
HAL Id: hal-01160624
https://hal.science/hal-01160624

Submitted on 18 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AUTOMATIC PLACEMENT OF THE HUMAN
HEAD THANKS TO ERGONOMIC AND VISUAL

CONSTRAINTS
Bilal Boualem, Damien Chablat, Abdelhak Moussaoui

To cite this version:
Bilal Boualem, Damien Chablat, Abdelhak Moussaoui. AUTOMATIC PLACEMENT OF THE HU-
MAN HEAD THANKS TO ERGONOMIC AND VISUAL CONSTRAINTS. Proceedings of the ASME
2015 International Design Engineering Technical Conferences & Computers and Information in Engi-
neering Conference, Aug 2015, Boston, United States. �hal-01160624�

https://hal.science/hal-01160624
https://hal.archives-ouvertes.fr

 1

Proceedings of the ASME 2015 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2015
August 2-5, 2015, Boston, Massachusetts, USA

DETC2015-46153

DRAFT: AUTOMATIC PLACEMENT OF THE HUMAN HEAD THANKS TO
ERGONOMIC AND VISUAL CONSTRAINTS

Bilal BOUALEM
University of Tlemcen
Tlemcen, ALGERIA

Institut de Recherche en
Communication et Cybernétique

de Nantes, UMR CNRS 6597
bilal.boualem@ec-nantes.fr

Damien CHABLAT
Institut de Recherche en

Communication et Cybernétique
de Nantes, UMR CNRS 6597,

Nantes, France
Damien.Chablat@cnrs.fr

Abdelhak MOUSSAOUI
University of Tlemcen
Tlemcen, ALGERIA

University of Lorraine
Metz, FRANCE

abdelhak.moussaoui@univ-
lorraine.fr

ABSTRACT
This article aims to create automatic placement and

trajectory generation for the head and the eyes of a virtual
mannequin. This feature allows the engineer using off-line
programming software of mannequin to quickly verify the
usability and accessibility of a visual task. An inverse kinematic
model is developed taking into account the joint limits of the
neck and the eyes as well as interference between the field of
view and the environmental objects. This model uses the
kinematic redundancy mechanism: the head and eyes. The
resolution algorithm is presented in a planar case for
educational reasons and in a spatial case.

INTRODUCTION
The need for designers, builders and manufacturers of tools

that allow the study of the interaction of the humans with their
environments and the designed products has prompted
researchers to develop tools for the study of accessibility.

Computer tools (CATIA, SolidWorks, NX, PCT CREO,
SANTOS, etc.); using virtual reality; have emerged to meet this
demand. These tools are used to evaluate the mechanical and
visual capabilities of the human to accomplish a task (Driving a
car, using the computer keyboard, dial a phone number).
However, there are a lot of drawbacks in these tools. For
example, in the mannequin simulation, we are able to look at
the hand but without taking into account the distance between
the hand and the eyes and the size of the object.

In the literature, we find different approaches to compute
the head motion to get a visible target. In [1], the author
proposes an approach based on a multi-agent system that

distributes the computation of the posture of the mannequin
over several elementary agents (an agent to move the
mannequin, an agent for the detection of collisions, an agent to
keep the target visible, etc.). Another approach presented by T.
Marler in [2] where he considers the vision as a criterion among
several criteria to be satisfied. This is known as a multi-
objective optimization problem. There are several methods and
algorithms to solve it [3]. The works cited above define a cone
of vision that describes the field of view of the eyes. An object
is considered as visible if it belongs to this cone and no obstacle
interferes between the object and the eyes. The distance
between the eyes and the object, the size of the object are not
considered.

In our approach, we consider the eyes as a part of the
human upper body model, in other words, neck, head, eyes and
vector of sight are considered as an additional end of the body
of the mannequin. This end of the body is modeled according to
the capabilities of the eyes.

The visibility problem becomes an inverse kinematics
problem. We use the method described by Aristido in [4] to
solve it. We improve this method to detect and avoid obstacles
present inside the environment.

