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ON THE HILBERT GEOMETRY OF PRODUCTS

CONSTANTIN VERNICOS

Abstract. We prove that the Hilbert geometry of a product of
convex sets is bi-lipschitz equivalent the direct product of their
respective Hilbert geometries. We also prove that the volume en-
tropy is additive with respect to product and that amenability of
a product is equivalent to the amenability of each terms.

Introduction and statement of results

Hilbert geometries are simple metric geometries defined in the inte-
rior of an open convex set thanks to cross-ratios. They are generali-
sations of the projective model of the Hyperbolic geometry. Because
of their definition they are invariant by the action of projective trans-
formations. Among all these geometries, those admitting a discrete
subgroup of their isometries acting co-compactly, commonly known as
divisible Hilbert geometries or divisible convex sets, play an important
part. For instance we can find examples of such geometries, which
are Hyperbolic in the sense of Gromov with a quotient which does not
admit any Riemannian hyperbolic metric [Ben06].

The present paper focuses on product of Hilbert Geometries, and
takes its roots in the following question: Does the product of two di-
visible convex sets give a divisible convex set ? The answer to that
question is no and is given by a very simple example, the Hilbert ge-
ometry of the square. Indeed, the Hilbert geometry of the segment
[−1, 1], which is isometric to the real line, is divisible. However the
product of two such segments, which is a square in R2, endowed with
its Hilbert geometry is not a divisible convex set, which is related to the
fact that one can’t immerse PGL(2,R)× PGL(2,R) into PGL(3,R).

However following B. Colbois, C. Vernicos, P. Verovic [CV11] the
Hilbert geometry of a polygon is bi-lipschitz equivalent to R2. In the
light of that example we asked ourselves what is the relation between
the Hilbert geometry of a product and the product of Hilbert geome-
tries.

Before stating our results let us first present a more precise definition
of a what a Hilbert geometry is and introduce the invariants involved
in the present work.

2000 Mathematics Subject Classification. Primary 53C60; Secondary 53C24,
58B20, 53A20.
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2 C. VERNICOS

A proper open set in Rn is a set not containing a whole line. A
Hilbert geometry (C, dC) is a non empty proper open convex set C on
Rn (that we shall call convex domain) with the Hilbert distance dC
defined as follows: for any distinct points p and q in C, the line passing
through p and q meets the boundary ∂C of C at two points a and b,
such that one walking on the line goes consecutively by a, p, q b. Then
we define

dC(p, q) =
1

2
ln[a, p, q, b],

where [a, p, q, b] is the cross ratio of (a, p, q, b), i.e.,

[a, p, q, b] =
‖q − a‖
‖p− a‖

× ‖p− b‖
‖q − b‖

> 1,

with ‖ · ‖ the canonical euclidean norm in Rn. If either a or b is at
infinity the corresponding ratio will be taken equal to 1.

Note that the invariance of the cross ratio by a projective map implies
the invariance of dC by such a map.

The Hilbert distance dC is the length distance associated to a C0

Finsler metric FC which can be descibed as follows: if p ∈ C then
FC(p, ·) is the support function of the Minkowski sum

1/2(C∗p − C∗p) =
{1

2
x− 1

2
y | x, y ∈ C∗p

}
where C∗p is the dual convex set associated to C when p is taken as the
origin.

The straight segments are always geodesics, but when the boundary
of the convex sets admits coplanar segments, there are infinitely many
other geodesics.

The Hausdorff measure associated to the Hilbert metric is in that
case a Borel measure µC on C. The metric ball of radius R centred
at the point p of the convex domain C will be denoted by BC(p,R).
The volume entropy of (C, dC) is a constant measuring the exponential
volume growth rate of these metric balls and is defined as follows

Ent(C) := lim sup
R→+∞

lnµC
(
BC(p,R)

)
R

.

A Hilbert geometry is said to be divisible when it admits a co-
compact subgroup of isometries. In other words it admits a co-compact
quotient with respect to the action of that subgroup. In that case, if
we consider the orbit of a point of our convex under the action of this
group we obtain a discretisation, and as it happens this discretisation
is quasi-isometric to our initial geometry. Actually this is true for any
Hilbert geometry when we consider a discretisation, see Theorem 1 in
[Ver09]. However in the general case we don’t have a co-compact sub-
group of isometries, but one can consider the pseudo group of bounded
perturbations of the identity acting on a given discretisation. In the



HILBERT GEOMETRY OF PRODUCTS 3

case of a divisible Hilbert geometry and a discretisation induced by the
action of the co-compact subgroup, this pseudo group is isomorphic to
the later. That is why a Hilbert geometry is said to be amenable when
this pseudo group is, which the author proved to be equivalent to the
existence of a Fölner sequence by generalising results of R. Brooks in
our setting (see again [Ver09]).

