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We study (n + 1)-dimensional Riemannian manifolds with harmonic forms of constant length and first Betti number equal to n showing that they are 2-steps nilmanifolds with some special metrics. We also characterize, in terms of properties on the product of harmonic forms, the left-invariant metrics among them. This allows us to clarify the case of equality in the stable isosytolic inequalities in that setting. We also discuss other values of the Betti number.

Introduction

Let (M n , g) be a compact oriented Riemannian manifold. Recently, the length of harmonic forms appeared to play a singular part in different geometric problems.

For example, in dimension 4, recent work of C. Lebrun [START_REF] Lebrun | Hyperbolic Manifolds, Harmonic Forms, and Seiberg-Witten Invariants[END_REF] shows a strong interplay between the length of harmonic self-dual 2-forms of the manifold and the non-vanishing of Seiberg-Witten invariants, in particular the existence of a symplectic structure.

Another setting where the length of harmonic forms naturally arises are the geometrically formal Riemannian manifolds. These are closed oriented Riemannian manifolds such that the product of two harmonic forms is still harmonic. They have the property that all harmonic forms have constant pointwise norm (see [START_REF] Kotschick | On products of harmonic forms[END_REF]). In particular their first Betti number cannot be one less than the dimension and if it equals the dimension then it is a flat torus.

The main goal of this note is to investigate, under some simple topological conditions, Riemannian metrics on compact oriented manifolds having the property that the length of any harmonic 1-form is (pointwise) constant. Our first result gives a precise metric and topological description of closed, oriented Riemannian manifolds all of whose harmonic 1-forms are of constant length, in the case when the first Betti number is one less than the dimension.

Theorem 1. The compact oriented Riemannian manifolds (M n+1 , g) with b 1 (M ) = n and all their harmonic 1-forms of constant length are in 1-to-one correspondence with triples (h, ω, c) where :

(1) h is a flat metric on an n-torus T n ;

(2) c is a positive real constant;

(3) ω is a closed 2-form representing a non-zero integral class in the deRham cohomology group H 2 DR (T ). In fact, these metrics are explicitely given by a simple geometrical construction: given a triple (h, c, ω) as in theorem 1, one uses Chern-Weil theory to get a principal S 1 -bundle S 1 → N n+1 π → T equipped with a principal connexion form θ and whose curvature form is Ω = 2πω. Theorem 1 says then that (M, g) is isometric with (N, g θ ), where the bundle-like metric g θ is given by :

g θ = π h + c 2 θ ⊗ θ.
A more detailed discussion of this family of metrics, which we call in what follows minimal bundle-like metrics will be given in section 3. Note that, when M is fixed, the moduli space of metrics g satisfying the assumptions of the theorem 1 is infinite dimensional, a fact significant in subsequent application. It is also worth mentioning that the manifolds N are in fact 2-step nilmanifolds with 1-dimensional center.

The relatively simple observation in theorem 1 has a number of direct interesting implications, in at least two differently arising contexts, that we list below.

1.1 -The macroscopic spectrum of a nilmanifold, is given by the asymptotic behaviour of the eigenvalues of Laplace-Beltrami operator acting on the function on the metric balls of the universal covering of a nilmanifold, as the radius of the balls goes to infinity. In [START_REF] Vernicos | The Macroscopic Spectrum of Nilmanifolds with an Emphasis on the Heisenberg groups[END_REF] the second author showed that the first eigenvalue of this macroscopic spectrum satisfies an inequality, whose equality case is attained by the nilmanifolds having all harmonic 1-forms of constant norm. This shows that the nilmanifolds with left-invariant metrics are not the only one satisfying the equality case, as in the torus case. Hence theorem 1 gives the following corollary in that setting :

Corollary 2. Let (M n+1 , g) be a nilpotent Riemannian manifold, with first Betti number b 1 = n. Let B g (ρ) be the ball of radius ρ induced by the lifted metrics on the universal covering of M n+1 . Let λ 1 B g (ρ) be the first eigenvalue of the laplacian acting on functions over B g (ρ) for the Dirichlet problem. Then there are some functions λ ∞ 1 (g) and λ al 1 (g) such that lim

ρ→∞ ρ 2 λ 1 B g (ρ) = λ ∞ 1 (g) ≤ λ al 1 (g)
with equality if and only if M n+1 is a 2-step nilmanifold with one dimensional center and g a minimal bundle-like metric.

