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ASYMPTOTIC VOLUME IN HILBERT GEOMETRIES

CONSTANTIN VERNICOS

Abstract. We prove that the metric balls of a Hilbert geometry
admit a volume growth at least polynomial of degree their dimen-
sion. We also characterise the convex polytopes as those having
exactly polynomial volume growth of degree their dimension.

Introduction and statement of results

We recall that Hilbert geometries are metric space defined in the in-
terior of a convex set using cross-ratios and as such are a generalisation
of the hyperbolic geometry.

Among all Hilbert geometries, two families have emerged and play
an important role. On the one hand the polytopal ones, which for
a given dimension are all bi-lipschitz to the Hilbert geometry of the
simplex ([BER09, Ver-a, CVV11]), and on the other hand those whose
boundary is C2 with positive Gaussian curvature, which are all bi-
lipschitz to the Hyperbolic space ([CVc04]).

The present paper focuses on the volume of balls and was motivated
by the following result due to Burago and Ivanov[BI95]:

Theorem 1. Let (T n, g) be a Riemannian torus, let ωn be the eu-
clidean volume of the euclidean unit ball, and let x be a point on the
universal covering of T n. Let also Bg(x, r) be the metric ball of radius
r of the lifted metric centred at x. Then

• Asvol(g) = lim
r→+∞

Vol
(
Bg(x, r)

)
rn

≥ ωn;

• Equality characterizes flat tori.

The author belief is that a similar statement may exists in Hilbert
geometry, the equality case characterising the simplexes. With that
goal in mind we obtained a partial answer to that question and a new
characterisation of polytopes in term of their volume growth as follows:

Theorem 2. There exists a constant cn > 0 such that for all Hilbert
geometries (C, dC), with C ⊂ Rn a n-dimensional convex body, for any
point p ∈ C and any real number r > 0, if one denotes by VolC the
Holmes-Thompson volume of C, then we have

• VolC
(
BC(x, r)

)
≥ cnr

n;
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• The asymptotic volume is finite if and only if C is a polytope;
• If C is a polytope with k verticies, then one has

Asvol(C) = lim inf
r→+∞

VolC(BC(x, r)

rn
≥ cnk.

Therefore, in each dimension, there is only a finite number of families
of polytopal Hilbert geometries which may have an asymptotic volume
less than the simplex’s.

This theorem is therefore weaker in its asymptotic results from the
one we expect, but in the meantime it gives the existence of an optimal
lower bound on the volume growth of balls which was not known. In-
deed the previous result of this kind was obtained by the author with
Colbois [CVs07], but it only gave a lower bound which converged to
zero as the radius of the ball went to infinity.

As a corollary we obtain a new proof of the fact that a n-dimensional
Hilbert geometry which quasi-isometrically embeds into a n-dimensional
normed vector space is actually a polytopal one.

1. Notations

A proper open set in Rn is a set not containing a whole line.
A Hilbert geometry (C, dC) is a non empty proper open convex set C

in Rn (that we shall call convex domain) with the Hilbert distance dC
defined as follows: for any distinct points p and q in C, the line passing
through p and q meets the boundary ∂C of C at two points a and b,
such that one walking on the line goes consecutively by a, p, q, b. Then
we define

dC(p, q) =
1

2
ln[a, p, q, b],

where [a, p, q, b] is the cross ratio of (a, p, q, b), i.e.,

[a, p, q, b] =
‖q − a‖
‖p− a‖

× ‖p− b‖
‖q − b‖

> 1,

with ‖ · ‖ the canonical euclidean norm in Rn. If either a or b is at
infinity the corresponding ratio will be taken equal to 1.

Note that the invariance of the cross ratio by a projective map implies
the invariance of dC by such a map.

These geometries are naturally endowed with a C0 Finsler metric FC
as follows: if p ∈ C and v ∈ TpC = Rn with v 6= 0, the straight line
passing by p and directed by v meets ∂C at two points p+C and p−C .
Then let t+ and t− be two positive numbers such that p + t+v = p+C
and p − t−v = p−C , in other words these numbers corresponds to the
time necessary to reach the boundary starting at p with the speed v
and −v. Then we define

FC(p, v) =
1

2

(
1

t+
+

1

t−

)
and FC(p, 0) = 0.
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Should p+C or p−C be at infinity, then corresponding ratio will be taken
equal to 0.

The Hilbert distance dC is the length distance associated to FC. We
shall denote by BC(p, r) the metric ball of radius r centred at the point
p ∈ C.