HUMAN UPPER BODY MODELING
In this section, we describe the geometrical model of the

human upper body. We start by the presentation of the model
proposed by T. Marler in [2]. The author proposes a model with
26 degrees of freedom (dof) as it is shown in the Fig. 1: 12 dof
are used to model the spine, 2 dof for the collarbone and 3 for
the shoulder, 2 for the elbow, 2 for the wrist and 5 dof for the

 2

neck. We notice that all joints are rotational. We use this model
because it gives a realistic posture of the mannequin with a
reduced computational cost.

Fig. 1: T. Marler’s Human upper body Model

In our approach, we consider the eye features as an
extension of the human upper body model. In other words, the
eyes features are an additional joints and links added to the
neck model.

The ability for human to see an object is related to the eyes
features (Eyes motion, field of view, and visual acuity) and the
environment (lighting, obstacle between the eyes and the
object). In this work, we are not interested by the lighting
conditions.

Visual acuity
The visual acuity is the ability to distinguish the details of

the object. According to this report [5], there are several
techniques to assess the visual acuity. The most used are the
Snellen’s chart described by I. Bailey in [6]. The technique is
based on the ability of the person to read a letter of a size S
from a certain distance D. The Figure 2, shows the Snellen
principle, where S is the height of the letter (or object) and D is
the distance between the eyes and the object, α is the angular
size of the letter in minutes of arc (1 minute of arc = π/10800
radians).

Fig. 2: Snellen principle

The Fig. 3 shows an example of a letter used to assess the
visual acuity. The letter is composed of three black zones and
two white zones. A human can read this letter if he can
distinguish every zone.

Fig. 3: Snellen’s letter

The size of every zone (α/5) is called the minimum angle of
resolution (MAR). Using the MAR, we can get the maximum
distance to see an object.

()5

max

far

D
tan MAR

S
= (1)

where
far

MAR is the MAR for far vison.
In the same way, we use the MAR for the near vision to

compute the minimum distance [7].

()5min

near

D
tan MAR

S
= (2)

where
near

MAR is the MAR for near vison.

The object must be at a distance ,
min max

D DD é ùÎ ê úë û to be
visible. This can be modelled as a prismatic joint that gives the
ability to vary the length of the virtual link (the look vector).

The field of view
The field of view is the visible space for a motionless eyes

and head. According to Parker [8], the field of view is the union
of the visible spaces of the two eyes, as it is shown in the Fig. 4.
The blue zone represents the right eye and the red zone the left
eye. The intersection zone, called the binocular vision. The
human solicits both eyes to see.

Fig. 4: Field of view

The visual acuity is at the maximum in the centre zone,
called the fovea. The visual acuity drops exponentially when the

 3

object is far from the centre. In [2]. The author proposes a
function to compute the deterioration of the acuity visual
according to the angle between the eye to target vector and the
fovea. It is expressed as:
 7| |e-= θe (3)
where θ represents the angle between the eye to target vector
and the fovea vector.

Therefore, the problem is to reduce θ. Considering the look
vector (fovea) as an virtual link, The application of an inverse
kinematics algorithm resolve the problem, if the virtual effector
reach the target 0q = , if not the algorithm try to close to the
target. At this moment, we can check the visibility of the target
by reducing the visual acuity using (3). Then we compute the
minimal and maximal distance using (1) and (2). Finally, check
if the distance eye to target belongs to ,

min max
D Dé ùê úë û .

The eyes movements
The aim of moving the eyes is to enclose the object to the

fovea zone.
According to [9] and [10], the eyes movements can be

represented using two rotations. The first rotation moves the
gaze up and down while the second one moves it right and left.
The range of the motion is 55± ° .

We can conclude that the eyes behave as a joint with 2 dof.
Therefore, to model the eyes movements we add a joint with 2
dof on the top of the neck; this joint orients a virtual link (that
represents the look vector) to the target.

The Full model
Figure 5 shows the model of the human upper body

considering the eyes features. The eyes are modelled using a
prismatic joint representing the visual acuity and a rotational
joint with 2 dof to represent the eyes motions.

Fig. 5: The human upper body

Using this approach to model the eyes behaviour, we can
define different targets for the hands and the eyes. It is possible,

also, to give more importance to the reachability of the hand or
the visibility.

