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ABSTRACT 

 

With the aim of improving the immersive experience of the 

end user, High Dynamic Range (HDR) imaging has been 

gaining popularity. Therefore, proper validation and 

performance benchmarking of HDR processing algorithms is 

a key step towards standardization and commercial 

deployment. A crucial component of such validation studies 

is the selection of a challenging and balanced set of source 

(reference) HDR content. In order to facilitate this, we 

present an objective method based on the premise that a 

more challenging HDR scene encapsulates higher contrast, 

and as a result will show up more visible errors on contrast 

reduction. This information is subsequently analyzed via 

fuzzy clustering to enable a probabilistic interpretation. To 

evaluate the proposed approach, we performed an 

experimental study on a large set of publicly available HDR 

images.    

 

Index Terms— High Dynamic Range (HDR), content 

selection, clustering 

 

1. INTRODUCTION 

 

Solid validation and benchmarking, both subjectively and 

objectively, is one of the key aspects in advancing research 

and development activities in addition to introducing well-

accepted standards and recommendations. Such studies, 

needless to mention, should be carried out carefully in order 

that the conclusions arrived at are reliable and reproducible. 

For example, a well-grounded subjective validation will 

typically consist of several steps: (a) selection of source 

content, (b) processing technique to be evaluated and its 

parameters, (c) recruiting a sufficiently large panel of 

subjects, (d) subject screening, (e) post-processing of the 

subjective data such as outlier analysis. As the reader will 

notice, source (reference) content selection is one of the first 

steps and is therefore crucial to the ultimate outcome of the 

study. Consider the case of evaluating and validating a video 

coding method. In this case, it is necessary that the source 

content is selected such that it challenges the codec in terms 

of its ability to cope with both spatial and temporal 

redundancy. To this end, the ITU-T P.910 [1] provides 

objective measures of the perceptual spatial and temporal 

information. Based on such objective indicators more 

suitable source content can be selected, in terms of 

challenging the codec. In the light of growing interest in new 

technologies such as HDR within the multimedia processing 

community, there is obviously a need for new domain-

specific objective indicators to guide the process of source 

content selection.   

 

2. BACKGROUND AND MOTIVATION 

 

Improving the user's immersive experience is an emerging 

trend in today's multimedia content delivery systems [2]. In 

this quest, 3D, High Frame Rate (HFR), Ultra-High 

Definition (UHD), and more recently HDR, have been under 

investigation over the past years. Given this trend, there is 

obviously need for careful and calibrated validation studies 

to benchmark as well as facilitate the development of related 

technologies towards more immersive Quality of Experience 

(QoE). With regards to HDR imaging, its main thrust 

towards improving the visual experience consists of 

significantly increasing the visual contrast in comparison to 

the traditional low dynamic range (LDR) pictures. The 

interested reader at this point is encouraged to refer to 

existing works (such as [3]) for an excellent treatment of 

basics of HDR capture and processing. 

        With HDR receiving attention both in academia and 

industry, there has been a recent push to develop and 

standardize HDR processing tools. Many such efforts 

essentially seek to extend the scope of several existing 

standardized tools for LDR signals (eg. video coding 

standards) by employing range reduction (or tone mapping). 

With the use of tone mapping operators (TMOs), the HDR 

signal is first converted to LDR which can be processed (eg. 

encoded) via standard tools. An additional operation known 

as inverse tone mapping is then employed to transform the 

decoded signal to HDR. TMOs also play an important role 



in visualizing HDR on LDR displays [3]. It is therefore 

evident that TMOs will play a crucial role in the design of 

backwards compatible HDR processing algorithms as well 

as HDR visualization. However, tone mapping is a non-

transparent process and can lead to loss of visual details. 

Consequently, the artistic intention of HDR signal may be 

altered [4]. Hence, it is important that the selected source 

HDR content challenges TMOs (and hence the HDR 

processing algorithm) and differentiates between them in 

terms of their impact on the perceptual visual quality of the 

processed HDR signal. This will be one of the key 

requirements towards proper evaluation and validation of the 

existing and future TMO based HDR processing tools. 

