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Sur l'entropie volumique des géométries de Hilbert

Introduction et présentation des résultats

Dans son quatrième problème, Hilbert cherche à caractériser les géométries métriques dont les géodésiques sont des lignes droites. C'est guidé par cette question qu'il construisît une famille d'exemples que l'on appel aujourd'hui géométrie de Hilbert [START_REF] Hilbert | Ueber die gerade linie als kürzeste verbindung zweier punkte[END_REF][START_REF]Grundlagen der Geometrie[END_REF]. Ces géométries ont récemment connu un regain d'intérêts, on pourra par exemple consulter Y. Nasu [START_REF] Nasu | On Hilbert geometry[END_REF], P. de la Harpe [dlH93], A. Karlsson & G. Noskov [START_REF] Karlsson | The Hilbert metric and Gromov hyperbolicity[END_REF], E. Socie-Methou [SM02, SM04], T. Foertsch & A. Karlsson [START_REF] Foertsch | Hilbert metrics and Minkowski norms[END_REF], Y. Benoist [START_REF] Benoist | Convexes hyperboliques et fonctions quasisymétriques[END_REF], B. Colbois & C. Vernicos [START_REF] Colbois | Les géométries de Hilbert sont à géométrie locale bornée[END_REF] et les deux articles d'expositions par Y. Benoist [Ben06] et l'auteur [START_REF] Vernicos | Introduction aux géométries de Hilbert[END_REF].

Une géométrie de Hilbert est un espace métrique défini dans l'intérieur d'un convexe compact K. La métrique construite de la manière explicité ci-dessous provient d'une structure Finsler, dont l'ensemble des géodésiques contient les lignes droites : pour toute paire de points distincts p et q dans K, la droite passant par p et q rencontre le bord ∂K de K en deux points distincts a et b tels que la droite passe par a, p, q et b dans cet ordre. On définit alors

d K (p, q) = 1 2 ln[a, p, q, b]
où [a, p, q, b] est le birapport de (a, p, q, b) :

[a, p, q, b] = q -a e p -a e × p -b e q -b e

où . e désigne la norme euclidienne. On pose également d K (p, p) = 0. La définition de la distance de Hilbert ne faisant appel qu'au birapport, ces géométries sont invariantes (à isométrie près) par transformations projectives. En particulier lorsque le convexe est un ellipsoïde, la géométrie de Hilbert est alors isométrique à l'espace hyperbolique classique. Une part importante des travaux récent concernant ces géométries consiste à étudier les différences et liens qu'elles peuvent partager avec la géométrie hyperbolique. Ainsi, si K n'est pas un ellipsoïde, la géométrie n'est pas riemannienne, voir D.C. Kay [Kay67, Corollary 1]. Ce dernier résultat étant dû au fait que parmi les espaces vectoriels de dimension finie, bon nombre de notions de courbures sont satisfaites uniquement par les espaces euclidiens (voir aussi P. Kelly & L. Paige [START_REF] Kelly | Symmetric perpendicularity in Hilbert geometries[END_REF], P. Kelly & E. Strauss [START_REF] Kelly | Curvature in Hilbert geometries[END_REF][START_REF]Curvature in Hilbert geometries[END_REF]). Cependant, si le bord ∂K est suffisamment lisse, la courbure drapeau, qui est un analogue finslerien de la courbure sectionnelle classique, de la géométrie de Hilbert est égale à -1 (voir par exemple Z. Shen [She01, Example 9.2.2]. Il est donc légitime de se demander si ces géométries se comportent comme des variétés riemanniennes de courbure négative. L'exemple de la géométrie du triangle qui est isométrique à un plan vectoriel montre qu'on ne peut espérer un résultat simple (voir P. De la Harpe [dlH93]). Notre travail est partiellement guidé par le sentiment que les géométries de Hilbert peuvent être vues comme des géométries à courbure de Ricci minorée -Une définition rigoureuse de cette notion restant à déterminer.

Contrairement au cas riemannien où une notion de volume canonique est disponible plusieurs choix valables de volume sont possibles sur une variété de Finsler. Nous renvoyons à notre article en collaboration avec G. Berck et A. Bernig [START_REF] Berck | Entropy of Hilbert Geometries[END_REF] pour des précisions concernant cette affirmation, et fixerons par la suite un volume -la mesure de Hausdorff de dimension n étant un choix parfaitement raisonnable.

Sachant que B(o, r) est la boule métrique de rayon r centrée au point o, on définit l'entropie volumique du convexe K à l'aide de la limite suivante, L'entropie ne dépend ni du point o ∈ int K choisit, ni du choix de volume (pourvu que celui-ci soit raisonnable [START_REF] Berck | Entropy of Hilbert Geometries[END_REF]). Si h = EntK alors Vol K B(o, r) est de l'ordre de e hr pour de grandes valeurs de r.

Le volume d'une boule de rayon r dans l'espace hyperbolique de dimension n est bien connu et relativement facile à calculer (c.f. par exemple S. Gallot, D. Hulin & J. Lafontaine [GHL90, Section III.H]), si l'on note ω n le volume de la boule unité de l'espace euclidien de dimension n il vaut

nω n r 0 (sinh s) n-1 ds = O(e (n-1)r ).
On en déduit que l'entropie volumique d'un ellipsoïde vaut n -1.

