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ABSTRACT 
This article aims to create automatic placement and 

trajectory generation for the head and the eyes of a virtual 
mannequin. This feature allows the engineer using off-line 
programming software of mannequin to quickly verify the 
usability and accessibility of a visual task. An inverse kinematic 
model is developed taking into account the joint limits of the 
neck and the eyes as well as interference between the field of 
view and the environmental objects. This model uses the 
kinematic redundancy mechanism: the head and eyes. The 
resolution algorithm is presented in a planar case for 
educational reasons and in a spatial case. 

INTRODUCTION 
The need for designers, builders and manufacturers of tools 

that allow the study of the interaction of the humans with their 
environments and the designed products has prompted 
researchers to develop tools for the study of accessibility.  

Computer tools (CATIA, SolidWorks, NX, PCT CREO, 
SANTOS, etc.); using virtual reality; have emerged to meet this 
demand. These tools are used to evaluate the mechanical and 
visual capabilities of the human to accomplish a task (Driving a 
car, using the computer keyboard, dial a phone number). 
However, there are a lot of drawbacks in these tools. For 
example, in the mannequin simulation, we are able to look at 
the hand but without taking into account the distance between 
the hand and the eyes and the size of the object. 

In the literature, we find different approaches to compute 
the head motion to get a visible target. In [1], the author 
proposes an approach based on a multi-agent system that 

distributes the computation of the posture of the mannequin 
over several elementary agents (an agent to move the 
mannequin, an agent for the detection of collisions, an agent to 
keep the target visible, etc.). Another approach presented by T. 
Marler in [2] where he considers the vision as a criterion among 
several criteria to be satisfied. This is known as a multi-
objective optimization problem. There are several methods and 
algorithms to solve it [3]. The works cited above define a cone 
of vision that describes the field of view of the eyes. An object 
is considered as visible if it belongs to this cone and no obstacle 
interferes between the object and the eyes. The distance 
between the eyes and the object, the size of the object are not 
considered. 

In our approach, we consider the eyes as a part of the 
human upper body model, in other words, neck, head, eyes and 
vector of sight are considered as an additional end of the body 
of the mannequin. This end of the body is modeled according to 
the capabilities of the eyes. 

The visibility problem becomes an inverse kinematics 
problem. We use the method described by Aristido in [4] to 
solve it. We improve this method to detect and avoid obstacles 
present inside the environment. 

HUMAN UPPER BODY MODELING 
In this section, we describe the geometrical model of the 

human upper body. We start by the presentation of the model 
proposed by T. Marler in [2]. The author proposes a model with 
26 degrees of freedom (dof) as it is shown in the Fig. 1: 12 dof 
are used to model the spine, 2 dof for the collarbone and 3 for 
the shoulder, 2 for the elbow, 2 for the wrist and 5 dof for the 



 2  

neck. We notice that all joints are rotational. We use this model 
because it gives a realistic posture of the mannequin with a 
reduced computational cost. 

 
Fig. 1: T. Marler’s Human upper body Model 

In our approach, we consider the eye features as an 
extension of the human upper body model. In other words, the 
eyes features are an additional joints and links added to the 
neck model. 

The ability for human to see an object is related to the eyes 
features (Eyes motion, field of view, and visual acuity) and the 
environment (lighting, obstacle between the eyes and the 
object). In this work, we are not interested by the lighting 
conditions. 

Visual acuity 
The visual acuity is the ability to distinguish the details of 

the object. According to this report [5], there are several 
techniques to assess the visual acuity. The most used are the 
Snellen’s chart described by I. Bailey in [6]. The technique is 
based on the ability of the person to read a letter of a size S 
from a certain distance D. The Figure 2, shows the Snellen 
principle, where S is the height of the letter (or object) and D is 
the distance between the eyes and the object, α is the angular 
size of the letter in minutes of arc (1 minute of arc = π/10800 
radians).  

 
Fig. 2: Snellen principle 

The Fig. 3 shows an example of a letter used to assess the 
visual acuity. The letter is composed of three black zones and 
two white zones. A human can read this letter if he can 
distinguish every zone.  