While subjective approach is the most accurate method for 

HDR source content selection, it suffers from two 

drawbacks. The first one is the more general and common to 

nearly all subjective studies: it can be time-consuming and 

expensive to administer in the absence of appropriate 

laboratory conditions. The second drawback is unique to 

HDR and is related to its visualization. The conventional 

LDR displays do not have the required luminance range to 

display HDR in its native format. Recently HDR displays 

(the maximum displayable luminance in these is still limited 

but much higher than traditional LDR displays) such as 

those from SIM2 [5] are starting to appear in the market. 

However, these may not be useful in specific cases where 

the HDR processing algorithm's output (an HDR signal) will 

ultimately be displayed on an LDR monitor via tone 

mapping. Therefore, there is need for an HDR source 

content selection approach which is objective and 

reasonably fast (so that subjective studies can be avoided), 

and does not require an HDR display for its application (to 

cater to the mentioned scenarios where HDR signal will be 

displayed directly on LDR devices). To address that, we 

present a method for HDR source content selection which 

can be easily implemented in software. 

 

3. PROPOSED OBJECTIVE HDR SOURCE 

CONTENT SELECTION METHOD 

 

We begin with the observation that HDR differs from LDR 

primarily in the way it stores scene information. Unlike 

LDR, HDR pixel values are related to physical luminance. 

Consequently, dark and bright scene regions are assigned 

values proportional to the actual scene intensity (this 

minimizes over and under exposure) instead of being 

saturated in an ad-hoc manner as is the case with LDR. This 

enables HDR to capture much higher contrast. In other 

words, HDR imaging enables capture of more scene details 

ranging from the ones corresponding to very high luminance 

(eg. sunlight) to those with low luminance levels (eg. 

shadows). A visual example is illustrated in Fig. 2 (c). In this 

image, 8 regions with different luminance are marked from 1 

to 8. We have also indicated the values proportional to the 

physical luminance corresponding to these regions. The keen 

reader may notice that the scene shown in Fig. 2 (c) has 

reasonably high contrast in that it has wide ranging 

luminance levels pertaining to different scene details. Notice 

that region 1 (waterfall) is the brightest while the region 3 

(around tree trunk) has the lowest luminance. Further, other 

scene details correspond to varying luminance levels. Such 

scenes are expected to be more challenging for TMOs in 

terms of reducing the range and at the same time minimizing 

adverse impact on the visual quality of the resultant tone 

mapped scene. On the other hand, a scene with relatively 

lower overall contrast may be less challenging.  

        Thus, contrast information in HDR can be exploited as 

a reasonable strategy to enable objective selection of more 

challenging HDR content. For instance, in Fig. 2 (c) limiting 

the maximum luminance level to 10000 will destroy details 

in region 1 where the luminance value is more than 11000. It 

follows that further contrast reduction (limiting the 

maximum luminance) will successively damage scene 

details. However, while small contrast reduction affects 

scene details theoretically, it may or may not be perceptually 

relevant. In fact, the perceptual change in the HDR signal 

has to be above the visual threshold in order that human eyes 

detect such contrast changes. Therefore, our approach is 

based on analyzing the perceptual error due to incremental 

contrast reduction. Obviously, an HDR scene higher contrast 

will show up more perceptual error than the one with lower 

contrast. This information can then be exploited further via 

data mining tools. We now describe our proposed approach 

for selecting a more challenging set of source HDR content 

from a given pool of N HDR images.  

 

i. Obtain a set of k contrast-reduced images for i
th

 

HDR image by adjusting the luminance with step 

size ∆m. 

ii. Compare each contrast-reduced image with its 

corresponding original HDR image and obtain a 2D 

perceptual error map. This will yield k perceptual 

error maps.     

iii. Compute difference 
imd ,
 between two successive 

error map and store it in a k-dimensional vector 

{ }imi d ,=D   (m = 1 to k-1) .  

iv. Repeat the above steps for each i
th

 source HDR 

image (i = 1 to N). 

v. Analyze the difference matrix [ ]NDDDM ..., 21=  in 

which columns are formed from vector 

iD computed at the third step.   



                               
 

    
 

          
 

             
 

 

Fig. 1. Source images classified to Cluster 1 and Cluster 2 based on proposed approach. Note that these are tone mapped 

versions of the actual HDR scenes. Figure best viewed in color. 

 

4. IMPLEMENTATION DETAILS 

 

In the previous section, we discussed the general idea behind 

our approach and outlined the steps to be carried out. In this 

section, we provide more specific details on the 

implementation of the proposed method (the notations used 

will be the same as in the previous section).   