Thanks to that Finsler metric, we can build two important Borel
measures C.

The first one is called the Busemann volume, will be denoted by
VolC (It is actually the Hausdorff measure associated to the metric
space (C, dC), see [BBI01], example 5.5.13), and is defined as follows.
To any p ∈ C, let βC(p) = {v ∈ Rn | FC(p, v) < 1} be the open unit
ball in TpC = Rn of the norm FC(p, ·) and ωn the euclidean volume
of the open unit ball of the standard Euclidean space Rn. Consider
the (density) function hC : C −→ R given by hC(p) = ωn/Leb

(
βC(p)

)
,

where Leb is the canonical Lebesgue measure of Rn equal to 1 on the
unit ”hypercube”.

VolC(A) =

∫
A

hC(p)dLeb(p)

for any Borel set A of C.
The second one, called the Holmes-Thompson volume will be denoted

by µHT,C, and is defined as follows. Let β∗C(p) be the polar dual of βC(p)
and hHT,C : C −→ R the density defined by hHT,C(p) = Leb

(
β∗C(p)

)
/ωn.

Then µHT,C is the measure associated to that density.
We can actually consider a wider family of measure, including the

Holmes-Thompson and the Buseman ones, as follows. Let En be the
set of pointed properly open convex sets in Rn. These are the pairs
(ω, x), such that ω is a properly open convex set and x a point inside
ω. We shall say that a function f : En → R+ \ {0} is a proper density
if it is

Continuous: with respect to the Hausdorff pointed topology on
En;

Monotone decreasing: with respect to inclusion of the convex
sets, i.e., if x ∈ ω ⊂ Ω then f(Ω, x) ≤ f(ω, x).

Chain rule compatible: if for any projective transformation T
one has

f
(
T (ω), T (x)

)
Jac(T ) = f(ω, x).

We will say that f is a normalised proper density if in addition f
coincides with the standard Riemannian volume on the Hyperbolic
geometry of ellipsoids. Let us denote by PDn the set of proper densities
over En.

Let us now recall a result of Benzécri [Ben60] which states that the
action of the group of projective transformations on En is co-compact.
Then, as remarked by L. Marquis, for any pair f, g of proper densities,
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there exists a constant C > 0 (C ≥ 1 for the normalised ones) such
that that for any (ω, x) ∈ E one has

(1)
1

C
≤ f(ω, x)

g(ω, x)
≤ C.

In the same way we defined the Busemann and the Holmes-Thompson
volumes, to any proper density f one can associate a Borel measure
µf,C on C. Integrating the equivalence (1) we obtain that for any pair
f, g of densities, there exists a constant C > 0 such that for any Borel
set U ⊂ C we will have

(2)
1

C
µg,C(U) ≤ µf,C(U) ≤ Cµg,C(U).

We shall call proper measures with density the family of measures
obtain this way.

To a proper density f ∈ PDn−1 we can also associate a n − 1-
dimensional measure, denoted by Areaf,C, on hypersurfaces in C as
follows. Let Sn−1 be smooth a hypersurface, and consider for a point p
in the hypersurface Sn−1 its tangent hyperplane H(p), then the measure
will be given by

(3) dAreaf,C(p) = dµf,C∩H(p)(p).

Let now µf,C be a proper measure with density over C, then the
volume entropy of C is defined by

(4) Ent(C) = lim inf
r→+∞

lnµf,C
(
BC(p, r)

)
r

.

This number does not depend on either f or p.

2. Lower bound

Theorem 3. The volume growth of balls and spheres in a Hilbert
geometry is at least polynomial. More precisely, for any integer n ∈ N∗
and any proper density f ∈ PDn (resp. g ∈ PDn−1) there exists
a constant cB(n, f) (resp. cS(n, g)) such that given a n-dimensional
Hilbert Geometry (C, dC) and a point x ∈ C, for any r ∈ R+ one has
the following inequalities

cB(n, f)rn ≤ µf,C

(
BC(x, r)

)
cS(n, g)rn−1 ≤ Areag,C

(
SC(x, r)

)
.

When considering the Busemann volume we will drop the f or g
in the constants, i.e., we shall just denote the constants appearing in
Theorem 3 by cB(n) and cS(n). The constant associated to the Holmes-
Thompson metric will be denoted by c∗B(n) and c∗S(n).
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Proof. According to the inequality (2) there exists a constant C1(n)
such that one has the following comparison between the Holmes-Thompson
and the Busemann measures: for any Borel set U in C,

(5) C−11 (n)µHT,C(U) ≤ VolC
(
U) ≤ C1(n)µHT,C(U).

hence our results will be true for either of these measures (and actually
for any proper density).