 
Fig. 3: Snellen’s letter 

The size of every zone (α/5) is called the minimum angle of 
resolution (MAR). Using the MAR, we can get the maximum 
distance to see an object.  

 
( )5

max

far

D
tan MAR

S
=  (1) 

where 
far

MAR  is the MAR for far vison. 
In the same way, we use the MAR for the near vision to 

compute the minimum distance [7]. 

 
( )5min

near

D
tan MAR

S
=  (2) 

where 
near

MAR   is the MAR for near vison. 

The object must be at a distance  ,  
min max

D DD é ùÎ ê úë û  to be 
visible. This can be modelled as a prismatic joint that gives the 
ability to vary the length of the virtual link (the look vector).   

The field of view 
The field of view is the visible space for a motionless eyes 

and head. According to Parker [8], the field of view is the union 
of the visible spaces of the two eyes, as it is shown in the Fig. 4. 
The blue zone represents the right eye and the red zone the left 
eye. The intersection zone, called the binocular vision. The 
human solicits both eyes to see.  

 
Fig. 4: Field of view 

The visual acuity is at the maximum in the centre zone, 
called the fovea. The visual acuity drops exponentially when the 
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object is far from the centre. In [2]. The author proposes a 
function to compute the deterioration of the acuity visual 
according to the angle between the eye to target vector and the 
fovea. It is expressed as: 
 7| |e-= θe  (3) 
where θ represents the angle between the eye to target vector 
and the fovea vector. 

Therefore, the problem is to reduce θ. Considering the look 
vector (fovea) as an virtual link, The application of an inverse 
kinematics algorithm resolve the problem, if the virtual effector 
reach the target 0q = , if not the algorithm try to close to the 
target. At this moment, we can check the visibility of the target 
by reducing the visual acuity using (3). Then we compute the 
minimal and maximal distance using (1) and (2). Finally, check 
if the distance eye to target belongs to ,  

min max
D Dé ùê úë û . 

The eyes movements 
The aim of moving the eyes is to enclose the object to the 

fovea zone.  
According to [9] and [10], the eyes movements can be 

represented using two rotations. The first rotation moves the 
gaze up and down while the second one moves it right and left. 
The range of the motion is 55± ° . 

We can conclude that the eyes behave as a joint with 2 dof. 
Therefore, to model the eyes movements we add a joint with 2 
dof on the top of the neck; this joint orients a virtual link (that 
represents the look vector) to the target. 

The Full model 
Figure 5 shows the model of the human upper body 

considering the eyes features. The eyes are modelled using a 
prismatic joint representing the visual acuity and a rotational 
joint with 2 dof to represent the eyes motions.  

 
Fig. 5: The human upper body 

Using this approach to model the eyes behaviour, we can 
define different targets for the hands and the eyes. It is possible, 

also, to give more importance to the reachability of the hand or 
the visibility.  

FORMULATION OF THE PROBLEM 

Now, the problem is to find the posture of the mannequin 
that allows to the two arms to reach the targets. The problem is 
known in the literature as an inverse kinematics problem it can 
be formulated as: 

We assume that the current positions of the effectors are 
Peff1 and Peff2 and the current orientations are Reff1 = [X eff1, Y eff1, 
Z eff1] and Reff2 = [X eff2, Y eff2, Z eff2] (where X eff, Y eff and Z eff are 
the unit vectors associated to the effector). 

Given a desired positions t1 and t2 and the desired 
orientations are Rd1 = [X d1, Y d1, Z d1] and Rd2 = [X d2, Y d2, Z d2]. 

Find the posture such as: 
Peff1 = t1 
Peff2 = t2 
Reff1= Rd1 
Reff2= Rd2 

INVERSE KINEMATICS ALGORITHM 

The cyclic coordinate descent (CCD) algorithm, described 
in [11], used in many fields to solve the IK problem (i.e 
compute the posture of an articulated body), this method 
considered as a fast and robust algorithm but the posture 
obtained is unrealistic making it not adapted for animating 
human.  

A. Aristidou proposes an algorithm, called Forward and 
backward invers kinematics (FABRIK) in [4], to solve IK 
problem. This algorithm is faster, robust and offers a realistic 
posture. In addition, the geometrical aspect of the algorithm 
makes the detection and the avoidance of obstacles simpler. 
These advantages justify our choice to use this algorithm.  