FORMULATION OF THE PROBLEM

Now, the problem is to find the posture of the mannequin
that allows to the two arms to reach the targets. The problem is
known in the literature as an inverse kinematics problem it can
be formulated as:

We assume that the current positions of the effectors are
Peff1 and Peff2 and the current orientations are Reff1 = [X eff1, Y eff1,
Z eff1] and Reff2 = [X eff2, Y eff2, Z eff2] (where X eff, Y eff and Z eff are
the unit vectors associated to the effector).

Given a desired positions t1 and t2 and the desired
orientations are Rd1 = [X d1, Y d1, Z d1] and Rd2 = [X d2, Y d2, Z d2].

Find the posture such as:
Peff1 = t1
Peff2 = t2
Reff1= Rd1
Reff2= Rd2

INVERSE KINEMATICS ALGORITHM

The cyclic coordinate descent (CCD) algorithm, described
in [11], used in many fields to solve the IK problem (i.e
compute the posture of an articulated body), this method
considered as a fast and robust algorithm but the posture
obtained is unrealistic making it not adapted for animating
human.

A. Aristidou proposes an algorithm, called Forward and
backward invers kinematics (FABRIK) in [4], to solve IK
problem. This algorithm is faster, robust and offers a realistic
posture. In addition, the geometrical aspect of the algorithm
makes the detection and the avoidance of obstacles simpler.
These advantages justify our choice to use this algorithm.

In this section, we describe the Forward and backward
invers kinematics algorithm, developed by A. Aristidou. This
algorithm is very fast, and the solution obtained is realistic,
compared to other IK algorithms (CCD).

We take the example of the manipulator, shown in Fig. 6 to
explain FABRIK algorithm. The manipulator contains four
joints connected by four links. We note Pi the Cartesian position
of the joint “i” and di the length of the link “i”. We can
distinguish two cases:

 4

Fig. 6: An example of a planar manipulator

 Unconstrained case: FABRIK method is an iterative
algorithm that solves the IK problem, each iteration of the
algorithm divided on two steps:
 On the first loop, called forward step, we place the effector
on the target position then we move the n-1th joint on the
line linking the effector and Pn-1, We note the new position
P’n-1. P’n-1 is at dn-1 of the effector as it is shown in the
Figure 7-1. In the same way, we move the next joints until
the base (P0), as shown in Fig. 7-2 and 7-3.
However, in the backward step, we start by placing the base
(first joint of the manipulator) on its original position, and
then we move the joint 2 on the line connecting the original
position of the base and the P’2, we place P2 at d1 from the
base. Repeating the iteration (Forward and backward steps),
cancels the error between the effector and the target.

Fig. 7: FABRIK Sequence

The algorithm is fast, simple to implement and the posture
obtained is more realistic then the other IK method. This makes
this algorithm the best compromise in the unconstrained case.

Fig. 8: Constrained FABRIK

 Constrained case: In this case, the constraints represent the
joint limits; they are defined on the joint space. It is hard to
consider the joints limits in the compute steps because of the
difference between the Cartesian space and the joints space.
A. Aristidou proposes a method to respect joints limits. The
goal of this method is to check if the computed position of
the joint i (on the forward or backward loop) P’i is in the
reachable set of the joint else take the closest point to P’i.
The Figure 8 shows a planar example to check if the
position P’i respecting the joint limits (θl

i, θu
i). First, we

must define the reachable set. So, we starts by compute the
projection, noted O, of the point P’i on the extension of the
segment Pi+1 Pi+2 (red line) as shown in the Figure 8. Then
we compute

1 1
|| O P || ()u

i i
tanq q-= - and

2 1
|| O P || ()l

i i
tanq q-= - , then we check if P’i is in the

segment
2 1

[,]O q O q- , , then keep P’i . Else we choose the

nearest position to P’i (new_ P’i) as it is shown in the Figure
8. In the 3D case, A. Aristidou defines the reachable set as
an ellipse centred on O and

1 2
q q+ and

3 4
q q+ are major

and minor radius.
This method work perfectly especially when the joints limits
are lower than 𝞹𝞹/2, but it is unstable when the boundaries
are equal to 𝞹𝞹/2; this instability is due to the tangent
function.