1.2 -Another application of theorem 1 is related to the borderline case of isosystolic stable inequalities, studied recently by V. Bangert and M. Katz in [START_REF] Bangert | Stable systolic inequalities and cohomology products[END_REF] (see also references therein), which give lower bounds on the volume of compact orientable manifolds in terms of some short closed geodesics (systols). More precisely, it is proven that for any closed oriented manifold (X n+1 , g) with b 1 (X) > 0, the following holds :

stsys 1 (g)sys n (g) ≤ γ b1(X) vol g (X) (1)
where stsys 1 (g) is the stable 1-systol of the metric g, sys n (g) denotes the infimum of the n-volumes of all nonseparating hypersurfaces in X n+1 and γ b1(X) is the Bergé-Martinet constant. If equality is attained then all harmonic one-forms are of constant length [START_REF]Riemannian Manifolds with Harmonic one-forms of constant norm[END_REF]. Hence theorem 1 together with the precise description (cf. [START_REF]Riemannian Manifolds with Harmonic one-forms of constant norm[END_REF]) of the Albanese torus of such a metric yields Corollary 3. Let (X n+1 , g) be a compact, oriented, (n + 1)-dimensional Riemannian manifold with first Betti number b 1 (X) = n. Then equality occurs in (1) if and only if X n+1 is a 2-step nilmanifold, g is a minimal bundle-like metric with base torus of the form R n /L where L is a dual critical lattice in R n .

Hence in the three dimensional case, equality is only satisfied by the three dimensional Heisenberg group endowed with a metric such that there is a Riemannian submersion onto an equilateral torus.

We are also able to characterize, in term of product of harmonic forms (lead by the geometrically formal background), the left-invariant metrics among the minimal bundle-like metrics, in the case of the Betti number being one less than the dimension (see theorem 10 to 12).

These last results might be compared with the work in [ACGR], where it is showed that an n-dimensional oriented manifold M having n-1 small (compared to the diameter) eigenvalues (for the laplacian acting on one-forms) is diffeomorphic to a nilmanifold with a metric close to a left-invariant one. In their paper the authors needed strong assumptions on the curvature. In this note, instead of a control of the curvature, we have a control of the length of harmonic forms. We would like to stress that this seems to be a hidden assumption on the curvature.

2. Implication of the existence of harmonic forms of constant length.

2.1. The Albanese map. Let (M n , g) be a compact oriented Riemannian manifold having all of its harmonic one forms of constant length.

We stress that we do not consider the case where there are harmonic forms of constant length, but the case when all harmonic forms are supposed to be of constant length. This implies for example that the pointwise scalar product of two harmonic forms is constant, which is not the case with just the existence assumption as the following example shows (which happens to answers question 7 of section 10 in [START_REF]Riemannian Manifolds with Harmonic one-forms of constant norm[END_REF]):

Example 4. Let (M n , g) be Riemannian manifold, T 2 a torus, and consider N n+2 = M n × T 2 endowed with the Riemannian metric h = g ⊕ s where s is defined as follows. If f : M → R is a smooth function such that f 2 < 1 we define s on T 2 by setting s(dx, dx) = 1 = s(dy, dy) and s(dx, dy) = f . We claim that (the closed) 1-forms α 1 = dx and α 2 = dy are also co-closed thus harmonic, but by construction, their scalar product is not constant.