In this section, we describe the Forward and backward 
invers kinematics algorithm, developed by A. Aristidou. This 
algorithm is very fast, and the solution obtained is realistic, 
compared to other IK algorithms (CCD).  

We take the example of the manipulator, shown in Fig. 6 to 
explain FABRIK algorithm. The manipulator contains four 
joints connected by four links. We note Pi the Cartesian position 
of the joint “i” and di the length of the link “i”. We can 
distinguish two cases: 
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Fig. 6: An example of a planar manipulator 

 Unconstrained case: FABRIK method is an iterative 
algorithm that solves the IK problem, each iteration of the 
algorithm divided on two steps: 
 On the first loop, called forward step, we place the effector 
on the target position then we move the n-1th joint on the 
line linking the effector and Pn-1, We note the new position 
P’n-1. P’n-1 is at dn-1 of the effector as it is shown in the 
Figure 7-1. In the same way, we move the next joints until 
the base (P0), as shown in Fig. 7-2 and 7-3. 
However, in the backward step, we start by placing the base 
(first joint of the manipulator) on its original position, and 
then we move the joint 2 on the line connecting the original 
position of the base and the P’2, we place P2 at d1 from the 
base. Repeating the iteration (Forward and backward steps), 
cancels the error between the effector and the target.  

 
Fig. 7: FABRIK Sequence 

The algorithm is fast, simple to implement and the posture 
obtained is more realistic then the other IK method. This makes 
this algorithm the best compromise in the unconstrained case. 

 
Fig. 8: Constrained FABRIK 

 Constrained case: In this case, the constraints represent the 
joint limits; they are defined on the joint space. It is hard to 
consider the joints limits in the compute steps because of the 
difference between the Cartesian space and the joints space. 
A. Aristidou proposes a method to respect joints limits. The 
goal of this method is to check if the computed position of 
the joint i (on the forward or backward loop) P’i is in the 
reachable set of the joint else take the closest point to P’i. 
The Figure 8 shows a planar example to check if the 
position P’i respecting the joint limits (θl

i, θu
i). First, we 

must define the reachable set. So, we starts by compute the 
projection, noted O, of the point P’i on the extension of the 
segment Pi+1 Pi+2 (red line) as shown in the Figure 8. Then 
we compute 

1 1
|| O P || ( )u

i i
tanq q-= - and 

2 1
|| O P || ( )l

i i
tanq q-= - , then we check if P’i is in the 

segment 
2 1

[ , ]O q O q- , , then keep P’i . Else we choose the 

nearest position to P’i (new_ P’i) as it is shown in the Figure 
8. In the 3D case, A. Aristidou defines the reachable set as 
an ellipse centred on O and 

1 2
q q+  and

3 4
q q+  are major 

and minor radius.  
This method work perfectly especially when the joints limits 
are lower than 𝞹𝞹/2, but it is unstable when the boundaries 
are equal to 𝞹𝞹/2; this instability is due to the tangent 
function. 
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To respect the joints limits, it is necessary to find a 
transformation that allows the transition from the joint space to 
the Cartesian space or the inverse (i.e from the Cartesian space 
to the joint space). The author chosen to use tangent function to 
do the transformation but this function presents singularity at 
π/2 that make the algorithm unstable near this singularity. 
Therefore, we need a reliable and a fast algorithm to respect 
joint limits.  

In the next section, we propose a new reliable method to 
respect the joints limits. 

The Figure 9 shows a manipulator in 3D space. This 
manipulator is composed of four rotational joints. We call

i
X  

the unit vector associated to the extension of the segment [Pi-1 
Pi] (or [Pi+1 Pi] in the forward step) illustrated by the red vector 
in the Figure 9. ,

i i
Y Z  (blue and green vectors ) are a units 

vectors belonging to the plan perpendicular to the vector
i

X as it 
is shown in the Figure 9. We call system “i”, the frame 
composed of (

i
X , ,

i i
Y Z ). 