 5

To respect the joints limits, it is necessary to find a
transformation that allows the transition from the joint space to
the Cartesian space or the inverse (i.e from the Cartesian space
to the joint space). The author chosen to use tangent function to
do the transformation but this function presents singularity at
π/2 that make the algorithm unstable near this singularity.
Therefore, we need a reliable and a fast algorithm to respect
joint limits.

In the next section, we propose a new reliable method to
respect the joints limits.

The Figure 9 shows a manipulator in 3D space. This
manipulator is composed of four rotational joints. We call

i
X

the unit vector associated to the extension of the segment [Pi-1
Pi] (or [Pi+1 Pi] in the forward step) illustrated by the red vector
in the Figure 9. ,

i i
Y Z (blue and green vectors) are a units

vectors belonging to the plan perpendicular to the vector
i

X as it
is shown in the Figure 9. We call system “i”, the frame
composed of (

i
X , ,

i i
Y Z).

Fig. 9: An articulated body in 3D

Formulation of the problem
The problem can be defined as:
Given P’i the new position of the joint “i” computed by

FABRIK, and [θl
i, θu

i] is the lower and the upper limits of the
joints “i”. Considering a joint limit restricts the set of reachable
points (SRP).

The problem is to check if the point P’i belongs in the SRP
to the joint “i”. Then keep P’i.

Else take the closest point to P’i from SRP.
Constrained FABRIK

To apply the joint limits to the joint “i”, we divide into two
problems, the first is the orientation problem; it consists to
orients the ,

i i
Y Z vectors. The second is the position problem.

It consists to check if the new position of the joint “i” '
i

P
respects the joint constraints.

Assume we are in the first step (i.e forward loop), to apply
the joint limits, we start by orienting (Xi, Yi, Zi) such that the
segment Pi+1Pi and Xi become collinear. For this, we need to

find the rotor expressing the rotation between the Xi vector and
the segment Pi+1Pi. We use the quaternion to represent the
rotation around a vector, because it is simpler, faster and more
efficient than the rotation matrix, according to [12].

To find the quaternion we need to find the rotation vector V
and the angle α between the two vectors, Xi and Pi+1Pi. V is the
normal vector perpendicular to the plane (Xi, Pi+1Pi). We note
that the use of P’i or Pi to compute the vector V and the angle α
is the same because P’i, Pi and Pi+1 are in the same line.

1

1

i i

i i

P P
V Xi

P P
+

+

æ ö÷ç ÷ç ÷ç ÷ç
-

=
ççè ø

Ù
- ÷÷

and the angle can be found using the dot product as follow:

1

1

cos i i

i i

P P
ar Xi

P P
a +

+

æ ö÷ç ÷ç ÷ç
æ ö÷-ç ÷ç ÷= ·ç ÷ç ÷ç - ÷÷çè ø

÷ç ÷ç ÷çè ø

Now, we define the quaternion such as

;
2 2

Q cos sin V
a aé ùæ ö æ ö÷ ÷ç çê ú÷ ÷ç ç÷ ÷ê úç ç÷ ÷ç çè ø èêë û

=
ø ú

Using the quaternion, we compute the new vectors X’i,
Y’i and Z’i by rotating each vector using the quaternion as
follow:

1’
i

Y QVQ-=

Where 1 ’ /Q Q Q- = , ’ ;
2 2

Q cos sin V
a aé ùæ ö æ ö÷ ÷ç çê ú÷ ÷= ç ç÷ ÷ê úç ç÷ ÷ç çè ø èêë û

-
ø ú

 is

the conjugate of Q .
The multiplication of two quaternions

1 2 3 4
p p p p p= é ùê úë û

and
1 2 3 4

q q q q q= é ùê úë û is

1 1 2 2 3 3 4 4

1 2 2 1 3 4 4 3

1 3 2 4 3 1 4 2

1 4 2 3 3 2 4 1

pq

p q p q p q p q

p q p q p q p q

p q p q p q p q

p q p q p q p q

é ù- - -ê ú
ê ú++ -ê ú= ê ú- ++ ê ú
ê ú+ - +ê úë û

The orientation constraints

In the forward step, Given the two systems: “i+1” (Xi+1,
Yi+1, Zi+1) associated to the joint “i+1” and “i” (Xi, Yi, Zi)
associated to the joint “i”.