Remark that without loss of generality we can restrict to strongly
convex sets, i.e., convex sets with C2 boundary and stritcly positive
Gaussian curvature, as the results passes to the limit with respect to
the Hausdorff pointed topology.

Now let us do the proof by induction on the dimension for both
measures at the same time. First notice that the 1-dimensional Hilbert
geometry is isometric to R thus, cB(1) = 2 = c∗B(1) and we have
actually an equality for both measures.

Now suppose the result is true in dimension n and let us prove that
it holds in dimension n+ 1. We need to consider a point x ∈ C ⊂ Rn+1

and the ball of radius r centred at x. Take a hyperplane H intersecting
the convex set C and containing x, by induction we thus have for any
s ∈ R+

c∗B(n)sn ≤ µHT,C∩H(BC∩H(x, s))

and we remark that C ∩H is totally geodesic, thus thanks to a Crofton
formula valid in this setting (see [AF98] Theorem 1.1 and Remark 2)
or by minimality of totally geodesic submanifolds with respect to the
Holmes-Thompson measure (see [AB09, Ber09]) we obtain that the
Holmes-Thompson area of the half spheres of radius s centred at x
defined by H have an area bigger or equal to BC∩H(x, s), hence

2c∗B(n)sn ≤ AreaHT,C
(
SC(x, s)

)
Which implies the result for the spheres. Now thanks to the com-
parison between the Holmes-Thompson and Busemann volume given
by equation (5) and the the co-area inequality obtained in [BBV10]
(lemma 2.13) we have the existence of a constant C2(n) such that

(6) 2c∗B(n)sn ≤ AreaHT

(
SC(x, s)

)
≤ C2(n)

∂

∂s
Vol
(
BC(x, s)

)
Hence it suffices to integrate the inequalities (6) between 0 and r to
obtain the desired result for the Busemann measure and thanks to the
comparison (5) for the Holmes-Thompson measure. �

The previous proof also implies the following proposition related to
the volume entropy.

Proposition 4. The volume entropy of a Hilbert geometry is bigger
or equal to any of its lower dimensional sections, i.e., let (C, dC) be a
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n-dimensional Hilbert geometry and let Ak be an affine k-dimensional
subspace of Rn, then we have

Ent(Ak ∩ C) ≤ Ent(C).

Proof. We just do the proof for k = n − 1, the general result easily
follows. Let H be a hyperplane such that H ∩ C is an open (n −
1)-dimensional convex set and p be a point inside H ∩ C. Then by
minimality, as in the previous proof one has

2µHT,H∩C
(
BH∩C(p,R)

)
≤ AreaHT,C

(
SC(p,R)

)
.

Now taking the logarithm of both sides, dividing by R and taking the
limit as R goes to infinity proves that Ent(H ∩ C) is lower than the
spherical volume entropy of C, which is equal to the volume entropy of
C following [BBV10]. �

Let us now focus on the Busemann volume and define the n-asymptotic
volume by

(7) Asvoln(C, x) = lim inf
r→+∞

VolC
(
BC(x, r)

)
rn

Conjecture 1. Let bn be the asymptotic volume of the simplex
(which equals the euclidean volume of the unit ball if the volume is the
Busemann volume) then we have

(1) Asvoln(C) ≥ bn;
(2) with equality if and only if (C, dC) is a simplex.

In a previous paper we studied the volume entropy of Hilbert ge-
ometries [BBV10]. In the present paper we are focusing on Hilbert
geometries for which the entropy is equal to zero.

In that case one can focus on the polytopal entropy defined by

(8) PolEnt(C) = lim inf
r→+∞

ln
(

VolC
(
BC(x, r)

))
ln r

.

This number can be defined for any proper measure with density, and
does not depend on the proper density nor on the centre x.

3. Upper Bound

In this section we will consider the Busemann volume and denote
once more by cB(n) the constant given by Theorem 3.

