imply the results for the lower bound on
τn and the convergence in law of τn/E(τn) (note that the results of the connectivity and
the diameter of the largest component or the size of the second largest component also
hold in this model).

Similarly, for the upper bound on τn, we consider G2 = G(n2, R2, g2) with

n2 = b2n/bc, R2 = r d
√
n2 and g2(x) = f

(
x

d
√
n2

)
.

Then w.h.p. G2 contains as a subgraph a copy of G′(n, r, f). Thus by applying Theorem
1.1 and Proposition 6.1, we get desired results. �
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