Proof. Let us take (e i ) 1≤i≤n+2 a local orthonormal basis of N n+2 , with (e k ) 1≤k≤n spanning T M , and e n+1 , e n+2 spanning T T 2 . Consider also (X i ) i=1,2 the dual vector field with respect to h of (α i ) i=1,2 . Then remark that

X i = x 1 i ∂ ∂x + x 2 i ∂ ∂y and e k = E 1 k ∂ ∂x + E 2 k ∂ ∂y where (x j i ) i,j=1,2 and (E i k ) are functions from M to R. Now write -d * α i = 1≤k≤n+2 h(∇ e k X i , e k )
As the Levi-Civita connection is torsion free, we remark that for i = 1, 2 and

1 ≤ k ≤ n + 2 h(∇ e k X i , e k ) = h(∇ Xi e k , e k ) + h([X i , e k ], e k ).
However for i = 1, 2 and 1

≤ k ≤ n + 2 h(∇ Xi e k , e k ) = 1 2 X i • h(e k , e k ) = 0 and noticing that for 1 ≤ k ≤ n, [ ∂ ∂x , e k ] = [ ∂ ∂y , e k ] = 0 we obtain [X i , e k ] = [x 1 i ∂ ∂x + x 2 i ∂ ∂y , e k ] = -(e k • x 1 i ) ∂ ∂x -(e k • x 2 i ) ∂
∂y and as ∂ ∂x and ∂ ∂y are in T T 2 we get that for all 1

≤ k ≤ n and i = 1, 2, h(∇ e k X i , e k ) = 0 Now for k = n + 1, n + 2 we have [X i , e k ] = [x 1 i ∂ ∂x + x 2 i ∂ ∂y , E 1 k ∂ ∂x + E 2 k ∂ ∂y ]
however, for any function f define on M , T T 2 ∈ ker df and noticing that [ ∂ ∂x , ∂ ∂y ] = 0 we finally get that α i is indeed harmonic.

Let b 1 be the first Betti number of our manifold M . Using an integral basis of harmonic 1-forms we can define, by integration, the Albanese (or Jacobi) map π; this gives a map onto a torus T b1 , on which we put the usual flat metric. In our case, as all harmonic 1-forms are of constant length wa are allowed to choose this basis to be (pointwisely) orthonormal therefore π is a Riemannian submersion, besides we must have b 1 ≤ n. Moreover Albanese's map being harmonic (see A. Lichnerowicz [START_REF] Lichnerowicz | Application harmoniques dans un tore[END_REF], it is also a harmonic morphism in the sense of [START_REF] Baird | A conservation law for harmonic maps[END_REF]), the fibers are minimal (see J.Eells and J.M. Sampson [START_REF] Eels | Harmonic mappings of Riemannian Manifolds[END_REF] and 9.34 of [START_REF] Besse | Einstein Manifolds[END_REF] 

page 243).

A theorem of R. Hermann (see theorem 9.3 in [START_REF] Besse | Einstein Manifolds[END_REF] page 235) states that a Riemannian submersion whose total space is complete is a locally trivial fibre bundle. We sum all this up in the following proposition.

Proposition 5. Let (M n , g) be a compact Riemannian manifold and b 1 be its first Betti number. Then all harmonic 1-forms are of constant length if and only if (M n , g) is a locally trivial fiber bundle, with minimal fibers, over a b

1 -dimensional flat torus, b 1 ≤ n F n-b1 → M n π -→ T b1
Moreover if b 1 = n then π is a Riemannian isometry, hence (M n , g) is a flat torus.

Now let us look at some other consequences of the existence of harmonic forms of constant length. Thanks to the Albanese map we can lift the harmonic forms of the Albanese torus on the manifold. Let us call α 1 , . . . , α b1 an orthonormal family of lifted harmonic forms. Using the duality through the metric we can associates to these harmonic forms b 1 vector fields X 1 , . . . , X b1 . These vector fields define a sub-bundle H, which we will call the Horizontal, such that for all x ∈ M , H x is generated by X 1 (x), . . . , X b1 (x).