        As mentioned, the first step is to generate a series of 

contrast-reduced images from the original HDR image. To 

this end, the simplest way is to limit the maximum 

luminance of the HDR scene linearly with a small step size 

∆m. The next step is the analysis how incremental contrast 

reduction affects the visibility of details in the resultant HDR 

image. Towards that, each contrast-reduced image is 

compared with the original HDR image. We employed the 

objective method HDR-VDP-2. The HDR Visual Difference 

Predictor (HDR-VDP-2) [6] algorithm can be used for 

predicting the visibility of distortions (due to contrast 

reduction) in HDR images. Specifically, HDR-VDP-2 

provides a 2D map containing the probabilities of detection 

at each pixel point: a higher detection probability suggests a 

higher distortion level at the specific point. In the third step, 

we compute the difference between the 2D perceptual error 

maps corresponding to successive contrast-reduced images.  

In this paper, we used the Kullback Leibler divergence 

based distance measure to obtain the difference between the 

2D perceptual error maps. KLD is a measure of dissimilarity 

between two probability distributions and is defined as  
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where (m = 1 to k-1, i = 1 to N). 
m

P∆
 and 

1+∆m
P represent the 

2D perceptual error visibility maps at successive luminance 

levels and x represents the spatial coordinates of the pixel. 

When the two error maps are strictly equal, the KLD value is 

zero. Obviously, the KLD values will be larger for images 

that are affected more (in terms of perceptual error visibility) 

due to contrast reduction and this can be used as a rough 

(approximate) indicator for selecting the more challenging 

content in terms of contrast. Nevertheless, for better 

theoretical analysis and obtaining a probabilistic indicator, 

we further exploited clustering based analysis. Specifically, 

we analyzed the difference matrix [ ]NDDDM ..., 21= ,where 

{ }imi d ,=D , using Fuzzy C-Means clustering (FCM) 

algorithm. The FCM algorithm [7] is an iterative clustering 

method that produces an optimal c partition by minimizing 

the weighted within group sum of squared error objective 

function 
FCMJ  

∑∑
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where { } p

n RxxxX ⊆= ,...,, 21
 is the data set in the p-

dimensional vector space, N is the number of data items, c is 

the number of clusters with Nc <≤2 , 
zyu is the degree of 

membership of 
yx in the z

th
 cluster, q is a weighting 

exponent on each fuzzy membership,
zv is the prototype of 

the centre of cluster z, ),( zy vxdist 2 is a distance measure 

between object 
yx and cluster centre 

zv . 
FCMJ is minimized 

iteratively and the details can be found in [7]. Apart from 

being a more theoretically grounded separation (clustering) 

of HDR content into two clusters (more challenging and less 

challenging HDR images), the FCM provides a membership 

function matrix { }zyu=U  where 10 ≤≤ zyu . This provides 

a fuzzy or probabilistic indication of the degree by which an
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Fig. 2. (a) Cluster diagram, (b) and (c) luminance measurements in some regions of the two images
1
. Figure best viewed in 

color. 

 

HDR image belongs to one of the two clusters. This is 

particularly useful in our case as it lends a kind of content 

selection scalability i.e. images with highest 
zyu values can 

be selected first and depending on the requirements more 

HDR images can be chosen based on 
zyu values. Thus, 

instead of hard classification of a given HDR image into two 

clusters, there is a probability value associated for better 

HDR source content selection. 

 

5. EXPERIMENTAL ANALYSIS 

 

In this section, we validate the proposed method on a set of 

publicly available HDR images. We also analyze specific 

cases to gain more insights into the experimental results. 

 

5.1. Source HDR content 

 

The HDR source content has been taken from the High-

Dynamic-Range (HDR) Photographic Survey [8], a 

comprehensive collection of HDR photographs
1
 (some of 

which are accompanied by detailed colorimetric/luminance 

measurements and visual appearance scaling from the 

original HDR scenes). The images provide a range of 

content and challenges along with the fundamental data 

required to evaluate HDR imaging algorithms. The HDR 

images in this database were generated by multi-exposure 

fusion i.e. fusion of several LDR pictures at different 

exposures. We refer the reader to [8] for further details 

pertaining to this database. We would also like to point out 

that we chose this database primarily due to the fact that it 

includes the necessary data to obtain the approximate 

luminance values. This not only provides more precise scene 

information but also facilitates software implementation in  

 

                                                 
1
 Available: http://www.cis.rit.edu/fairchild/HDR.html 

 

that we can work directly in the physical luminance domain. 