We are now ready to present the first answer we give relating the
Hilbert geometries of two convex sets and their product takes the fol-
lowing form:

Theorem 1 (Main Proposition). The Hilbert Geometry of a prod-
uct of open convex sets is bi-lipschitz equivalent to the direct metric
product of the Hilbert Geometries of those convex sets.

The proof of that theorem is surprisingly simple but it allows us
to get an impressive range of corollaries, in particular the existence
of a volume decomposition inequality (see corollary 5) which allows
one to apply Fubini’s theorem. Noticeably with respect to the volume
entropy (see also G. Berck, A. Bernig and C. Vernicos [BBV10], and
M. Crampon [Cra]) and amenability (see C. Vernicos [Ver09]) we obtain
the following consequences.

Theorem 2 (Main consequences). Consider the two bounded open
convex sets A and B, then

(1) The volume entropy is additive :

Ent(A×B) = Ent(A) + Ent(B);

(2) The product Hilbert geometry (A × B, dA×B) is amenable if
and only if both Hilbert geometries (A, dA) and (B, dB) are
amenable.

Although the product of divisible convex sets need not be divisible
itself thanks to the Main consequences one can apply M. Crampon [Cra]
theorem on volume entropy to get new rigidity results (see corollaries
7 and 9 in section 3).

Let us conclude by an ”opening” remark. Our Main theorem shows
that a second family of Hilbert Geometry seems to play a similar role to
the divisible one, those we could call the lip-divisible ones, i.e., whose
group of bi-Lipschitz bijections admits a discrete subgroup acting co-
compactly. Noticeably, following our theorem, this family is closed
under product.

1. Definitions and notations

Finsler stucture. : Let C be a proper open convex set. Let us give an
analytical definition of the Finsler metric which gives rise to the Hilbert
metric. For any p ∈ C and v ∈ TpC = Rn with v 6= 0, the straight line
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passing by p and directed by v meets ∂C at two points p+
C and p−C .

Then let t+ and t− be two positive numbers such that p + t+v = p+
C

and p − t−v = p−C , in other words these numbers corresponds to the
time necessary to reach the boundary starting at p with the speed v
and −v. Then we define

FC(p, v) =
1

2

(
1

t+
+

1

t−

)
and FC(p, 0) = 0.

Should p+
C or p−C be at infinity, then corresponding ratio will be taken

equal to 0.

Busemann measure. Let us now describe the Hausdorff measure µC
on C in this setting. For historical reasons in the realm of Hilbert
geometries, this measure is also known as Busemann measure.

To any p ∈ C, let βC(p) = {v ∈ Rn | FC(p, v) < 1} be the open unit
ball in TpC = Rn of the norm FC(p, ·) and ωn the euclidean volume of
the open unit ball of the standard euclidean space Rn. Consider the
(density) function hC : C −→ R given by hC(p) = ωn/Leb

(
βC(p)

)
, where

Leb is the canonical Lebesgue measure of Rn equal to 1 on the unit
”hypercube”. We define µC, by

µC(A) =

∫
A

hC(p)dLeb(p)

for any Borel set A of C (in other words, for any point p ∈ C we have
dµC(p) = hC(p)dLeb(p)).

Bottom of the spectrum. The bottom of the spectrum of C, denoted by
λ1(C), and the Sobolev constant S∞(C) are defined as in a Riemannian
manifold of infinite volume, thanks to the Raleigh quotients as follows
(1)

λ1(C) = inf

∫
C
||dfp||∗C

2 dµC(p)∫
C
f 2(p)dµC(p)

, S∞(C) = inf

∫
C
||dfp||∗C dµC(p)∫
C
|f |(p)dµC(p)

,

where the infimum is taken over all non zero lipschitz functions with
compact support in C

Finally the Cheeger constant of C is defined by

(2) I∞(C) = inf
U

νC(∂U)

µC(U)
,

where U is an open set in C whose closure is compact and whose bound-
ary is a n−1 dimensional submanifold, and νC is the Hausdorff measure
associated to the restriction of the Finsler norm FC to hypersurfaces.