If we let V be the orthogonal complement of H with respect to the metric, which we will refer to as the Vertical, then we have the following Proposition 6. Let (M n , g) be a compact Riemannian manifold and b 1 be its first Betti number. If all harmonic 1-forms are of constant length, then there is a distribution H given by an orthonormal frame of vector fields X 1 , . . . , X b1 dual to an orthonormal frame of harmonic 1-forms, such that the tangent bundle splits orthogonaly as follows :

T M = V ⊕ H.
Moreover the distribution V is integrable, and for any

1 ≤ i, j ≤ b 1 and U ∈ V, [X i , X j ] ∈ V and [X i , U ] ∈ V.
Proof. This comes from the fact that the forms (α i ) 1≤i≤b1 are closed. Indeed for any closed 1-form α we have the following equality for any X, Y in T M :

α([X, Y ]) = X.α(Y ) -Y.α(X)
thus for any i, j and k we have :

α i ([X j , X k ]) = X j .α i (X k ) -X k .α i (X j ) = X j • δ ik -X k .δ ij = 0 hence [X j , X k ] is orthogonal to any X i .
If U and V are vertical vector fields, then it is easily seen that for any 1

≤ i ≤ b 1 α i ([X j , U ]) = 0, and α i ([U, V ]) = 0.
2.2. An useful decomposition. Let (M n , g) be a compact Riemannian manifold with a unit vector field Z. Let V be the distribution generated by Z (which is sometimes called the Vertical distribution) and H its orthogonal complement with respect to g (wich we will call Horizontal). Then the tangent bundle splits as follows

T M = V ⊕ H. If i Z (•) = Z •,
is the interior product by Z then we can define the space of horizontal p-forms as follows :

Λ p (H) = Λ p (M ) ∩ ker(i Z ).
Let us introduce the 1-form ϑ = Z dual to Z with respect to g. Then it is an easy exercise to see that we have the following decomposition of p-forms :

Λ p (M ) = Λ p (H) ⊕ Λ p-1 (H) ∧ ϑ . (2) 
Notice that following this decomposition we have

dϑ = b + η ∧ ϑ
where b is a horizontal 2-form called the curvature of the horizontal distribution H and η is the horizontal one form associated to the horizontal vector field -∇ Z Z with respect to g, a fact the reader may easily verify.

Let us introduce the horizontal exterior differential d H , which associates to an horizontal differential form the horizontal part of its exterior differential. We also introduce the multiplication operators

L : Λ q (H) → Λ q+2 (H), L := • ∧ b S : Λ q (H) → Λ q+1 (H), S := η ∧ •
Thanks to the decomposition (2), each p-form may be identified to a couple (α, β) ∈ Λ p (H) × Λ p-1 (H) of horizontal forms. Thus we can see the exterior differential d acting on p-forms as an operator from Λ p (H) × Λ p-1 (H) to Λ p+1 (H) × Λ p+2 (H). Then, we have the following proposition, where L Z is the Lie derivative in the direction of Z, and where for any differential operator D, D * is its formal adjoint with respect to g.

Proposition 7 ([Nag01]

). With respect to the decomposition (2) we have for the exterior differential acting on p-forms :

d = d H (-1) p-1 L (-1) p L Z d H + S
and for the codifferential :

d * = d * H (-1) p-1 L * Z (-1) p L * d * H + S *

The case of the first Betti number being one less than the dimension

The aim of this section is to describe the (n+1)-dimensional orientable manifolds having all of their harmonic one-forms of constant length, and with first Betti number equal to n. All manifolds considered here are of dimension greater or equal to 3 because in dimension 1 and 2 we have only the circle S 1 and the torus T 2 which admit forms of constant length.