If Xi and Xi+1 are collinear then the orientation of the system
“i” is the angle between (Yi and Yi+1) or (Zi and Zi+1).

So, considering the system “i+1” is fixed, the problem is to
find the angle

1
q between the vectors (Yi and Yi+1) or (Zi and

Zi+1). 1
q must respects the orientation:

1
l u
i i

q q q< <
If Xi and Xi+1 are not collinear, we need to express the rotor

such that they become collinear. Using this rotor, we compute

 6

the orientation angle. It is possible to use a decomposition to the
Euler angles as described in [12].

To compute the rotor, we start by projecting Xi on the (Xi+1
Yi+1) and (Xi+1 Zi+1) planes, using the algorithm presented on
[13]. Using the cross and the dot product it is easy to find the
rotations φ and ψ around the axes Yi+1 and Zi+1 to have the
vetors Xi, Xi+1 collinear.

The rotation angle θ1 represents the angle between (Yi and
Yi+1) or (Zi and Zi+1) as long as the two vectors Xi, Xi+1 are
collinear (we must rotate Yi to be in the Yi+1 Zi+1 plane).

Therefore, using the quaternion, we rotate Yi around the
vectors Yi+1 and Zi+1 to find Y’i, the rotation result of Yi. This
transformation allows us to compute the angle:

()1 1
cos

i i
ar Y Yr +

¢= ·
Now, we can check if

1
l u
i i

q q q< <
If θ1 ∈ [θl

i, θu
i] then keep θ1. However, if θ1 ∉ [θl

i, θu
i],

we take the closest boundary θl
i, θu

i. Then we compute the new
Yi and Zi by rotate Yi+1 and Zi+1 around Xi+1, Yi+1 and Zi+1 by
new_θ, ψ and φ respectively.

Algorithm
Inputs: [Xi, Yi, Zi], [Xi+1, Yi+1, Zi+1] and θl

i, θu
i

Outputs: [Xi, Yi, Zi]
- Compute φ and ψ by projecting Xi on the Xi+1Yi+1 and

Xi+1Zi+1 plans
- Q1= [cos (ψ /2); sin (ψ /2) Yi+1]
- Q2= [cos (φ /2); sin (φ /2) Zi+1]
- Y’i = Q1*Q2 * Yi * Q1

-1* Q2
-1

- θ1 = acos (<Y’i , Yi+1>)
- If θ1 ∈ [θl

i, θu
i] then keep θ1.

- Else
if (θ1 - θl

i)2<(θ1-θu
i)2 then new_θ1 = θl

i
 Else new_θ1 = θu

i
- Q1= [cos (ψ /2); sin (ψ /2) Yi+1]
- Q2= [cos (φ /2); sin (φ /2) Zi+1]
- Q2= [cos (new_θ1 /2); sin (new_θ1 /2) Xi+1]
- Q= Q1*Q2 * Q2
- Yi =Q * Yi+1 * Q-1
- Zi = Q * Zi+1 * Q-1

The position constraints

P’i is a combination of the rotation around Xi, Yi and Zi
vectors, in the previous section we described a method for
computing the orientation of Yi and Zi vectors, Now, we are
interested in calculating the rotation angles around Yi and Zi
vectors. Instead of considering the 3D Problem, we divide it
into two 2D problems. This will simplify it.

We note that a rotation around Yi axis only, generates a
variation of P’i in the (Xi Zi) planar and a rotation around Zi axis
only generates a variation of P’i in the (Xi Yi) planar. Therefore,

to find the rotation angles, we simply project P’i on the two
planes (Xi Yi) and (Xi Zi). We note P’jz, P’jy the projections of P’i
on the XiZi, XiYi planes respectively.

Now, It is possible to find the angles θ2 (between the
segment [P’i+1P’jz] and Xi) and θ3 (between the segment
[P’i+1P’jy], Xi), using the dot and the cross products.