Let us define the upper n-asymptotic volume by

(9) Asvoln(C, x) = lim sup
r→+∞

VolC
(
BC(x, r)

)
rn
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Proposition 5. Let (C, dC) be an n-dimensional Hilbert geometry,
the upper n-asymptotic volume is finite, if and only if C is a polytope,
i.e.,

Asvoln(C) = lim sup
r→+∞

VolC
(
BC(x, r)

)
rn

< +∞ ⇐⇒ C is a polytope

Remark 6. The results obtained in Vernicos [Ver-b] give for any
n ∈ N the existence of convex sets in R2 with polynomial volume
growth, such that n + 2 ≤ PolEnt(C) ≤ n + 3 which are therefore not
polytopes.

Let us start with two easy lemmata which play a crucial role in the
proof of proposition 5.

Lemma 7. Let (C, dC) be a two dimensional Hilbert geometry and
p, q two extremal points on ∂C admitting supporting lines disjoint from
the line (pq). Let x be any point in C and let xp(R), xq(R) be the
intersection of the lines (xp) and (xq) with the sphere of radius R
centred at x, i.e., SC(x,R), then one has

lim
R→+∞

dC
(
xp(R), xq(R)

)
2R

= 1.

Proof. The triangle inequality implies that

(10) dC
(
xp(R), xq(R)

)
≤ 2R.

It remains to bound from below this number by a function converging
to 2R as R→ +∞.

To do so, let Hp and Hq the two disjoint supporting lines of C re-
spectively at p and q, defined thanks to the affine functions fp and fq,
which are supposed to be strictly positive on C. Let Sp,q be the convex
set defined by Sp,q = {z | fp(z) > 0 and fq(z) > 0}, by definition it
contains C. Then we have the usual comparison, even if the convex is
not bounded,

(11) dC
(
xp(R), xq(R)

)
≥ dSp,q

(
xp(R), xq(R)

)
.

Now by definition of the Hilbert metric and of the point xp(R) we
have

dSp,q
(
x, xp(R)

)
∼ 1

2
ln

||x− p||
||xp(R)− p||

∼ dC
(
x, xp(R)

)
= R

and the same equivalence holds when replacing p by q. Now, denote
by p(R) and q(R) the intesection of the line

(
xp(R)xq(R)

)
respectively

with Hp and Hq. Then

dSp,q
(
xp(R), xq(R)

)
=

1

2
ln

(
||p(R)− xq(R)||
||p(R)− xp(R)||

)
+

1

2

(
||q(R)− xp(R)||
||q(R)− xq(R)||

)
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Hence, thanks to the inequalities (10) and (11) in order to conclude
it suffices to show that

(12) ln

(
||p(R)− xq(R)||
||p(R)− xp(R)||

)
∼ ln

||x− p||
||xp(R)− p||

,

and the same when commuting p and q. But as p and q play similar
roles we just need to do the computations for one of them.

Let A(R) be the intersection of the line (xp) with the line through
xq(R) parallel to Hp (i.e. the line whose equation is fp(z) = fp

(
xq(R)

)
).

By Thales’s Theorem we have

(13)
||xp(R)− xq(R)||
||p(R)− xp(R)||

=
||xp(R)− A(R)||
||p− xp(R)||

Notice that as R→ +∞, A(R) converges to A(∞), the intersection
between (xp) and the line through q parallel to Hp, let us denote by
K = ||p − A(∞)||. By assumption Hp is different from (pq) which
implies that A(∞) is not p, hence ||p − A(∞)|| > 0. Therefore for R
large enough, ||xp(R)− A(R)|| is bounded from above, let say by 2K,
and from below by K/2.

To finish the proof of the equivalence (12) let us notice that

ln

(
||p(R)− xq(R)||
||p(R)− xp(R)||

)
= ln

(
1 +
||xp(R)− xq(R)||
||p(R)− xp(R)||

)
= ln

(
1 +
||xp(R)− A(R)||
||p− xp(R)||

)
by (13)

= ln

(
||x− p||
||p− xp(R)||

)
+ ln

(
||p− xp(R)||+ ||xp(R)− A(R)||

||x− p||

)
,

the second part of this last equality converges to ln(K/||x − p||) and
the first part to 2R.

�

Lemma 8. Let (C, dC) be a two dimensional Hilbert geometry.
Then (C, dC) is a polygone if and only if the family of extreme points
on its boundary such that any two of them satisfy the assumptions of
lemma 7 is finite.