We will give now a more detailed discussion of the bundle-like metrics appearing in the statement of theorem 1. Start with an n-dimensional compact torus T n , that is a compact quotient of the form R n /L where L ⊆ R n is a co-compact lattice. Given a closed 2-form ω on T n representing an integral cohomology class in H 2 DR (T ) one constructs a principal S 1 bundle S 1 → N π → T n whose first Chern class equals [ω]. At this stage we know that the manifold N has the structure of a 2-nilmanifold with 1-dimensional center (see [START_REF] Palais | Torus bundles over a torus[END_REF]). Now the manifold N has a particular class of Riemannian metrics, that can be constructed as follows. Pick a flat Riemannian metric h on T n , a principal connection 1-form ϑ on N and a positive smooth function f on T n . On N we consider the Riemannian metric :

g = π h + f • π • ϑ ⊗ ϑ.
These metrics are all S 1 -invariant, and, in fact the metrics g already constructed exhaust the class of S 1 -invariant metrics on N such that π is a Riemannian submersion to (T n , h). Various properties of the metrics g can be read on the set (h, f, ω) of defining data. For example g is a left-invariant metric if and only if f is constant and ω is harmonic (with respect to h). Definition 8. Let S 1 → N n+1 → T n be a 2-step nilmanifold whose center is one dimensional. A minimal bundle-like metric on N is any Riemannian metric on N arising from the previously explained construction, with defining data (h, f, ω) such that f is a positive constant.

Thanks to this definition we can prove our characterization, which is recalled below.

Theorem 9. Let (N n+1 , g) be a compact orientable connected manifold such that all of its harmonic 1-forms are of constant length, and such that b 1 (N n+1 ) = n, then N n+1 is a 2-step nilmanifold whose kernel is one dimensional and g is a minimal bundle-like metric.

Proof. We deduce from proposition 1 that we have the following fibration, with minimal fibers :

S 1 → N n+1 π -→ T n where π is the Albanese map.

We begin by taking a basis (a 1 , . . . , a n ) of harmonic forms over the Albanese torus and lift it to a basis of harmonic 1-forms (α 1 , . . . , α n ) over N n+1 . Let X 1 , . . . , X n be their dual vector fields with respect to the metric, they span, by definition, H. Now take Z the dual vector field to the 1-form Z = * (α 1 ∧ • • • ∧ α n ) ( * is the Hodge operator, thus this form is co-closed), its length is constant by construction, and can be assumed to be 1 without loss of generality. Furthermore Z belongs to and spans V.

Thanks to Proposition 6, for any i, j

[Z, X i ], [X i , X j ] ∈ V (3)
Let us deduce some important facts from (3): Firstly, using the constant lentgh assumption we obtain the following sequence of equalities :

g(∇ Xi X j , Z) = -g(X j , ∇ Xi Z) = -g(X j , ∇ Z X i ) = g(X i , ∇ Z X j ) by (3) = g(X i , ∇ Xj Z) = -g(∇ Xj X i , Z)
which implies that g([X i , X j ], Z) = 2g(∇ Xi X j , Z) if we take X k instead of Z we would obtain in the same way, for any 1

≤ k ≤ n 0 = g([X i , X j ], X k ) = 2g(∇ Xi X j , X k )
Hence for any 1 ≤ i, j ≤ n we finally get that.

[X i , X j ] = 2∇ Xi X j ∈ V (4)
Secondly, remark that for any co-closed one form α we have k

∇ X k α X k + ∇ Z α Z = 0 (5)
Taking for α each of the α i in turn, since [X i , X j ] = 2∇ Xi X j ∈ V, we deduce from equality 5 that for i = 1, . . . , n g(∇ Z X i , Z) = 0 however as the Levi-Civita is torsion free, for i = 1, . . . , n

-g(X i , ∇ Z Z) = g(∇ Z X i , Z) = g(∇ Xi Z, Z) + g([Z, X i ], Z) = g([Z, X i ], Z) but [Z, X i ] ∈ V hence for any i = 1, . . . , n [X i , Z] = 0 (6)
and ∇ Z Z ∈ V, but Z being of constant norm we conclude that

∇ Z Z = 0 (7)
Now from (7), ( 4) and (6) we easily get that Z is a Killing vector field.