 
Fig. 9: An articulated body in 3D 

Formulation of the problem 
The problem can be defined as: 
Given P’i the new position of the joint “i” computed by 

FABRIK, and [θl
i, θu

i] is the lower and the upper limits of the 
joints “i”. Considering a joint limit restricts the set of reachable 
points (SRP). 

The problem is to check if the point P’i belongs in the SRP 
to the joint “i”. Then keep P’i. 

Else take the closest point to P’i from SRP. 
Constrained FABRIK  

To apply the joint limits to the joint “i”, we divide into two 
problems, the first is the orientation problem; it consists to 
orients the ,

i i
Y Z  vectors. The second is the position problem. 

It consists to check if the new position of the joint “i” '
i

P   
respects the joint constraints. 

Assume we are in the first step (i.e forward loop), to apply 
the joint limits, we start by orienting (Xi, Yi, Zi) such that the 
segment Pi+1Pi and Xi become collinear. For this, we need to 

find the rotor expressing the rotation between the Xi vector and 
the segment Pi+1Pi. We use the quaternion to represent the 
rotation around a vector, because it is simpler, faster and more 
efficient than the rotation matrix, according to [12].  

To find the quaternion we need to find the rotation vector V 
and the angle α between the two vectors, Xi and Pi+1Pi. V is the 
normal vector perpendicular to the plane (Xi, Pi+1Pi). We note 
that the use of P’i or Pi to compute the vector V and the angle α 
is the same because P’i, Pi and Pi+1 are in the same line. 

1

1

i i

i i

P P
V Xi

P P
+

+

æ ö÷ç ÷ç ÷ç ÷ç
-

=
ççè ø

Ù
- ÷÷

  

and the angle can be found using the dot product as follow: 

1

1

cos i i

i i

P P
ar Xi

P P
a +

+

æ ö÷ç ÷ç ÷ç
æ ö÷-ç ÷ç ÷= ·ç ÷ç ÷ç - ÷÷çè ø

÷ç ÷ç ÷çè ø
 

Now, we define the quaternion such as  

;  
2 2

Q cos sin V
a aé ùæ ö æ ö÷ ÷ç çê ú÷ ÷ç ç÷ ÷ê úç ç÷ ÷ç çè ø èêë û

=
ø ú

 

Using the quaternion, we compute the new vectors X’i, 
Y’i and Z’i by rotating each vector using the quaternion as 
follow: 

1’   
i

Y QVQ-=   

Where 1 ’ /Q Q Q- = , ’ ;  
2 2

Q cos sin V
a aé ùæ ö æ ö÷ ÷ç çê ú÷ ÷= ç ç÷ ÷ê úç ç÷ ÷ç çè ø èêë û

-
ø ú

 is 

the conjugate of Q . 
The multiplication of two quaternions 

1 2 3 4
p p p p p= é ùê úë û  

and 
1 2 3 4

q q q q q= é ùê úë û  is  

1 1 2 2 3 3 4 4

1 2 2 1 3 4 4 3

1 3 2 4 3 1 4 2

1 4 2 3 3 2 4 1

pq

p q p q p q p q

p q p q p q p q

p q p q p q p q

p q p q p q p q

é ù- - -ê ú
ê ú++  -ê ú= ê ú- ++ ê ú
ê ú+ - +ê úë û

 

The orientation constraints 

In the forward step, Given the two systems: “i+1” (Xi+1, 
Yi+1, Zi+1 ) associated to the joint “i+1”  and “i” (Xi, Yi, Zi ) 
associated to the joint “i”. 

If Xi and Xi+1 are collinear then the orientation of the system 
“i” is the angle between (Yi and Yi+1)  or (Zi and Zi+1).  

So, considering the system “i+1” is fixed, the problem is to 
find the angle 

1
q  between the vectors (Yi and Yi+1)  or (Zi and 

Zi+1). 1
q  must respects the orientation: 

1
l u
i i

q q q< <  
If Xi and Xi+1 are not collinear, we need to express the rotor 

such that they become collinear. Using this rotor, we compute 
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the orientation angle. It is possible to use a decomposition to the 
Euler angles as described in [12]. 