On ne sait toujours pas si cette limite existe en toute généralité. Cependant si le convexe K est divisible, ce qui signifie qu'un sous-groupe discret du groupe des isometries y agit de manière co-compacte, alors l'entropie volumique est bien définie, cf. Y. Benoist [START_REF] Divisibles | Algebraic groups and arithmetic[END_REF]. Lorsque le bord du convexe est suffisamment lisse, par exemple C 2 à courbure de Gauss strictement positive, l'entropie existe et vaut n -1 (voir ci-dessous le théorème de B. Colbois & P. Verovic). Cependant on peut toujours définir une entropie supérieure Ent et une entropie inférieure Ent en remplaçant dans la définition (0.1) de l'entropie la limite par une respectivement une lim inf et lim sup.

Une conjecture, dont l'origine n'est pas bien définie, affirme que l'espace hyperbolique possède l'entropie volumique maximale parmi les géométries de Hilbert de même dimension.

Conjecture. Quelle que soit la Géométrie de Hilbert K de dimension n,

EntK n -1.

On remarquera, que pour une variété riemannienne à courbure de Ricci minorée par -(n-1), une telle inégalité résulte du théorème de comparaison des volumes dû à Bishop (voir [GHL90, theorem 3.101, i)]).

Plusieurs cas particuliers de cette conjecture ont été traités dans le passé. Le premier résultat que nous citons montre que l'entropie volumique ne permet pas de caractériser la géométrie hyperbolique parmi les géométries de Hilbert.

Théorème. (B. Colbois & P. Verovic [CV04])

Si K est C 2 à courbure de Gauss strictement positive alors la géométrie de Hilbert de K est bi-lipschitz à la géométrie hyperbolique, et par conséquent 

EntK = n -1.
Si K est C 1,1 , alors (0.3) lim r→∞ Vol K B(o, r) sinh n-1 r = 1 n -1 CP(K).
De plus, CP(K) = 0 en sorte que EntK = n -1.
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En dimension deux l'hypothèse de régularité C 1,1 n'est pas nécessaire puisque l'on arrive à borner l'entropie en fonction de la dimension de Minkowski de l'ensemble des points extrémaux ex K du convexe K. Rappelons qu'un point extrémal d'un convexe K est un point qui ne peut pas s'écrire sous la forme Soit K un domaine convexe du plan. Soit d la dimension de Minkowski supérieure de l'ensemble des points extrémaux de K. La majoration suivante de l'entropie volumique de K est vérifiée :

(0.4) EntK 2 3 -d 1.
De plus, l'équation (0.3) est valable (avec n = 2).

Cette majoration n'est généralement pas optimale : pour les polygones, la dimension supérieure de Minkowski des points extrémaux est nulle tout comme leur entropie (voir théorème de A. Bernig/C. Vernicos sur l'équivalence lipschitz des polytopes). Remarquons également que si le convexe K contient une partie lisse dans son bord, alors la dimension de Minkowski des points extrémaux est 1 et l'inégalité devient égalité.

Notons enfin que du point de vue de l'entropie volumique les sphères et les boules donnent le même résultat, puisque comme dans l'espace hyperbolique on a Théorème. (G. Berck, A. Bernig & C. Vernicos [START_REF] Berck | Entropy of Hilbert Geometries[END_REF])

Pour tout convexe K, Ent s K = EntK, Ent s K = EntK.
La section 1 est consacrée à ce théorème. Dans la section 2 nous montrons comment l'entropie se comporte sur certains exemples : cylindres, pyramides pour lesquels un calcul permet de montrer que leur entropie coïncide avec celle de leur base et on présente un convexe affine par morceau avec une accumulation de points extrémaux pour lequel l'entropie volumique est non nulle et qui montre que notre encadrement à l'aide de la dimension de Minkowski n'est vraiment pas optimal. Enfin en section 3 nous rappelons la définition de l'entropie centro-affine et donnons la définition de l'entropie centro-projective et les calculons sur la sphère.

Liens entre volume des sphères et des boules

Nous verrons par la suite que pour certains calculs d'entropie les boules métriques ne sont pas toujours les plus adaptées. Cependant, en faisant semblant que le centre de la boule est un centre de symétrie du convexe, on est amené à introduire les boules et les sphères asymptotiques. Dans cette section on verra que tous ces objets ont le même comportement asymptotique relativement à leur volume. On aura besoin pour cela d'une formule de Crofton et d'une inégalité de la co-aire, toutes deux présentées dans cette section.

Formule de Crofton

Le problème abordé ici est le suivant : soit deux convexes A et B emboîtés, i.e., A ⊂ B comment montrer que la mesure du bord de B est plus grande que la mesure du bord de A.

Une manière d'aborder cette question en géométrie euclidienne est de passer par une formule dite de Crofton. Euristiquement, celle-ci nous dit que mesurer le bord d'un domaine consiste à compter le nombre de droites qui le coupent. La réponse à notre problème devient alors évidente. Il se trouve qu'un lien similaire existe pour les géométries de Hilbert.

On commence par se restreindre au cas d'un domaine convexe C de R n dont le bord est une hypersurface C 2 quadratiquement convexe (autrement dit C et son dual sont C 2 ) que l'on munit de sa géométrie de Hilbert.