Hence, from (3) we have the existence of functions

f ij on N such that [X i , X j ] = f ij Z. (8)
However we would like to have some structural constants instead of the functions f ij . Using that Z is a Killing vector field we obtain for any

X, Y ∈ T N dZ (X, Y ) = 2g(∇ X Z, Y ) . (9)
Thus, if we decompose dZ in the basis given by α i ∧ α j and Z ∧ α i for all i, j then, thanks to (7) and ( 9), we get that

dZ = i<j f ij α i ∧ α j . ( 10 
)
In other words dZ is horizontal and as it can be easily verified that L V (dZ ) = O for any V ∈ V it is projectable, i.e., there exists a unique 2-form β on the Albanese torus such that dZ = π * β. Remark that dβ = 0, thus β = β 0 +dα by the Hodge-de Rham theorem, with α ∈ Λ 1 (T b1 ) and β 0 harmonic. Hence if ζ 0 = Z -π * α, then dζ 0 = π * β 0 . But now β 0 = ij c ij a i ∧ a j where the c ij are constants. This implies that

dζ 0 = ij c ij α i ∧ α j (11)
We are now taking as a basis of vector fields the dual base (X 0 1 , . . . , X 0 n-1 , Z 0 ) of the base (α 1 , . . . , α n-1 , ζ 0 ) (i.e. α i (X 0 j ) = δ ij , ker ζ 0 = X 0 1 , . . . , X 0 n-1 and ζ 0 (Z 0 ) = 1) then we have from (11) :

[X 0 i , Z 0 ] = 0 [X 0 i , X 0 j ] = c ij • Z 0 .
Thus we can built an homomorphism I A between the Lie algebra a defined by A i , . . . , A n , A n+1 and with brackets

[A i , A j ] = c ij A n+1
all the other brackets being equal to zero, by taking

I A (A i ) = X 0 i for i = 1, . . .

, n and I

A (A n+1 ) = Z 0 .
Now if A is the simply connected Lie group associated to a, thanks to the compactness of N n+1 we can integrate the homomorphisme I A to obtain an action of A on N n+1 (see Corollary 3 and 4 of theorem 2.9 page 113 in [START_REF]Lie groups and Lie algebras I[END_REF]). Since each orbit is open and N n+1 is connected, this action is transitive. From this we deduce (see F.W. Warner [START_REF] Warner | Foundations of Differentiable Manifolds and Lie groups[END_REF] theorem 3.62) that N n+1 is a Lie group. And thanks to the constant of structures (c ij ) we deduce that it is a two step nilpotent Lie group (see M. Spivak [START_REF] Spivak | A comprehensive Introduction to Differential Geometry[END_REF] volume I theorem 17 in chapter 10 for example) and we inherit from I A that ζ 0 is a principal connection 1-form. Concerning g, it is minimal bundle-like by the above discussion.

It is worth noticing that if the manifold is not orientable this is no more true. Indeed counterexamples can be obtained by taking the product of a Klein bottle with a flat torus. A natural question arising is whether one can characterize the left invariant metrics among the minimal bundle-like metrics, in term of properties of harmonic forms. We first look at the 3-dimensional case.

Theorem 10. Let (N 3 , g) be a compact orientable connected manifold such that all harmonic 1-forms are of constant length, b 1 (N 3 ) = 2, and such that the wedge product of two harmonic 1-forms is an eigenform of the laplacian, then (N 3 , g) is a compact quotient of the 3-dimensional Heisenberg group and g is a left-invariant metric.

Proof. From the added assumption we get that Z of the previous proof is an eigenform of the laplacian. That is to say that there is some constant λ such that ∆Z = λZ However, using the useful decomposition, knowing that Z is coclosed and dZ b = b = π * (β) (following the decomposition 2, b corresponds to (b, 0) and Z corresponds to (0, 1) ) we must also have that

∆Z = d * dZ b = d * b = (L * b)Z = (L * L • 1)Z = |β| 2 Z
which means that β is of constant length. But β is a 2-form on a 2-dimensional Torus, which also means that β is proportional to the volume form, in other words the function (which is unique in that case) in the equality (10) is a constant. Remark that this also tells us that the eigenvalue is λ = |β| 2 = f 2 12 . Now for the higher dimensional case.