To compute the rotor, we start by projecting Xi on the (Xi+1 
Yi+1) and (Xi+1 Zi+1) planes, using the algorithm presented on 
[13]. Using the cross and the dot product it is easy to find the 
rotations φ and ψ around the axes Yi+1 and Zi+1 to have the 
vetors Xi, Xi+1 collinear. 

The rotation angle θ1 represents the angle between (Yi and 
Yi+1)  or (Zi and Zi+1) as long as the two vectors Xi, Xi+1 are 
collinear (we must rotate Yi to be in the Yi+1 Zi+1 plane).  

Therefore, using the quaternion, we rotate Yi around the 
vectors Yi+1 and Zi+1 to find Y’i, the rotation result of Yi. This 
transformation allows us to compute the angle: 

( )1 1
cos

i i
ar Y Yr +

¢= ·   
Now, we can check if 

1
l u
i i

q q q< <   
If θ1 ∈ [θl

i, θu
i] then keep θ1. However, if θ1 ∉ [θl

i, θu
i], 

we take the closest boundary θl
i, θu

i. Then we compute the new 
Yi and Zi by rotate Yi+1 and Zi+1 around Xi+1, Yi+1 and Zi+1 by 
new_θ, ψ and φ respectively. 

Algorithm 
Inputs: [Xi, Yi, Zi], [Xi+1, Yi+1, Zi+1] and θl

i, θu
i 

Outputs: [ Xi, Yi, Zi] 
- Compute φ and ψ by projecting Xi on the Xi+1Yi+1 and 

Xi+1Zi+1 plans  
- Q1= [cos (ψ /2); sin (ψ /2) Yi+1] 
- Q2= [cos (φ /2); sin (φ /2) Zi+1] 
- Y’i = Q1*Q2 * Yi * Q1

-1* Q2
-1 

- θ1 = acos (<Y’i , Yi+1>) 
- If θ1 ∈ [θl

i, θu
i] then keep θ1. 

- Else  
if (θ1 - θl

i)2<( θ1-θu
i)2 then new_θ1 = θl

i 
         Else new_θ1 = θu

i 
- Q1= [cos (ψ /2); sin (ψ /2) Yi+1] 
- Q2= [cos (φ /2); sin (φ /2) Zi+1] 
- Q2= [cos (new_θ1 /2); sin (new_θ1 /2) Xi+1] 
- Q= Q1*Q2 * Q2 
- Yi =Q * Yi+1 * Q-1  
- Zi = Q * Zi+1 * Q-1  

 

The position constraints 

P’i is a combination of the rotation around  Xi, Yi  and Zi 
vectors, in the previous section we described a method for 
computing the orientation of Yi and Zi vectors, Now, we are 
interested in calculating the rotation angles around Yi and Zi 
vectors. Instead of considering the 3D Problem, we divide it 
into two 2D problems. This will simplify it. 

We note that a rotation around Yi axis only, generates a 
variation of P’i in the (Xi Zi) planar and a rotation around Zi axis 
only generates a variation of P’i in the (Xi Yi) planar. Therefore, 

to find the rotation angles, we simply project P’i on the two 
planes (Xi Yi) and (Xi Zi). We note P’jz, P’jy the projections of P’i 
on the XiZi, XiYi planes respectively. 

Now, It is possible to find the angles θ2 (between the 
segment [P’i+1P’jz] and Xi) and θ3 (between the segment 
[P’i+1P’jy], Xi ), using the dot and the cross products.  

After that, we can check if 

2 2 2
l uq q q< <  

3 3 3
l uq q q< <  

If θi ∈ [θl
i, θu

i] then keep θi. However, if θi ∉ [θl
i, θu

i], we 
take the closest boundary θl

i, θu
i. We note that to check θ2 (the 

angle between the segment P’i+1P’jz and Xi axis) we use the 
limits applied to the rotation around Yi axis. 

We compute the new P’jy P’jz, by using the following 
expressions: 

( ) ( ) ( )3 2 2
’ _ _ _( (
jy i i

P cos new cos new x sin new yq q q+=  

( ) ( ) ( )2 3 3
’ _ _ _( (
jz i i

P cos new cos new x sin new zq q q= +  
 

Now, we need to compute the new position P’i from the 
projections P’jy, P’jz. Therefore, P’i is the point of intersection 
between the normal vectors of (XiYi) and (XiZi) planes on the 
projection point P’jy, P’jz.  