Dans ce cas, suivant les résultats de J.C. Álvarez Paiva-E. Fernandes [START_REF] Álvarez Paiva | Crofton formulas in projective Finsler spaces[END_REF] 

Hν C (N ) = 1 ω n-1 λ∈Hn,1 #(N ∩ λ)Φ 1 ,
où ω n-1 est le volume euclidien de la boule euclidienne de R n-1 et Hν C la mesure de Holmes Thompson de dimension n -1 induite sur N par la structure finsler de C.

Une implication de ce théorème est la proposition de comparaison des volumes suivante

Proposition 2. Soit (C, F C ) un domaine convexe et borné de R n muni de sa métrique de Hilbert. Soit A ⊂ B ⊂ C tels que les bords de A et B soient des sous-variétés de dimension n -1 par morceaux, et A, B des convexes de R n , alors

Hν C (∂A) Hν C (∂B).
Idée de la preuve de 2. -Si le bord de C est C 2 quadratiquement convexe, alors ceci est une conséquence du théorème 1, car pour Φ 1 presque toute droite λ ∈ H n,1 , on a

#(A ∩ λ) #(B ∩ λ) 2.
Si le bord n'est pas quadratiquement convexe, on procède par approximation en utilisant le fait qu'il existe une suite (C n ) n∈N de convexes dont le bord est C 2 quadratiquement convexe et telle que C n → C pour la métrique de Hausdorff entre compacts de R n . À partir d'un certain rang on aura donc, par le théorème 1, l'inégalité, Hν Cn (∂A) Hν Cn (∂B). qui passe à la limite (voir [START_REF] Colbois | Les géométries de Hilbert sont à géométrie locale bornée[END_REF] pour une démonstration similaire).

Les sphères asymptotiques

Définition et liens avec les sphères métriques

Soit C un convexe de R n et p un point de son intérieur. On définit la sphère asymptotique de rayon R centrée en p et notée S A (p, R) comme image du bord ∂C par l'homothétie de centre p et de rapport tanh(R).

De même on définit la boule asymptotique de rayon R centrée en p et notée B A (p, R) comme image du convexe C par l'homothétie de centre p et de rapport tanh(R).

Remarque 3. Si p est un centre de symétrie du convexe, alors les sphères (resp. boules) asymptotiques coïncident avec les sphères (resp. boules) métriques. On en déduit que le comportement asymptotique du volume des boules métriques et des boules asymptotiques est le même, plus précisément,

(1.1) lim sup t→+∞ log Vol C B(p, R) R = lim sup R→+∞ log Vol C B A (p, R) R .
De plus par l'intermédiaire de la proposition 2, ceci est également valable pour la mesure de Holmes-Thompson des sphères métriques S(p, R) et asymptotiques S A (p, R). Ainsi, par l'équivalence des mesures (voir [START_REF] Vernicos | Introduction aux géométries de Hilbert[END_REF]), en notant ν la mesure de Hausdorff n -1-dimensionnelle, on a également

(1.2) lim sup t→+∞ log ν C S(x, R) R = lim sup R→+∞ log ν C S A (x, R) R .

Propriétés des sphères asymptotiques

Nous faisons deux remarques. Si on considère un ouvert convexe contenant l'origine C et la boule asymptotique de rayon R centrée en l'origine (c'est un autre convexe S A (o, R)), alors le dual C * devient la sphère asymptotique de rayon R du dual S A (o, R) * de la sphères asymptotique.

La métrique de Funk associée au convexe C peut être définie de la manière suivante, pour tout point p, q ∈ C on considère le point b du bord obtenu en l'intersectant avec la demi droite issue de p passant q, alors D F (p, q) = ln pb qb C'est une métrique non symétrique et la distance de Hilbert est sa symétrisée, i.e.,

d C (p, q) = 1 2 D F (p, q) + D F (q, p)
On remarquera de plus que contrairement à la métrique de Hilbert, la métrique de Funk n'est qu'un invariant affine et non pas projectif. 

C -1 2 ν C S(p, r) ∂ ∂r Vol C (B(p, r)) C 2 ν C S(p, r) .
Grâce à cette inégalité le théorème suivant (2.14 de [START_REF] Berck | Entropy of Hilbert Geometries[END_REF]) devient simple à vérifier 

Propriétés de l'entropie volumique

Cette section est consacrée au calcul de l'entropie des cylindres et des pyramides en fonction de l'entropie de leur base. Ceci nous permet de donner des exemples d'entropie entière, non maximale. Nous présentons également un exemple concret de géométrie de Hilbert dont le bord est affine par morceaux. On espère ainsi mettre en perspective le comportement délicat de l'entropie volumique de ces géométries.

ARTICLE SOUMIS : ENTHILBERT08.TEX

Concernant les cylindres

Dans cette partie nous noterons B n la boule unité ouverte de l'espace euclidien de dimension n.

Proposition 8. Un cylindre a même entropie volumique que sa base.