Thanks to [CV06] we know that there is a constant c such that

(3)
1

c
· S∞(C) ≤ I∞(C) ≤ c · S∞(C).
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Let us finish by adapting the statement of the main Theorem from
our paper related to amenability [Ver09] four our present purpose.

Theorem 3. Let C be a convex domain in Rn. The following are
equivalent

(1) (C, dC) is amenable;
(2) S∞(C) = 0;
(3) λ1(C) = 0.

2. The decomposition lemma

Theorem 4. Consider the family of convex domains Ai ∈ Rni ,
for i = 1, . . . , k and ni ∈ N∗, then for any point p = (p1, . . . , pk) of
the convex domain A1 × · · · × Ak and any vector v = (v1, . . . , vk) ∈
Rn1 × · · · × Rnk one has

max
1≤i≤k

FAi
(pi, vi) ≤ FA1×···×An(p, v) ≤

k∑
i=1

FAi
(pi, vi),

therefore the identity restricted to A1 × · · · × Ak is a bi-lipschitz map
between (A1×· · ·×Ak, dA1×···×Ak

) and the direct product of the metric
spaces (Ai, dAi

) for i = 1, . . . , k.

Proof. Consider a point p = (p1, . . . , pk) of the convex domain A1 ×
· · · × Ak and a vector v = (v1, . . . , vk) ∈ Rn1 × · · · × Rnk . If the two
positive numbers t+ and t− are such that

p+ t+v ∈ ∂(A1 × · · · × Ak) and p− t−v ∈ ∂(A1 × · · · × Ak)

then FA1×···×Ak
(p, v) = 1

2

(
1
t+

+ 1
t−

)
. This implies that for some i, j ∈

{1, . . . , k}, pi + t+vi ∈ ∂Ai and pj − t−vj ∈ ∂Aj.
Hence, should we define for each integer i ∈ {1, . . . , k} the positive

numbers t+i and t−i by asking that

pi + t+i vi ∈ ∂Ai and pi − t−i vi ∈ ∂Ai,

we would then obtain t+ = min{t+1 , . . . , t+k } and t− = min{t−1 , . . . , t−k },
which would imply that

FA1×···×Ak
(p, v) =

1

2

(
max{1/t+1 , . . . , 1/t+k }+ max{1/t−1 , . . . , 1/t−k }

)
and therefore using the classical comparison between the l1 and l∞

norm in Rk we get

1

2
max
1≤i≤k

{
1

t+i
+

1

t−i

}
≤ FA1×···×Ak

(p, v) ≤ 1

2

( k∑
i=1

1

t+i
+

k∑
i=1

1

t−i

)
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which we can rewrite by associativity of the addition in the following
form:

max
1≤i≤k

1

2

{
1

t+i
+

1

t−i

}
≤ FA1×···×Ak

(p, v) ≤
k∑
i=1

1

2

( 1

t+i
+

1

t−i

)
.

�

Corollary 5 (Volume decomposition inequality). Consider the fam-
ily of convex domains Ai ∈ Rni , for i = 1, . . . , k and ni ∈ N∗. Then
at any point p = (p1, . . . , pk) ∈ A1 × · · · × An we have the following
inequality:

(4)
k∏
i=1

dµAi
(pi) ≤ dµA1×···×An(p) ≤ kn1+···+nk

k∏
i=1

dµAi
(pi).

Proof. Let us denote by Leb the Lebesgue measure on Rn1 × · · · ×Rnk

normalised by 1 on the unit cube and by Lebi the corresponding one
on Rni . Then, for any point p = (p1, . . . , pk) of the convex domain
Π = A1 × · · · × Ak, if βΠ(p) corresponds to the unit tangent ball at p
and for all i, βAi

(pi) to the unit tangent ball at pi for Ai then one has

(5)
1

kn1+···+nk

k∏
i=1

Lebi
(
βAi

(pi)
)
≤ Leb(βΠ(p)) ≤

k∏
i=1

Lebi
(
βAi

(pi)
)

and the corollary follows by definition of the measure. �

3. The volume entropy of products

The general behaviour of the volume entropy is not
yet completely understood, and the main conjecture,
to prove that it is always less than that of the Hyper-
bolic geometry, is still open in dimension bigger than
3. Therefore the next result and the generalisation it
implies validate this conjecture a little bit more. They
also simplify and generalise result obtained in [Ver08]

Proposition 6. The volume entropy is subadditive with respect to
product of convex domains: take a family of convex domains Ai ∈ Rni ,
for i = 1, . . . , k and ni ∈ N∗, then one has

(6) max
1≤i≤k

{
Ent(Ai)

}
≤ Ent(A1 × · · · × Ak) ≤

k∑
i=1

Ent(Ai).