A total of 35 source HDR images were used in our 

experiment and these are shown in Fig. 1. Note that these are 

tone mapped (using a local tone mapping operator) versions 

of the actual HDR content. The goal of the experiments was 

to separate these 35 (N = 35) images into two clusters, 

thereby identifying the more challenging ones for validating 

TMO based HDR processing algorithms.  

 

5.2. Test Results 

 

For the results reported in this paper, we set k = 10 i.e. 10 

contrast reduced versions of each of the source HDR images 

were generated. This resulted in a total of 350 images to be 

employed for the said task. Following the procedure 

described in Section 3, we obtained the difference matrix M  

and applied the FCM algorithm.  

        The resulting cluster diagram is shown in Fig. 2 (a) 

where one can clearly notice two distinct clusters as well as 

the overlapping regions between the two. One can also see 

that there are three data points lying very close to the cluster 

boundaries (or in the overlapping regions). Note that the 

cluster diagram shown in Fig. 2 (a) can be obtained by 

plotting the corresponding data points with highest and 

second highest KLD values representing the x and y axes 

values respectively. Cluster 1 (with greater KLD values on 

both x and y axes) represents content with bigger KLD 

values and will therefore be relatively more challenging as 

compared to Cluster 2. Equivalently, the cluster diagram can 

be interpreted based on membership function values i.e. 

setting a threshold value of 0.5=T  for the membership 

function values 
zyu . Such thresholding operation essentially 

implies hard classification i.e. data points with membership 

function values 
zyu below T  fall into one cluster and the 

remaining points comprise the second cluster.  

Cluster 2 

Cluster 1 
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        The corresponding source HDR images (more 

accurately their tone mapped versions) in the two clusters 

are shown in Fig. 1. It is worth pointing out again that the 

two clusters are formed due to hard classification. As a 

result, some of the images (eg. img 21) which appear to be 

relatively more contrasted than other images within the 

cluster have been assigned to Cluster 2. However, the reader 

will recall that there is a probabilistic membership value 

available for each image in that 10 ≤≤ zyu . Specifically for 

img 21, we obtained 0.4236=zyu  (which is closer to 0.5) 

and a classification based on lower threshold (eg. 0.4=T ) 

would categorize this image to Cluster 1. Therefore, 

depending on the desired number of source HDR content, 

more images can be chosen from the second cluster based on 

higher 
zyu  (or equivalently lowering T ). Thus, our proposed 

method represents a systematic and scalable objective 

approach to HDR source content selection.  

 

5.3. Further Analysis 

 

Pertaining to the results obtained based on the cluster 

diagram in Fig. 2 (a), it will be interesting to specifically 

analyze data points at extreme ends of the two clusters.  We 

selected image corresponding to farthest data point in 

Cluster 1 (img14) as an example. As already discussed in 

Section 3, this HDR image has wide ranging luminance 

levels pertaining to different scene details (region 1 is the 

brightest while the region 3 around tree trunk has the lowest 

luminance). Similarly, we can select img15 which 

corresponds to one of the farthest data point in Cluster 2. 

For this image, the measurement values proportional to the 

physical luminance for few areas are shown in Fig. 2 (b) 

from which we can see that flowers (region 1) and sky 

(region 2) have similar luminance. Also notice that flowers 

and sky cover a large part of this image making it relatively 

uniform (lesser contrast). Thus, as indicated by the proposed 

method, these two images are different from each other in 

terms of contrast richness. Several other images in Cluster 2 

also share such attributes (eg. img29 is mostly dazzlingly 

bright or img33 is misty leading to lesser contrast). Due to 

space limitations, we have shown small thumbnails of the 

images in this paper but we encourage the reader to refer to 

the database website for full resolution pictures. 

 

5.4. Comparison with pixel based dynamic range 

 

Pixel based dynamic range (or orders of magnitude) can be 

considered the simplest indicator of contrast in HDR 

content. It is defined as logarithm of the ratio of maximum 

to minimum luminance level. One problem is that by 

definition it depends only on the single brightest and darkest 

luminance values. Consequently, even if one pixel (or a very 

small region) has very small value, the orders of magnitude 

can assume high values. Also, in the limiting case, with a 

luminance value close to zero the orders of magnitude will 

tend to infinity thereby making comparisons difficult. 