En particulier pour C un domaine convexe de

R n et S = C × ]-1, 1[ un cylindre de base C, on a Ent(S) = Ent(C). Corollaire 9. Soit B k × ]-1, 1[ n-k ⊂ R n muni de sa géométrie de
Hilbert, alors son entropie volumique est

Ent B k × ]-1, 1[ n-k = k -1
La proposition 8 est en réalité une simple conséquence du lemme suivant :

Lemme 10. Soit C un domaine convexe de R n , et définissons le cylindre

S = C × ]-1, 1[. Pour tout t ∈ ]-1, 1[ on note α(t) = (1 + t)(1 -t) et C t = C × {t}. Alors il existe deux constantes C 1 et C 2 > 0
telles que pour tout point p(q, t) de C t , si la boule unité tangente pour la norme restreinte a C t est notée T B C (p, 1), on a (2.1) C 1 α(t)vol e (T B Ct (q, 1)) vol e (T B S (p, 1)) C 2 α(t)vol e (T B Ct (q, 1))

Démonstration. -Au point p = (q, t) = (x 1 , . . . , x n+1 ) comparons les différentes boules unités. Il s'agit de deux convexes centralement symétriques T B S (p, 1) et T B Ct (q, 1).

On peut supposer que les deux boules sont centrées en l'origine et satisfont l'inclusion T B Ct (q, 1) ⊂ T B S (p, 1).

On supposera de plus que la boule unité T B Ct (q, 1) est dans l'hyperplan défini par e 1 , . . . , e n . L'idée, que l'on retrouve dans [START_REF] Colbois | Les géométries de Hilbert sont à géométrie locale bornée[END_REF], consiste à remarquer que la boule T B S (p, 1) est d'une part incluse dans un cylindre dont la base est homothétique à T B Ct (q, 1), et d'autre part qu'elle contient deux pyramides de base T B Ct (q, 1). Nous avons besoin de contrôler la hauteur de ces deux objets, pour cela nous utiliserons les deux affirmations suivantes :
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Première affirmation -Si α(t) = (1 + t)(1 -t) les points (0, α(t)) et (0, -α(t)) sont dans T B S (p, 1). On remarquera que α(t) ne dépend pas de q.

La remarque essentielle est la suivante (nous la démontrerons en fin de paragraphe) :

Seconde affirmation -Au voisinage de ces deux points, le convexe T B S (p, 1) est tangent aux deux hyperplans {x n+1 = α(t)} et {x n+1 = -α(t)}.

La convexité nous permet d'en déduire que la boule unité T B S (p, 1) se trouve entre les deux hyperplans

{x n+1 = α(t)} et {x n+1 = -α(t)}.
Considérons à présent l'intersection des cônes de sommet respectif (0, -α(t) et (0, α(t) s'appuyant sur la base T B Ct (q, 1) avec, respectivement, les hyperplans {x n+1 = α(t)} et {x n+1 = -α(t)}. La fermeture convexe de ces deux projections de T B Ct (q, 1) détermine une section de cylindre contenant T B S (p, 1).

On en déduit donc que T B S (p, 1) est dans le produit

2T B Ct (q, 1)) × [-α(t), α(t)],
en sorte que vol e (T B S (p, 1)) 2 n+1 α(t)vol e (T B Ct (q, 1)).

La convexité implique également que les deux pyramides de sommet (0, α(t)) et (0, -α(t)) s'appuyant sur T B Ct sont incluses dans T B S (p, 1). On en déduit l'inégalité suivante vol e (T B S (p, 1)) 2 n + 1 vol e (T B Ct (q, 1)).

Démonstration de la second affirmation -Considérons un point p dans le convexe C de R n+1 . Sans perte de généralité on peut supposer que p est l'origine et nous supposerons, de plus, qu'au voisinage de (0, l 1 ) et (0, -l 2 ) pour l 1 ,l 2 > 0, le domaine convexe C admet respectivement pour bord les hyperplans

{x n+1 = l 1 } et {x n+1 = -l 1 }.
Ainsi les ligne droites proches de l'axe 0x n+1 passant par l'origine et admettant un angle θ avec l'axe 0x n+1 intersectent les deux hyperplans à une distance de p respectivement égale à l1 cos θ et l2 cos θ . En sorte que si v est un vecteur directeur de cette droite sa norme finslerienne est égale à

v C = 1 2 v e cos θ l 1 + cos θ l 2 ARTICLE SOUMIS : ENTHILBERT08.TEX Ainsi pour obtenir v C = 1, il est nécessaire que v e = 1 cos θ 2l 1 l 2 l 1 + l 2 .
Ce qui implique que les extrémités de ce vecteur appartiennent respectivement aux hyperplans x n+1 = 2l1l2 l1+l2 et x n+1 = -2l1l2 l1+l2 . Démonstration de la proposition 8. -L'idée directrice est que le volume de la boule asymptotique centrée en 0 est de l'ordre de tanh t tanh t α(s) -1 ds multiplié par le volume de la boule asymptotique de C centrée en 0. Ceci provient de l'équivalence obtenue au lemme 10.

Supposons en effet que p ∈ C est l'origine, et considérons la boule asymptotique centrée en (p, 0) de rayon t. Celle-ci est de la forme

S t × [-tanh t, tanh t]
où S t est la boule asymptotique de C centrée en p de rayon t. Grâce au lemme 10 nous avons l'existence de deux constantes c 1 et c 2 telles que

(2.2) c 1 µ C (S t ) × tanh t -tanh t α(s) -1 ds µ S S t × [-tanh t, tanh t] c 2 µ C (S t ) × tanh t -tanh t α(s) -1 ds
Il ne nous reste plus qu'à calculer

A(t) = tanh t -tanh t α(s) -1 ds = 2 tanh t 0 1 1 -s 2 ds
dont la valeur A(t) = 2t est facile à obtenir, ce qui conclut notre démonstration.