After that, we can check if

2 2 2
l uq q q< <

3 3 3
l uq q q< <

If θi ∈ [θl
i, θu

i] then keep θi. However, if θi ∉ [θl
i, θu

i], we
take the closest boundary θl

i, θu
i. We note that to check θ2 (the

angle between the segment P’i+1P’jz and Xi axis) we use the
limits applied to the rotation around Yi axis.

We compute the new P’jy P’jz, by using the following
expressions:

() () ()3 2 2
’ _ _ _((
jy i i

P cos new cos new x sin new yq q q+=

() () ()2 3 3
’ _ _ _((
jz i i

P cos new cos new x sin new zq q q= +

Now, we need to compute the new position P’i from the
projections P’jy, P’jz. Therefore, P’i is the point of intersection
between the normal vectors of (XiYi) and (XiZi) planes on the
projection point P’jy, P’jz.

Since the points P’i, Pi and Pi+1 are on the same line it is

possible to use
i

P directly to check the position constraints
without computing the new position P’i. It will be computed at
the end of the position constraint algorithm.

Algorithm
Inputs: Pi, Pi+1, [Xi, Yi, Zi], di and θl

i, θu
i

Outputs: P’i
- Compute P’jy and P’jz, the projections of Pi on the XiYi

and XiZi plans
- θ2 = acos (<Xi , (P’jz - Pi+1)>/|| (P’jz - Pi+1)||)
- θ3 = acos (<Xi , (P’jy - Pi+1)>/|| (P’jy - Pi+1)||)

- check θl
i <θ2 < θu

i
 θl

i <θ3 < θu
i

- P’jy = cos (new_θ3) (cos (new_θ2) xi + sin (new_θ2) yi)
- P’jz = cos (new_θ2) (cos (new_θ3) xi + sin (new_θ3) zi)
- n1=cross(Xi , Yi)
- n2= cross(Xi , Zi)
- Find new_P’i the intersection between n1 and n2 at P’jy ,

P’jz.
- P’i =di (new_P’i - Pi+1)/|| (new_P’i - Pi+1) ||

The full algorithm
Assuming, we have n dof manipulator and Pi and [Xi, Yi, Zi]

are the positions and the coordinates systems associated to the
joint “i”, we pose t and Rt = [Xt, Yt, Zt] the desired position and
orientation of the effector, respectively.

 7

The consideration of the joint limits will affect the speed of
the algorithm, but we can simplify the algorithm. The full
algorithm becomes

Algorithm

Inputs: t, Rt, Pi, [Xi, Yi, Zi] and θl
i, θu

i
Outputs: Pi, [Xi, Yi, Zi]

- ε = 0.1
- di = || Pi - Pi+1|| i=1,…,n
- if || Pi - Pi+1||>d1 + d2 +…+ dn-1

then t is unreachable
- else

- b =P1 % keep the base position
- [Xbase, Ybase, Zbase] = [X1, Y1, Z1]% keep the units

vectors of the base (joint 1)
- error=|| t – Pn|| Compute the error between the target

t and the effector
- while error > ε

% forward step
Pn = t
[Xn, Yn, Zn]= Rt
For i=n-1,…,1

% call the position constraint function
Pi =contrainte_position(Pi, Pi+1, [Xi+1, Yi+1,

Zi+1], [θl
i θu

i])
%orienting the system
Xt = Pi+1 – Pi/|| Pi+1 – Pi||
Angle = acos(<Xi , Xt >)
Axis = cross(Xi , Xt)
[Xi, Yi, Zi]=rotate([Xi, Yi, Zi], Angle, Axis)
%Orientation limits of the next coordinate

system
[Xi, Yi, Zi] =constaint_orientation([Xi, Yi, Zi],

[Xi+1, Yi+1, Zi+1], [θl
i θu

i])
End

% backward step
P1 = b
[X1, Y1, Z1]=[Xbase, Ybase, Zbase]

For i=1,…,n-1

Pi+1 =contrainte_position(Pi+1, Pi, [Xi+1, Yi+1,
Zi+1], [θl

i θu
i])