If the convex domains are also bounded then we actually have additiv-
ity:

(7) Ent(A1 × · · · × Ak) =
k∑
i=1

Ent(Ai).
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Proof. We will do the proof for k = 2, the general case trivially follows.
Let A and C be two convex domains, respectively in Rn and Rm, and
let p = (pA, pC) ∈ A× C.

Thanks to the left hand side inequality of theorem 4, we obtain for
any point q = (qA, qc) ∈ A× C that

dA(pA, qA) ≤ dA×C(p, q) and dC(pC , qC) ≤ dA×C(p, q),

which imply the next inclusion

(8) BA×C(p,R) ⊂ BA(pA, R)×BC(pC , R).

The right hand side inequality of theorem 4 yields in turn that for
any ε > 0 , BA(pA, εR)×BC

(
pC , (1− ε)R

)
is a subset of BA×C(p,R).

Hence, computing the volumes, using the inequalities of corollary 5
we obtain that

µA
(
BA(εR)

)
× µC

(
BC((1− ε)p,R)

)
≤ µA×C

(
BA×C(p,R)

)
≤ 2n+mµA

(
BA(p,R)

)
× µC

(
BC(p,R)

)
Taking the logarithm of both inequalities, dividing by R and taking

the limit as R→ +∞, gives the following inequality, for any ε > 0:

εEnt(A) + (1− ε) Ent(C) ≤ Ent(A× C) ≤ Ent(A) + Ent(C),

which implies 6.
In case both A and C are bounded, we can work as in [CV04] with

the asymptotic balls AsBA×C(p,R), that is the image of A × C by
the dilation of ratio tanh(R) centred at p. Those asymptotic balls are
exactly the product of the asymptotic balls of A and C respectively
centred at pA and pC . Therefore

µA
(
AsBA(pA, R)

)
×µC

(
AsBC(pC , R)

)
≤µA×C

(
AsBA×C(p,R)

)
≤2n+mµA

(
AsBA(pA, R)

)
µC
(
AsBC(pC , R)

)
.

(9)

This inequality allows us to conclude using the fact shown in [CV04]
that there exists some constant K such that

BA×C(R− 1) ⊂ AsBA×C(p,R) ⊂ BA×C(R +K).

�

The following corollary is a straightforward application of M. Cram-
pon [Cra] rigidity result and the subadditivity of entropy:

Corollary 7. Consider the family of divisible convex domains with
C1 boundary Ai ∈ Rni , for i = 1, . . . , k and ni ∈ N∗, then one has

• Ent(A1 × · · · × Ak) ≤
∑

i ni − k,
• Equality occurs if and only all Ai are ellipsoids.
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Let us denote by conv(p,S) the convex hull of a point p and a set S.

Corollary 8. Let C be a convex set in Rn ⊂ Rn+1 and let p be a
point outside Rn in Rn+1. Then Ent(conv(p, C)) = Ent(C).

Proof. This comes from the fact that conv(p, C) is projectively equiva-
lent to C × ]0,+∞[, and

max
{

EntC,Ent(]0,+∞[)
}
≤ Ent(C×]0,+∞[) ≤ Ent(C)+Ent(]0,+∞[)

by Proposition 6. As ]0,+∞[ endowed with its Hilbert geometry is
isometric to the real line we easily conclude. �

M. Crampon [Cra] rigidity result applied to that case therefore im-
plies:

Corollary 9. Let C be a divisible bounded convex domain with C1

boundary in Rn ⊂ Rn+1 and let p be a point outside Rn in Rn+1. Then

• Ent(conv(p, C)) ≤ n− 1,
• Equality occurs if and only if C is an ellipsoid.

4. Amenability of products

Theorem 3 states that a Hilbert geometry is amenable if
and only if the bottom of its spectrum is null, which is
equivalent to the nullity of its Cheeger constant. In this
section we show how this property behaves with respect
to product.