Concernant les pyramides

Soit S sous ensemble convexe de R n ⊂ R n+1 et p un point de R n+1 extérieur à l'hyperplan contenant S. Nous allons calculer l'entropie de la pyramide de sommet p et de base S que l'on notera P = p + S. Corollaire 12. L'entropie des simplexes est nulle.
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Nous faisons également cela en deux étapes Lemme 13. Pour tout t ∈ ]0, 1[ on note β(t) = 2t(1 -t) et S t l'image de S par l'homothétie de centre p et de rapport t. Alors il existe deux constantes C 1 et C 2 > 0 telles que pour tout point x(q, t) de S t , si la boule unité tangente pour la norme restreinte à S t est notée T B St (q, 1), on a

(2.3) C 1 β(t)vol e (T B St (q, 1)) vol e (T B P (p, 1)) C 2 β(t)vol e (T B St (q, 1))
Démonstration. -On suppose pour commencer que p est l'origine et on se donne une base orthonormée (e i ) i=1,...,n,n+1 , pour une norme euclidienne fixée, telle que e 1 , . . . , e n détermine H 1 l'hyperplan contenant S. Soit S t l'image de S par l'homothétie centrée en l'origine de rapport 0 < t < 1. Nous noterons également H t l'hyperplan affine contenant S t . Tout point dans la pyramide P = p + S peut-être identifié de manière unique à l'aide de t ∈ [0, 1] et d'un point q ∈ S : le point x = (q, t) est l'intersection de la droite pq avec l'hyperplan H t . Nous allons nous intéresser aux boules tangentes en x = (q, t). Ce sont des convexes T B P (x, 1) et T B St (x, 1) que nous supposerons centrés en l'origine et satisfaisant

T B St (q, 1) ⊂ T B P (x, 1)
Avec ces hypothèses la boule unité T B St (q, 1) est dans l'hyperplan e 1 , . . . , e n -que l'on peut identifier avec H 0 .

Comme pour les cylindres, on va montrer que la boule T B P (p, 1) est dans un morceau de cylindre de section T B St (q, 1) et qu'elle contient deux cônes de base T B St (q, 1).

Première affirmation -Si β(t) = 2t(1 -t) les points β(t) qp et -β(t) qp sont sur la boule T B P (x, 1).

On fera également la remarque suivante

Seconde affirmation -Les hyperplans H β(t) et H -β(t) sont des hyperplans d'appui à la boule respectivement aux points β(t) qp et -β(t) qp.

Ce sont également des points extrémaux coniques de T B P (x, 1), i.e., au voisinage de ces points T B P (x, 1) est une pyramide dont ils sont les sommets. Justification de la seconde affirmation : Les sections planaires de la pyramide P contenant p et q sont des triangles. Dans ces triangles, les boules sont des hexagones dont deux des sommets sont les points β(t) qp et -β(t) qp.

ARTICLE SOUMIS : ENTHILBERT08.TEX

Par convexité, la seconde affirmation implique que la boule unité T B P (x, 1) est entre les deux hyperplans H β(t) et H -β(t) . Comme pour les cylindres on va projeter T B St (q, 1) d'une part sur H β(t) à l'aide d'une homothétie centrée en -β(t) qp et d'autre part sur H -β(t) à l'aide d'une homothétie centrée en β(t) qp. Par convexité, la fermeture convexe de ces deux projections contient la boule T B P (p, 1) vol e (T B P (q, 1)) 2 n+1 β(t) pq, e n+1 vol e (T B St (q, 1)).

Enfin de nouveau par convexité, les pyramides de sommet H β(t) et H -β(t) et de base T B St sont dans T B P (p, 1). Cela nous donne l'inégalité suivante vol e (T B P (x, 1)) 2 n + 1 pq, e n+1 β(t)vol e (T B St (q, 1)).

Par compacité on en déduit donc l'existence de deux constantes C 1 et C 2 telles que pour tout p et q on a (2.4) C 1 β(t)vol e (T B St (q, 1)) vol e (T B P (q, 1)) C 2 β(t)vol e (T B St (q, 1))

Démonstration de la Proposition 11. -Soit à présent un point x 0 dans la pyramide et q 0 l'intersection de la droite px 0 avec le convexe S. Considérons B P (x 0 , R) la boule métrique centrée en x 0 de rayon R dans P et B S (q o ) la boule métrique centrée en q o de rayon R dans S. Notons également a et b les deux points à distance R de x 0 sur la droite px 0 . On va considérer le cylindre métrique C(a, b, R) défini comme union des points à distance plus petite ou égale à R d'un point du segment [a, b] dans la direction de l'hyperplan contenant S. C'est aussi l'union des homothétiques de la sphère B S (q o , R), pour les homothéties centrées en p envoyant q 0 sur un point du segment [a, b] Remarque 1 -La boule métrique B P (x 0 , R) est incluse dans le cylindre métrique C(a, b, R). De plus pour tout point x ∈ [a.b], notons S x l'image de S par l'homothétie de centre p qui envoie q o sur x, alors l'image de B S (q o , R) est exactement B Sx (x, R). En sorte que par le lemme 13 on obtient