Proof. Suppose that (C, dC) satisfies the assumption and is not a poly-
gone. By Krein-Millman’s theorem there exists a sequence (xk)k∈N of
disjoint extremal points of ∂C. However, for a given point xk and a
given support line lk at xk there is at most one other point xk′ which
admits also lk as a support line. Hence we can extract a subsequence
(xϕ(k))k∈N and a family Hk of distincts support lines, none of them
containing, any two points of (xϕ(k))k∈N, which contradicts our assump-
tion. �



ASYMPTOTIC VOLUME IN HILBERT GEOMETRIES 9

Proof of Proposition 5. In the proof of Proposition 4 in[Ver09] we proved
that in a polytope of Rn, the volume of balls of radius r was less than
a constant times rn. Once again the co-area inequality obtained in
[BBV10] implies that the volume of spheres of radius r is also bounded
by a constant times rn−1, otherwise we would get a contradiction.

Reciprocally, let us suppose that C is not a polytope. Then it admits
a plane section which is not a polygon, and by lemma 8 on the boundary
of that section for any k ∈ N∗ there exist a subset Xk with k extremal
points of ∂C such that any two of them satisfy the assumptions of
Lemma 7. Without loss of generality, wa can assume that x belongs to
that plane section.

Then let us fix some k and a corresponding subset Xk of the bound-
ary. Then following Lemma 7 for any given pair of points (p, q) in Xk,
there exists an Rp,q > 0 such that for any R > Rp,q, if xp(R) and xq(R)
are the intersections of the lines (xp) and (xq) with the sphere of radius
R centred at x, i.e., SC(x,R) , then

dC
(
xp(R), xq(R)

)
> R.

Let us consider Rk > max{Rp,q | p, q ∈ Xk}
For any extremal point p ∈ Xk let us consider the ball Bp,R of radius

R/4 centred at xp(3R/4). Then for any radius R > Rk, and any pair
of points p, q ∈ Xk, the corresponding balls Bp,R and Bq,R are disjoints.
Thus

(14)
∐
p∈Xk

Bp,R ⊂ BC(x,R).

Hence for any R > Rk the sum of the volume of the balls Bp,R, for
p ∈ Xk, is smaller than the volume of the ball of radius R centred at
x, i.e.,

(15)
∑
p∈Xk

VolC
(
Bp,R

)
≤ VolC

(
BC(x,R)

)
.

We now apply the lower bound on the volume of the balls of radius
R/4 obtained in Theorem 3 to the inequality (15) to obtain a lower
bound in terms of k and Rn:

(16) kcB(n)(R/4)n ≤ VolC
(
BC(x,R)

)
,

and taking the limit as R goes to infinity we finally get

(17) k
cB(n)

4n
≤ Asvoln(C).

This being true for any integer k ∈ N we conclude that Asvoln(C) is
infinite. �

During the previous proof with ended up with the equation (17)
which can be summed up in the following way.
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Proposition 9. For any integer n ∈ N, there exists a constant a(n)
such that for any polytope Pk with k vertices and non-empty interior
in Rn one has

a(n)k ≤ Asvoln(C).

We also get the following corollary, which is also a consequence of
Colbois-Verovic [CVc11]

Corollary 10. Let (C, dC) be a Hilbert geometry in Rn which quasi-
isometrically embeds into a n-dimensional vector space, then C is a
polytope.

Proof. Let us denote the vector space by (V, ‖ · ‖), then by definition,
this means that there exists a function f : C → Rn and two constants
A and B such that

1

A
dC(p, q)−B ≤

∥∥f(p)− f(q)
∥∥ ≤ AdC(p, q) +B.

Now consider a ball of radius R > 2AB centred at x in (C, dC) and
consider a maximal 2BA separated set S in that ball. Let p, q be two
points in that set, then

∥∥f(p)−f(q)
∥∥ ≥ B, hence this is a B separated

set in V .
Moreover the image of the ball of radius R centred at x is included

in the ball of radius AR +B centred at f(x).
Therefore, using the volume of ball in V , we deduce that S has less

than (AR +B)n/Bn points.
Recall that, following Colbois-Vernicos [CVs06] (see Théorème 9),

there is a constant V (2AB) independant of the n-dimensional Hilbert
geometry such that for any point y, VolC(BC(y, 2AB) ≤ V (2AB). As a
maximal 2AB-separated set is also 2AB covering, i.e. any other point
is at distance less than or equal to 2AB from S, we obtain that

VolC
(
BC(x,R)

)
≤ V (2AB)

(AR +B)n

Bn

which implies that the upper asymptotic volume of C is finite. �
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géométrie de Hilbert plane Bulletin de la SMF, 134(3):357-381, 2006.

[CVs07] B. Colbois and C. Vernicos. Les géométries de Hilbert sont à géométrie
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