Xt = Pi+1 – Pi/|| Pi+1 – Pi||
Angle = acos(<Xi+1 , Xt >)
Axis = cross(Xi+1 , Xt)
[Xi+1, Yi+1, Zi+1]=rotate([Xi+1, Yi+1, Zi+1], Angle,

Axis)

[Xi+1, Yi+1, Zi+1] =constaint_orientation([Xi+1,

Yi+1, Zi+1], [Xi, Yi, Zi], [θl
i θu

i])
End

- error=|| t – Pn||
- End

Spatial Constraints (Collision-free)

The mannequin had to avoid the collision with the objects
present in the virtual environment while doing a task. We need
to simplify the geometry of the objects to reduce the
computations. There are lot of techniques of the simplification
of the geometry used in virtual reality; the most used is the
minimal enclosing box described in [14]. This technique
simplifies the geometry of an object to a box. Another
technique, presented by Hariri in [15], decomposes the object to
several simple objects (spheres, planes, boxes), this technique is
more accurate.

The links of the mannequin are considered as segments.
At each iteration “i” after computing the new position of

the articulation P’i (in the forward loop); we check the
intersection between the segment [Pi+1, P’i] (in the forward
loop) and the box; the existence of the intersection is the proof
of a collision between the link and the object. The new position
new_P’i (that avoid the collision) need to guarantee three
conditions:

1. No intersection between [Pi+1; new_P’i] and the box
This condition allows to avoid the obstacle

2. No intersection between [new_P’i, Pi-1] and the box: This
condition guarantees the existence of at least one
solution in the next iteration. In the unconstrained case
(without orientation and position constraints), this
condition avoid to check the collision in the next
iteration.

3. new_P’i is the nearest position of the joint “i” to P’i
satisfying the previous conditions.

To find new_P’i, we discretize the SRP of the joint “i” (the
positions of the joint “i” respecting the position constraints) as
shown in Fig 10.

Among this set, the green arc defines the positions
respecting the conditions (1 and 2); the pink part defines the
positions respecting the first condition only and the red part
defines the positions respecting any conditions from (1 and 2).

We choose the nearest position to P’i that satisfies the
conditions described above.

In constrained case (with orientation and position
constraints), if there is any position of SRP that satisfied the
first condition, we vary the previous joint to find the position
that satisfy the conditions.

 8

Fig. 10: Collision-free Approach

RESULTS AND DISCUSSION
To test the inverse kinematics algorithm considering joints

and spatial constraints, we use an articulated body model with
four rotational joints allowing a 3 DOF constrained motion. The
articulated body is described in the Fig. 11.

Figure 11 shows an obstacle in the middle of the scene. The
initial posture of the articulated body is shown in blue the target
is the red “+ symbol”. Figure 11 shows the evolution of the
posture from the initial posture to the final one.

Fig. 11: Collision-free FABRIK results

We notice that the algorithm choose the best way to avoid
the obstacle from the first posture. The final posture satisfies the
orientation, position and the spatial constraints.

The error evolution is shown in the Figure 12. After 18
iterations, the algorithm converges to the solution.

Fig. 12: Error evolution

Figure 13 shows the initial posture of the human upper
body. The red “+ symbol” define the target of the eyes and the
hand. The blue articulated body represents the spine this part is
shared between the left arm (red) and the neck and eyes features
part (green).

Fig. 13: initial posture

Applying the algorithm, we get the result shown in the
Figure 14. We can notice that the vision influences the posture
and specially the head position.

The algorithm is simple to implement and the posture is
realistic. The speed of the algorithm depends essentially to the
size of the obstacles and the technique chosen to simplify the
geometry. These advantages are making this algorithm
interesting in the virtual reality field.

 9

Fig. 14: Final posture

CONCLUSIONS
In this paper, we presented a new approach to model a

human vision. It is based on the features of the eyes (Vision
field, Visual acuity, eyes motion and no interference with
obstacles). We consider the look vector as an additional end of
the human model.

This modelling allows us to formulate the visibility
problem as a classic IK problem for a multi arms articulated
body.