Vol P B P (x 0 , R) 2RC 2 Vol S B S (q 0 , R)
Remarque 2 -Il existe une constante 1 β < 2 et deux points a et b à distance de Hilbert ln(βe 2R )/2 sur la droite px 0 tels que x 0 soit dans le segment ]a , b [ et le cylindre métrique C(a , b , R) soit contenu dans la boule métrique B P (x 0 , R) en sorte que par le lemme 13 on obtient cette fois R • C 1 Vol S B S (q 0 , R)

Vol P B P (x 0 , R)
Grâce aux deux inégalités précédentes on conclut aisément que

Ent(P) = Ent(S)
Justification de la remarque 2 -Pour se convaincre de la véracité de la remarque 2, on peut envoyer le point p à l'infini, et regarder une coupe de dimension 2. Sur celle-ci on peut supposer que x 0 est l'origine, q 0 le point de coordonnée (1, 0) et l'intersection avec notre convexe le demi-cylindre infini déterminé par x < 1, et α -2 < y < α. On considère alors la boule de rayon R et on vérifie facilement que les points sur la droite y = 0 d'abscisse

x = α(e 2R -1) (2 -α) + αe 2R et x = -α(e 2R -1) (α + (2 -α)e 2R
sont tels que la section planaire du cylindre métrique C(x , y , R) soit bien dans la section planaire de notre boule. Quand α tend vers 0 la distance entre x et x tend vers 0, cependant par compacité, quand on fait varier les sections planaires, on obtient un α minimal et deux points a et b correspondant respectivement aux x et x associés aux plans pour lesquels la distance est minimale. On vérifie alors que quel que soit cet α minimal la distance entre a et b est égale à

R + 1 2 ln (2 -α) + αe 2R
(2 -α)e 2R + α R.

Un exemple d'entropie non entière

Nous présentons ici un exemple auquel nous ne nous attendions pas, car nous pensions que les convexes dont le bord était affine par morceaux avait une entropie nulle. 

(2.5) d C b(R), c(R) = 2R + 1 2 ln 1 4s(1 -s) -ln BC bc + exp(-2R) + o exp(-2R) .
où BC est l'image de bc par l'homothétie de centre q, envoyant p sur p et s est le rapport de bp /bc. 

(2.6) B R -1 2 dH n-1 C H n-1 (B) 1 2 .
Démonstration de la proposition 14. -Nous adopterons les notations suivante : pour n ∈ N c n = 1 n , 1 n α et l'image de ce point par l'homothétie, notée h t , de rapport 0 < t < 1 centrée au point (0, 1) sera, elle, notée

c n (t) = t n , (1 -t) + t n α
En raison de la symétrie, nous nous contenterons de regarder la longueur de la sphère de rayon R sous la ligne y = 1.

On commence par écrire l'équation de la droite D α n d'appui au bord passant par les points c n et c n-1 :

(2.7) D α n : (n α -(n -1) α )x -n α-1 (n -1) α-1 y = n α-1 -(n -1) α-1
Nous en déduisons l'équation de son image par l'homothétie h t

(2.8) D α n (t) : (n α -(n -1) α )x -n α-1 (n -1) α-1 y = -(1 -t)n α-1 (n -1) α-1 -t (n -1) α-1 -n α-1
Borne inférieure de la longueur Concernant cette partie nous donnons les arguments sans expliciter la totalité des calculs. Un partie d'entre-eux a été faite à la main et/ou à l'aide du logiciel libre maxima .

On va minorer une partie de la sphère, en fonction de t. L'idée est que, pour n suffisamment petit (en fonction de t), le segment c n (t)c n-1 (t) est dans la fermeture convexe des points c n+1 ,c n ,c n-1 , c n-2 et (0, 1).

Ainsi, puisque D n (t) rencontre les segments c n+1 c n et c n-1 c n-2 , grâce au lemme 16 on aura une minoration précise de la longueur de c n (t)c n-1 (t). Plus précisément on montrera que la longueur est plus grande que R, pour n bien choisi.

Ainsi, pour t proche de 1 nous allons compter le nombre de cotês de cette grande sphère qui sont comme ci-dessus expliqués. À cause de la convexité et de la courbe choisie, il ne nous reste qu'à trouver le dernier segment qui est dans la bonne position. Ceci va nous amener à relier n et (1 -t) -1 . En effet notre condition est que c n+1 appartient à la droite

D α n (2.9) (n α -(n -1) α ) 1 n + 1 -n α-1 (n -1) α-1 1 (n + 1) α = -(1 -t)n α-1 (n -1) α-1 -t (n -1) α-1 -n α-1
Si on suppose que n est très grand et 1 -t très petit l'équation 2.9 implique que (2.10)

(1 -t) = α(α -1) n α+2 + o( 1 n α+2 )
et pour ces segments, par le lemme 16 nous obtenons (notation évidente)

(2.11) d Cα c k (t), c k-1 (t) ln 1 + t 1 -t -ln C k-1 C k c k-1 c k ARTICLE SOUMIS : ENTHILBERT08.TEX C. VERNICOS
Un développement asymptotique nous donne alors que (2.12)

C k-1 C k c k-1 c k = k α+2 α(α -1) + o(k α+2 ) On en déduit que pour 1 > η > 0 et k α(α-1)(1+t) 1-t 1-η/α+2 on aura (2.13) d Cα c k (t), c k-1 (t) η ln 1 + t 1 -t .
En sorte que la longueur de la sphère de rayon R, ce qui correspond à t = tanh(R), est plus grande que

ηR α(α -1) 1 -tanh(R) 1-η α+2
ce qui nous donne une minoration de l'entropie volumique par 2(1-η)/α+2, et η pouvant être pris arbitrairement petit, on obtient l'inégalité annoncée.