 
Since the points P’i, Pi and Pi+1 are on the same line it is 

possible to use 
i

P  directly to check the position constraints 
without computing the new position P’i. It will be computed at 
the end of the position constraint algorithm. 

Algorithm 
Inputs: Pi, Pi+1, [Xi, Yi, Zi], di and θl

i, θu
i 

Outputs: P’i 
- Compute P’jy and P’jz, the projections of Pi on the XiYi 

and XiZi plans  
- θ2 = acos (<Xi , (P’jz - Pi+1)>/|| (P’jz - Pi+1)||) 
- θ3 = acos (<Xi , (P’jy - Pi+1)>/|| (P’jy - Pi+1)||) 

- check θl
i <θ2 < θu

i 
 θl

i <θ3 < θu
i 

- P’jy = cos (new_θ3) (cos (new_θ2) xi + sin (new_θ2) yi) 
- P’jz = cos (new_θ2) (cos (new_θ3) xi + sin (new_θ3) zi) 
- n1=cross(Xi , Yi) 
- n2= cross(Xi , Zi) 
- Find new_P’i the intersection between n1 and n2 at P’jy , 

P’jz. 
- P’i =di (new_P’i - Pi+1)/|| (new_P’i - Pi+1) || 

 

The full algorithm 
Assuming, we have n dof manipulator and Pi and [Xi, Yi, Zi] 

are the positions and the coordinates systems associated to the 
joint “i”, we pose t and Rt = [Xt, Yt, Zt] the desired position and 
orientation of the effector, respectively. 
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The consideration of the joint limits will affect the speed of 
the algorithm, but we can simplify the algorithm. The full 
algorithm becomes 

 
Algorithm 

Inputs: t, Rt, Pi, [Xi, Yi, Zi] and θl
i, θu

i 
Outputs: Pi, [Xi, Yi, Zi] 

- ε = 0.1 
- di = || Pi - Pi+1|| i=1,…,n 
- if || Pi - Pi+1||>d1 + d2 +…+ dn-1 

then t is unreachable 
- else 

 
- b =P1 % keep the base position 
- [ Xbase, Ybase, Zbase ] = [X1, Y1, Z1 ]% keep the units 

vectors of the base (joint 1) 
- error=|| t – Pn|| Compute the error between the target 

t and the effector 
- while error > ε 

% forward step 
Pn = t 
[Xn, Yn, Zn]= Rt 
For i=n-1,…,1 

% call the position constraint function 
Pi =contrainte_position(Pi, Pi+1, [Xi+1, Yi+1, 

Zi+1], [θl
i  θu

i])  
%orienting the system 
Xt = Pi+1 – Pi/|| Pi+1 – Pi|| 
Angle = acos(<Xi , Xt >) 
Axis = cross(Xi , Xt ) 
[Xi, Yi, Zi]=rotate([Xi, Yi, Zi], Angle, Axis) 
%Orientation limits of the next coordinate 

system 
[Xi, Yi, Zi] =constaint_orientation([Xi, Yi, Zi], 

[Xi+1, Yi+1, Zi+1], [θl
i  θu

i])  
End 

   
% backward step 
P1 = b 
[X1, Y1, Z1 ]=[ Xbase, Ybase, Zbase ] 
 
For i=1,…,n-1 

Pi+1 =contrainte_position(Pi+1, Pi, [Xi+1, Yi+1, 
Zi+1], [θl

i  θu
i]) 

Xt = Pi+1 – Pi/|| Pi+1 – Pi|| 
Angle = acos(<Xi+1 , Xt >) 
Axis = cross(Xi+1 , Xt ) 
[Xi+1, Yi+1, Zi+1]=rotate([Xi+1, Yi+1, Zi+1], Angle, 

Axis) 
 
[Xi+1, Yi+1, Zi+1] =constaint_orientation([Xi+1, 

Yi+1, Zi+1], [Xi, Yi, Zi], [θl
i  θu

i])  
End 

   

- error=|| t – Pn||   
- End 

 

Spatial Constraints (Collision-free) 

The mannequin had to avoid the collision with the objects 
present in the virtual environment while doing a task. We need 
to simplify the geometry of the objects to reduce the 
computations. There are lot of techniques of the simplification 
of the geometry used in virtual reality; the most used is the 
minimal enclosing box described in [14]. This technique 
simplifies the geometry of an object to a box. Another 
technique, presented by Hariri in [15], decomposes the object to 
several simple objects (spheres, planes, boxes), this technique is 
more accurate. 