Another issue with orders of magnitude based indicator is its 

susceptibility to noise which can severely increase or 

decrease the values. On the other hand, the proposed 

approach takes into account the objective perceptual error in 

the entire image (based on context) in order to compute the 

separation (i.e. distance) between given HDR content. To 

compare the proposed method and the orders of magnitude, 

we first obtained the orders of magnitude for the 35 source 

HDR images. Since the hard classification in our approach 

categorized 14 (out of the 35) images in Cluster 1 (refer to 

Fig. 1), we selected the first 14 images corresponding to the 

higher orders of magnitude. We found that three of them had 

orders of magnitude as infinity (img5, img7 and img28). 

Further, only 6 images were in common with the proposed 

method. Thus, the orders of magnitude based indicator left 

out several content that were more challenging. An example 

was that of img10 and we have shown three tone mapped 

LDR versions of this image for comparison in the first row 

of Fig. 3. It can be seen that the three images appear 

different and preserve details very differently. For eg. in the 

first image (Fig. 3 (a)), only the mountain peak in the 

background is visible while the contrast in the foreground is 

lost (under exposed). In the second image (Fig. 3 (b)), while 

there is better contrast in the foreground, the details on the 

mountain peak are lost (i.e. over exposed in the 

background). Finally, the third image (Fig. 3 (c)) tends to 

have a better balance in terms of preserving details in 

foreground and background. In this example, we are not 

directly concerned with which tone mapping algorithm is 

better, rather to demonstrate that such source HDR content 

provides better differentiation between tone mapping 

algorithms. The counter example is that of img27 and the 

three tone mapped versions are shown in the second row of 

Fig. 3. We note that for this content, all the three tone 

mapping algorithms can retain similar contrast in all regions. 

Thus, selecting content such as img27 might lead to the 

conclusion that different tone mapping algorithms preserve 

similar amount of details. In contrast to this, selecting 

content such as img10 (which was not selected based on 

orders of magnitude indicator) will bring out clearer 

distinction on the merits and demerits of tone mapping 

algorithms. Such effects can occur in any TMO based HDR 

processing algorithm and therefore highlights the importance 

of selecting challenging source content as it can have 

significant impact on the eventual conclusions drawn. 

 

6. PERSPECTIVES AND CONCLUDING REMARKS 

 

Appropriate source content selection is a key step in 

validation studies and HDR imaging is no exception. As 

discussed and highlighted in the paper, the choice of source  
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Fig. 3. LDR versions of two source HDR images. Top row: Source HDR img10, Bottom row: Source HDR img27. Figure 

best viewed in color.  

 

HDR content can have an impact on the results and analysis 

of the validation study. Thus, the aim of this paper was not 

only to raise awareness about this issue but also present an 

automated method to that end. Our approach is based on 

visibility of perceptual error. A clustering based analysis was 

then carried out using the distance between the perceptual 

error maps. The proposed method was applied to a publicly 

available set of HDR content and the related analysis was 

presented. Being an objective method, it can be easily 

implemented in software to aid the process of source HDR 

content selection. The proposed method also benefits from 

the flexibility of fuzzy clustering thereby enabling its 

scalability. 

        While we demonstrated that our approach is reasonably 

effective, it is not without its limitations. First, being an 

objective approach it relies on the accuracy in the 

computation of perceptual error maps and also the 

effectiveness of the distance measure. Indeed, some of the 

source HDR content (eg. img20 and img28) categorized into 

Cluster 2 might be closer to content in Cluster 1. Second, in 

the current form, our approach does not include the impact 

of temporal contrast sensitivity and thus not very suitable for 

HDR video signal. Having mentioned that, frame-by-frame 

analysis of the source HDR video is still possible and could 

still provide valuable clues into the suitability of the HDR 

video content.                                                                                                     

        Finally, we would like to stress that our approach is 

not meant to entirely replace subjective opinion. Rather it 

can serve as the first step by conveniently implementing and 

executing on a software platform allowing the flexibility to 

test a very large pool of potential source HDR content, 

which would otherwise not be feasible 

manually/subjectively.  The results of clustering can then be 

analyzed based on pilot subjective study for instance.  
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