Remarque 18. En fait, pour tout n, on peut toujours minorer la distance de Hilbert entre c n (t) à c n-1 (t) en utilisant le fait que ces deux points sont dans un trapèze dont trois des cotês sont déterminés par les droites

(c n+1 c n ), (c n-1 c n-2 ) et (c n c n-1 ). La fonction f (n, t) minorante que l'on obtient, pour t fixé, est équivalente à f (n, t) = tα(α -1) (1 -t)n α+2 + o( 1 n α+2 )
ainsi une minoration par le reste de la série dont la somme est la longueur de la sphère, comme dans [START_REF] Berck | Entropy of Hilbert Geometries[END_REF], donnera également une minoration de l'entropie volumique en 2 α+2 .

Borne supérieure

Pour chaque entier n on considère le parallélogramme P n défini par le segment S n = c n c n-1 et son translaté c n c n-1 dont le milieu est le point (0, 1). Dans ce parallélogramme on a

D Pn (c n (t), c n-1 (t)) = log 1 + t 1 -t en sorte que pour tout n on a d Cα c n (t), c n-1 (t)
ln 1 + t 1 -t ceci nous permet de majorer la longueur de la partie de la sphère déterminée par les segments c n (t)c n-1 (t) pour |n| variant entre 1 et (1/(1 -t)) 1/3 par 2 1 1 -t 1/3 ln 1 + t 1 -t .

Pour le reste de la courbe nous utiliserons, pour t = tanh r, le fait (voir encore [START_REF] Berck | Entropy of Hilbert Geometries[END_REF] pour la justification de celui-ci) que sa longueur est plus petite que e r Br R -1/2 dH n-1 où B r correspond au bord de la courbe déterminée par les segments S n et n > (1/(1 -t)) 1/3 et R est défini dans le lemme 17. On en déduit, par convexité et à une constante multiplicative C près (due au fait que la boule unité n'est pas incluse dans notre convexe) que En combinant les deux majorations on obtient la borne sur l'entropie susmentionnée.

Les fonctionnelles du bord

Nous présentons ici les aires centro-affine et centro-projective, certaines de leur propriétés et comment elles sont reliées au volume des sphères.

L'aire centro-affine

Définition 19 (l'aire centro-affine). Notons K n 0 l'ensemble des ouverts convexes contenant l'origine. Si K ∈ K n 0 et si la courbure de Gauss κ(K, x) existe en x ∈ ∂K, soit u(K, x) la normale unitaire sortante, posons κ 0 (K, x) = κ(K, x) (x • u(K, x)) n-1 . Alors l'aire centro-affine est définie par (2) GL(n) invariante ;

(3) semi-continue supérieurement sur K n 0 ; Notons également que l'aire centro-affine d'un ouvert convexe contenant l'origine et l'aire centro-affine de son dual coïncident.

Notons enfin le fait que l'aire centro-affine est unique au sens du théorème qui suit. 
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  a+b 2 avec a, b ∈ K, a = b. Théorème. (G. Berck, A. Bernig & C. Vernicos [BBV08])

  et J.C. Álvarez Paiva [ ÁP05] on a Théorème 1. Soit (C, F C ) un domaine convexe et borné de R n dont le bord est une hypersurface C 2 quadratiquement convexe, muni de sa métrique de Hilbert et de sa mesure de Holmes-Thompson Hµ C . Alors il existe une mesure positive C 2 , notée Φ 1 , sur la variété H n,1 des lignes droites, telle que si N ⊂ C est une sous-variété de dimension n -1, alors

  ARTICLE SOUMIS : ENTHILBERT08.TEX La terminologie provient du lemme suivant qui explique que les boules et sphères asymptotiques ont le même comportement asymptotique que leur analogues métriques.

Lemme 4 .

 4 Il existe une constante c > 0 telle que pour tout R > 1 on ait B(p, R -1) ⊆ B A (p, R) ⊆ B(p, R + c). Remarque 5. C'est le lemme 3.2 dans [CV04] avec un léger changement de notation.

Fixons

  un point p, alors la sphère asymptotique de rayon R est également la sphère de Funk centrée en p de rayon ln e 2R + 1 2 Pour une étude métrique approfondie de la structure de Funk et ses liens avec la géométrie de Hilbert on pourra consulter les textes de A. Papadopoulos & M. Troyanov [PT07, PT08]. 1.3. Inégalité de la co-aire et conséquence L'inégalité suivante, que l'on trouve énoncée comme lemme 2.13 dans [BBV08], est l'ingrédient qui relie le volume des sphères à celui des boules : Lemme 6 (Inégalité de la co-aire). Il existe une constante C 2 > 1 telle que pour tout r > 0 on ait

Théorème 7 .

 7 L'entropie sphérique coïncide avec l'entropie volumique. Plus précisément on a les égalités suivantes lim sup r→∞ log ν C S(p, r) r = EntC, lim inf r→∞ log ν C S(p, r) r = EntC.

Proposition 11 .

 11 Une pyramide a même entropie que sa base, autrement dit avec les notations précédentes Ent(S) = Ent(p + S)

Lemme 16 .