We used an improved FABRIK algorithm to solve the IK
problem for multi arms articulated body and we presented an
algorithm to avoid the collision with obstacles. After detecting a
collision between a link and an object, we try to find a position
that avoids the collision by analysing the joint space.

For future works, we project to use different techniques to
analyse the whole space [16] and considering a global solution
of the IK problem avoiding collision.

ACKNOWLEDGMENTS
The work presented in this paper was partially funded by

the Erasmus Mundus Active.

REFERENCES
[1] D. Chablat, P. Chedmail, and L. Pino, “A distributed

approach for access and visibility task under ergonomic
constraints with a manikin in a virtual reality
environment,” in 10th IEEE International Workshop on
Robot and Human Interactive Communication, 2001.
Proceedings, 2001, pp. 32–37.

[2] T. Marler, K. Farrell, J. Kim, S. Rahmatalla, and K.
Abdel-Malek, “Vision Performance Measures for
Optimization-Based Posture Prediction,” SAE
International, Warrendale, PA, SAE Technical Paper
2006-01-2334, Jul. 2006.

[3] R. T. Marler and J. S. Arora, “Survey of multi-objective
optimization methods for engineering,” Struct.

Multidiscip. Optim., vol. 26, no. 6, pp. 369–395, Mar.
2004.

[4] A. Aristidou and J. Lasenby, “FABRIK: A fast, iterative
solver for the Inverse Kinematics problem,” Graph.
Models, vol. 73, no. 5, pp. 243–260, Sep. 2011.

[5] “Recommended stardard procedures for the clinical
measurement and specification of visual acuity. Report of
working group 39. Committee on vision. Assembly of
Behavioral and Social Sciences, National Research
Council, National Academy of Sciences, Washington,
D.C,” Adv. Ophthalmol. Fortschritte Augenheilkd. Prog.
En Ophtalmol., vol. 41, pp. 103–148, 1980.

[6] I. L. Bailey and J. E. Lovie, “New design principles for
visual acuity letter charts,” Am. J. Optom. Physiol. Opt.,
vol. 53, no. 11, pp. 740–745, Nov. 1976.

[7] I. L. Bailey and J. E. Lovie, “The design and use of a new
near-vision chart,” Am. J. Optom. Physiol. Opt., vol. 57,
no. 6, pp. 378–387, Jun. 1980.

[8] J. F. Parker Jr. and V. R. West, “Bioastronautics Data
Book: Second Edition. NASA SP-3006.,” NASA Spec.
Publ., vol. 3006, 1973.

[9] H. Misslisch, D. Tweed, and T. Vilis, “Neural Constraints
on Eye Motion in Human Eye-Head Saccades,” J.
Neurophysiol., vol. 79, no. 2, pp. 859–869, Feb. 1998.

[10] D. Guitton and M. Volle, “Gaze control in humans: eye-
head coordination during orienting movements to targets
within and beyond the oculomotor range,” J.
Neurophysiol., vol. 58, no. 3, pp. 427–459, Sep. 1987.

[11] L.-C. T. Wang and C. C. Chen, “A combined optimization
method for solving the inverse kinematics problems of
mechanical manipulators,” IEEE Trans. Robot. Autom.,
vol. 7, no. 4, pp. 489–499, Aug. 1991.

[12] J. B. Kuipers, Quaternions and Rotation Sequences: A
Primer with Applications to Orbits, Aerospace and
Virtual Reality. Princeton, N.J.: Princeton University
Press, 2002.

[13] M. de Berg, O. Cheong, M. van Kreveld, and M.
Overmars, Computational Geometry: Algorithms and
Applications, Édition: 3rd ed. 2008. Berlin: Springer-
Verlag Berlin and Heidelberg GmbH & Co. K, 2008.

[14] J. O’Rourke, “Finding minimal enclosing boxes,” Int. J.
Comput. Inf. Sci., vol. 14, no. 3, pp. 183–199, Jun. 1985.

[15] M. Hariri, “A study of optimization-based predictive
dynamics method for digital human modeling,”
University of Iowa, 2012.

[16] S. Laine and T. Karras, “Efficient Sparse Voxel Octrees,”
in Proceedings of the 2010 ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, New York, NY,
USA, 2010, pp. 55–63.