Theorem 11. For n > 2, let (N n+1 , g) be a compact orientable connected manifold such that all harmonic 1-forms are of constant length, b 1 (N n+1 ) = n and the wedge product of any n -1 harmonic 1-forms is an eigenform of the Laplacian, then (N n+1 , g) is a 2-step nilmanifold whose center is one dimensional and g is a left invariant metric.

Proof. We use the same notations as in the proof of theorem 9. From the new assumption we get thanks to the star Hodge operator that for any harmonic 1-form α, α ∧ Z is a co-closed eigenform. Using the decomposition 2 we associate to α ∧ Z the pair (0, α). As α ∧ Z is coclosed ∆(α ∧ Z ) = d * d(α ∧ Z ). Let us use proposition 7 without forgetting that α is harmonic, and noticing that as dZ is horizontal by the proof of theorem 9, S = 0

d(α ∧ Z ) ≡ d H -L L Z d H 0 α = -Lα d H α = -L(α) 0 and d * d(α ∧ Z ) ≡ d * H L * Z -L * d * H -L(α) 0 = d * H -L(α) L * L(α)
but the last term is also equal to (0, λα) by the eigenform assumption, hence d * H (α ∧ dZ ) = 0 But α and dZ are horizontal and projectable, thus in fact there is a 1-form a and a 2-form β on the torus such that α = π * a, dZ = π * β and we can write

0 = d * H (α ∧ dZ ) = π * d * (a ∧ β) .
In other words, for any 1-harmonic form a on the torus we have

d (a ∧ β) = 0. ( 12 
)
Hence we are lead to work on the torus.

Let us take an orthonormal base (e i ) of parallel vector fields over the torus, then for any form ω

-d ω = i e i ∇ ei ω
We want to apply that last equality to a ∧ β. First notice that (a is parallel)

∇ ei (a ∧ β) = a ∧ ∇ ei β.
Contracting by e i one obtains

e i ∇ ei (a ∧ β) = a(e i )∇ ei β -α ∧ (e i ∇ ei β)
Sum over i and use the coclosed condition (i.e. ( 12)) and you get

∇ a # β + a ∧ d β = 0. ( 13 
)
Now we take the interior product with e i of (13), with a = e i which gives

e i ∇ ei β + e i (e i ∧ d β) = e i ∇ ei β + d β -d β(e i )e i = 0
we sum over i one more time (n -2)d * β = 0 and by assumption n > 2 thus d * β = 0, that is to say that β is harmonic over the torus. Hence it follows that β is parallel and all the functions f ij of (10) are constants, which allows us to conclude.

The Heisenberg groups being a model space of contact geometry, it is a natural setting to study under our assumptions. In the contact case we obtain Theorem 12. Let (N 2m+1 , ω, g ω ) be a compact contact manifold with a contact form ω and an adapted Riemannian metric g ω such that all harmonic 1-forms are of constant length, then (N 2m+1 , g) is a compact quotient of an Heisenberg group and g is a left invariant metric.

Proof. From theorem 1 we get that N 2m+1 is a two step nilmanifold and g ω is pseudo left-invariant. We also get that g ω = ϑ 2 + π * (h) where ϑ is a one form, such that dϑ = π * (β) for some closed 2-form β over the Albanese torus. Now theorem 3.2 and theorem 3.4 of H.P. Pak and T. Takahashi in [START_REF] Pak | Harmonic forms in a compact contact manifold[END_REF] implies that for all harmonic 1-forms α, if T is the Reeb vector field attached to ω, T α = α(T ) = 0 wich means that T = f Z for some function f , and as T and Z are of constant unit length for the metric g ω it means that ω = ϑ. Now, thanks to theorem 1 we know that T = Z is a Killing field. This implies that the almost complex structure J on ker ω lives on the flat torus given by the Albanese submersion. Hence we are in front of an almost-Kähler flat torus, but following [START_REF] Olszak | A note on almost Kähler manifolds[END_REF] and [START_REF] Armstrong | An ansatz for Almost-Kähler, Einstein 4-manifolds[END_REF] it has to be Kähler, thus β is parallel.