 16 Soit a, b, c et d quatre points tels que les droites D ab , D bc et D cd sont distinctes et les produits scalaires ab, bc et bc, cd sont positifs. On note q l'intersection des droites (ab) et (cd). On suppose de plus que C est un domaine convexe dont le bord contient les segments ab, bc et cd. On considère également le point p à l'intérieur du convexe, p l'intersection de la droite (pq) avec le segment bc et b(R)c(R) l'image par l'homothétie centrée en p de rapport 0 < tanh(R) < 1 du segment bc. Alors pour 1tanh(R) ∼ 0, i.e., suffisamment petit pour que la droite D b(R)c(R) intersecte les segments ab et cd, on a

  e r (1 -t) 1/6

  Pour un disque de rayon 1, l'aire centro-affine en un point à distance r du centre estCA r (S 1 ) = 2π 0 1 √ 1 -r cos ϑ On remarquera que pour r = 1, √ 1cos ϑ = √ 2 • sin(ϑ/2), en sorte que l'intégrale ci-dessus est divergente.Propriété 21. L'aire centro affine est(1) une valuation, i.e.,CA(K) + CA(L) = CA(K ∪ L) + CA(K ∩ L) pour K, L, K ∪ L ∈ K n 0 ;

Théorème 22 (

 22 Ludwig-Reitzner). Une fonctionnelle Φ :K n 0 → R est une valuation semi-continue supérieurement et GL(n) invariante si et seulement s'il existe deux constantes c 0 ∈ R et c 1 0 telles que pour tout K ∈ K n 0 on a Φ(K) = c 0 + c 1 CA(K).

3. 2 0 √ 1

 201 . L'aire centro-projective Définition 23 (l'aire centro-projective). Soit K un ouvert convexe contenant l'origine. Pour x ∈ ∂K notons x * le second point d'intersection de la droite passant par x et par l'origine, avec ∂K, et posonsτ (K, x) = 2|x * | |x -x * | alors l'aire centro-projective est définie par CP(K) = ∂K κ 0 (K, x)Proposition 24 ([BBV08]). L'aire centro projective est (1) P GL(n) invariante ;(2) semi-continue supérieurement sur K n 0 ;Exemple 25. Pour un disque de rayon 1, l'aire centro-projective en un point à distance r du centre estCP r (S 1 ) = 2π -r 2 1 -r cos ϑ dϑGrâce à l'invariance, sans passer par un développement en série entière, on en déduit que

  Le résultat suivant, d'abord démontré en dimension 2 par B. Colbois, C. Vernicos & P. Verovic [CVV07], puis simultanément et indépendamment par A. Bernig et l'auteur, traite de convexes dont l'entropie est nulle.Si K est un domaine convexe de dimension n, de régularité C 3 à courbure de Gausse strictement positive, alors Ent s = n -1.

	Théorème. (A. Bernig [Ber08] / C. Vernicos [Ver08])
	La géométrie de Hilbert associée à un polytope convexe est bi-lipschitz	à
	l'espace euclidien. En particulier son entropie est nulle.
	En lieu et place des boules, on peut étudier la croissance volumique des
	sphères S(o, r) et définir, lorsqu'elle existe, une entropie sphérique comme
	suit			
	(0.2)	Ent s K := lim r→∞	log VolS(o, r) r	,
	En toute généralité on pourra définir l'entropie sphérique supérieure Ent s K et inférieure Ent s K en remplaçant la limite de la définition (0.2)
	successivement par lim sup et lim inf.		
	Le résultat suivant est une version sphérique du théorème de B. Colbois
	& P. Verovic.			
	Théorème. (A.A. Borisenko & E.A. Olin [BO07])
	Notre résultat principal affaiblit substantiellement les hypothèses du théo-
	rème de B. Colbois & P. Verovic et fortifie ses conclusions car, en sus du
	calcul de l'entropie, il donne un équivalent au volume asymptotique. Pour
	obtenir cet équivalent nous avons introduit un nouvel invariant projectif
	des domaines convexes intéressant en lui-même que nous avons appelé aire
	centro-projective et que nous notons CP et dont la définition est donnée en
	section 3.2.			
	Théorème. (G. Berck, A. Bernig & C. Vernicos [BBV08])

  Proposition 14. Soit 2 α > 1 et définissons le convexe C α comme la fermeture convexe des points de la forme (1/n, 1/|n| α ) n∈Z\0 et (1/n, 2 -1/|n| α ) n∈Z\0 . Son entropie vérifie alors La dimension de Minkowski des points extrémaux de C α étant 1/2, la majoration que nous obtenons par son intermédiaire est 4/5 qui est plus grand que 2/3. La démonstration de cette proposition s'appuie sur deux fait essentiels que nous allons présenter sous forme de lemme. Adoptons la convention suivante, pour tout couple de points x et y disjoints nous noterons D xy la droite qui les relie.

		C. VERNICOS	
	Remarque 15.		
	2 α + 2	Ent(C α ) Ent(C α )	2 3

  le second fait, dont la preuve est dans [BBV08], est le suivant Lemme 17. Soit K un domaine convexe contenant la boule euclidienne unité et pour p ∈ ∂K, notons R(p) ∈ [0, ∞) le rayon de la plus grande boule contenue dans K et contenant p. Alors il existe une constante C fonction de K telle que pour tout tout borelien du bord B ⊂ ∂K on a
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