The links of the mannequin are considered as segments.  
At each iteration “i” after computing the new position of 

the articulation P’i (in the forward loop); we check the 
intersection between the segment [Pi+1, P’i] (in the forward 
loop) and the box; the existence of the intersection is the proof 
of a collision between the link and the object. The new position 
new_P’i (that avoid the collision) need to guarantee three 
conditions: 

1. No intersection between [Pi+1; new_P’i] and the box 
This condition allows to avoid the obstacle 

2. No intersection between [new_P’i, Pi-1] and the box: This 
condition guarantees the existence of at least one 
solution in the next iteration. In the unconstrained case 
(without orientation and position constraints), this 
condition avoid to check the collision in the next 
iteration.   

3. new_P’i is the nearest position of the joint “i” to P’i 
satisfying the previous conditions. 

To find new_P’i, we discretize the SRP of the joint “i” (the 
positions of the joint “i” respecting the position constraints) as 
shown in Fig 10. 

Among this set, the green arc defines the positions 
respecting the conditions (1 and 2); the pink part defines the 
positions respecting the first condition only and the red part 
defines the positions respecting any conditions from (1 and 2). 

We choose the nearest position to P’i that satisfies the 
conditions described above. 

In constrained case (with orientation and position 
constraints), if there is any position of SRP that satisfied the 
first condition, we vary the previous joint to find the position 
that satisfy the conditions. 
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Fig. 10: Collision-free Approach 

RESULTS AND DISCUSSION 
To test the inverse kinematics algorithm considering joints 

and spatial constraints, we use an articulated body model with 
four rotational joints allowing a 3 DOF constrained motion. The 
articulated body is described in the Fig. 11. 

Figure 11 shows an obstacle in the middle of the scene. The 
initial posture of the articulated body is shown in blue the target 
is the red “+ symbol”. Figure 11 shows the evolution of the 
posture from the initial posture to the final one. 

 
Fig. 11: Collision-free FABRIK results 

We notice that the algorithm choose the best way to avoid 
the obstacle from the first posture. The final posture satisfies the 
orientation, position and the spatial constraints.  

The error evolution is shown in the Figure 12. After 18 
iterations, the algorithm converges to the solution.  

 
Fig. 12: Error evolution 

Figure 13 shows the initial posture of the human upper 
body. The red “+ symbol” define the target of the eyes and the 
hand. The blue articulated body represents the spine this part is 
shared between the left arm (red) and the neck and eyes features 
part (green). 

 
Fig. 13: initial posture   

Applying the algorithm, we get the result shown in the 
Figure 14. We can notice that the vision influences the posture 
and specially the head position.  

The algorithm is simple to implement and the posture is 
realistic. The speed of the algorithm depends essentially to the 
size of the obstacles and the technique chosen to simplify the 
geometry. These advantages are making this algorithm 
interesting in the virtual reality field. 
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Fig. 14: Final posture 

CONCLUSIONS 
In this paper, we presented a new approach to model a 

human vision. It is based on the features of the eyes (Vision 
field, Visual acuity, eyes motion and no interference with 
obstacles). We consider the look vector as an additional end of 
the human model.  

This modelling allows us to formulate the visibility 
problem as a classic IK problem for a multi arms articulated 
body.  

We used an improved FABRIK algorithm to solve the IK 
problem for multi arms articulated body and we presented an 
algorithm to avoid the collision with obstacles. After detecting a 
collision between a link and an object, we try to find a position 
that avoids the collision by analysing the joint space.  

For future works, we project to use different techniques to 
analyse the whole space [16] and considering a global solution 
of the IK problem avoiding collision. 
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