Some remarks on the general case

The aim of this section is to point out the main differences between the case b 1 = n -1 and b 1 ≤ n -2 for n dimensional manifolds admitting one-harmonic forms of constant length. We want to give some hint on the failure of our approach.

Our first remark is that one should restrict oneself to the study of locally irreducible orientable Riemannian manifolds to avoid the following cases : the direct product of a sphere of dimension p > 1 and a flat torus of dimension n -p, gives a manifold whose first Betti number is n -p, whose dimension is n and with n -p harmonic 1-forms of constant length.

The second remark is in the following lemma, which shows the limitation of our method. Indeed to apply the same ideas one needs far stronger assumptions.

Lemma 13. Let (N n , g) be a compact locally irreducible manifold such that all harmonic 1-forms are of constant length, b 1 (N n ) = n -p and possessing a pointwise orthonormal base (ϑ i ) of the orthogonal complement of the harmonic 1-forms. Moreover assume that (dϑ i ) are lifts of closed 2-forms on the Albanese torus. Then (N n , g) is a two step nilpotent nilmanifolds whose kernel is n -p dimensional.

Proof. T M = V + H where H is spanned by X 1 , . . . , X n-p the dual vector fields to α 1 , . . . , α n-p , which are lifts of harmonic 1-forms on the Albanese torus, and V is the orthogonal complement. We associate, thanks to the metric, the dual vector fields (Z k ) to the 1-forms (ϑ k ). As the α i are closed we get that for 1 ≤ i, j ≤ n -p, [X i , X j ] ∈ V. and our assumptions imply that

dϑ k ∈ Λ 2 H
where Λ 2 H = Λ 2 M ∩ k ker i Z k and that

dϑ k = π (β k )
where β k is a 2-form on Albanese's torus. However, dβ k = 0, hence for some harmonic 2-form β 0 k and some 1-form a k over the Albanese torus we have β k = β 0 k + da k Notice, that β 0 k is non zero otherwise ϑ k would be horizontal, which is not the case by assumption. Hence if we consider the independent forms (as one can easily verify)

θ k = ϑ k -π * (a k ) then dθ k = π * (β 0 k ).
hence we can conclude as in the proof of Theorem 1.

As the last section involved nilmanifold, we could decide to focus on a family of compact manifolds close to them, say solvmanifold. But even that assumption is not enough to clarify the situation, as the next lemma with the following remark point out.

Lemma 14. Let (M n , g) be a solvmanifold all of whose 1-forms are of constant length and whose first Betti number is n -2, then we have the following fibration with minimal fibers :

T 2 → M n π -→ T n-2
Proof. This comes from the fact that the fibration in Proposition 5

F 2 → M n π -→ T n-2
gives a long exact sequence on the homotopy groups :

• • • → π n (F 2 ) → π n (M n ) → π n (T n-2 ) → π n-1 (F 2 ) → π n-1 (M n ) → . . .
Now, T n-2 and M n have only their fundamental group which is not trivial, hence we have the following exact sequence on the fundamental groups 0 → π 1 (F 2 ) → π 1 (M n ) → π 1 (T n-2 ) → 0 and π k (F 2 ) is trivial if k > 1. Which means that π 1 (F 2 ) can be seen as a subgroup of the solvable group π 1 (M n ), hence it is also solvable. Thus the fiber is compact and with solvable fundamental group. However in dimension 2 the only compact oriented manifold with solvable fundamental groups are the sphere and the torus, but here the sphere is excluded because π 2 (S 2 ) = 0.

Without further assumptions we can't expect a more precise results. Indeed the example of the Sol geometry in dimension 3, or of any 2-step nilmanifold with a 2 dimensional center will satisfy Lemma 14 with many different metrics, however built in the same way : following the construction 8.1 in [START_REF]Riemannian Manifolds with Harmonic one-forms of constant norm[END_REF].

As a conclusion, the rigidity of the cases b 1 = n and b 1 = n-1 do not propagates to lower values of the first Betti number Acknowledgment : The authors wish to thank the referee for his helpful comments.
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