Proposition 10. Consider the family of convex domains Ai ∈ Rni

for i = 1, . . . , k. The following are equivalent

(i) The Hilbert geometry of A1 × · · · × Ak is amenable;
(ii) For all i, Ai is amenable;

More precisely, with respect to the bottom of the spectrum and the
Sobolev constants we have the following inequalities:

λ1(A1 × · · · × Ak) ≥ k−n1−···−nk max
1≤i≤k

λ1(Ai)(10)

S∞(A1 × · · · × Ak) ≤ kn1+···+nk

∑
1≤i≤k

S∞(Ai).(11)

Proof. Let us denote A1× · · · ×Ak by Π. Consider a lipschitz function
with compact support f : A1× · · · ×Ak → R , then we have for almost
every point in A1×· · ·×Ak the function f admits a differential df and
for any i we have ||df ||Ai

≤ ||df ||Π, therefore for any i we have

(12)

∫
A1×···×Ak

||df ||2ΠdµΠ ≥
∫
A1×···×Ak

||df ||2Ai
dµΠ
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Now thanks to Corollary 5 we have for any i∫
Π

||df ||2Ai
dµΠ ≥

∫
Π

||df ||2Ai
dµA1 · · · dµAk

(13)

then by definition of λ, ≥ λ1(Ai)

∫
Π

f 2dµA1 · · · dµAk
,(14)

and thanks to corollary 5, ≥ λ(Ai)

kn1+···+nk

∫
Π

f 2dµΠ.(15)

which implies the inequality (10), and the implication (i)⇒ (ii).
For the other implication we will use the Cheeger constant and for

better clarity, restrict ourselves to the product of two convex sets. Now
let us suppose that I(A) = I(C) = 0 and let us prove that I(A×C) = 0.
To do so we will prove the inequality (11). Let us consider two real
valued lipschitz functions f and g with compact support respectively
in A and C. We then define the function h : A × C → R as follows:
for any p = (pA, pC) ∈ A × C, h(p) = f(pA)g(pC). We first use the
textbook equality

dh = gdf + fdg.

Applying the right hand side inequality of Theorem 4 we obtain

(16) ||dh||A×C ≤ ||dh||A + ||dh||C ≤ |g| · ||df ||A + |f | · ||dg||C .
The next step consists in integrating over A×C taking into account

the right hand side inequality of (5) to obtain∫
A×C
||dh||A×CdµA×C ≤

2nA+nC

(∫
C

|g|dµC ·
∫
A

||df ||AdµA

+

∫
A

|f |dµA ·
∫
C

||dg||CdµC
)

.

(17)

We finish by dividing by the integral of |h| over A×C using the right
hand side inequality of (5) to finally get∫

A×C ||dh||A×CdµA×C∫
A×C |h|dµA×C

≤

2nA+nC

(∫
A
||df ||AdµA∫
A
|f |dµA

+

∫
C
||dg||CdµC∫
C
|g|dµC

)
.

(18)

This last inequality implies inequality (11), and allows us to conclude
thanks to the main theorem of our paper [Ver09]. �

This proposition shades some light on the example given by proposi-
tion 4.1 in [CV07] of a Hilbert Geometry which is not Hyperbolic in the
sense of Gromov, but which has positive bottom of the spectrum, and
therefore allows us to get more example of the same kind. Indeed, it
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is straightforward that a product of convex set is never strictly convex
which implies that it is never Hyperbolic in the sense of Gromov.

5. Illustrations

In order to illustrate in a simple way our main theorem
we apply it to two geometries: the n-dimensional cube
and the n-dimensional simplex. We also prove that in
a tetrahedron, a cone with apex on an edge has finite
volume, this answers a question of L. Marquis.

The next two applications, are useful to obtain qualitative infor-
mation on volumes in the given Hilbert geometries (see for instance
proposition 6 in [CVV04] and its corollaries 6.1 and 6.2).

Proposition 11. Let Cn = ]−1, 1[n be the n-dimensional cube. We
have the following

(1) Cn is bi-lipschitz equivalent to Rn.
(2) For all x = (x1, . . . , xn) ∈ ]−1, 1[n, let βCn(x) be the tangent

unit ball for FCn at x, then we have

(2/n)n
n∏
i=1

(1− x2
i ) ≤ Leb(βCn(x)) ≤ 2n

n∏
i=1

(1− x2
i ).

Notice that actually there is a better lower bound because one can
replace (2/n)n by 2n/(n!), using theorem 4 instead of its corollary.

Proposition 12. Let Sn = ]0,+∞[n be the n-dimensional positive
cone, whose Hilbert geometry is isometric to the Hilbert geometry of
the simplex of Rn. We have the following

(1) Sn is bi-lipschitz equivalent to Rn.
(2) x = (x1, . . . , xn) ∈ ]0,+∞[n, let βSn(x) be the tangent unit ball

for FSn at x, then we have

(4/n)n
n∏
i=1

xi ≤ Leb
(
βSn(x)

)
≤ 4n

n∏
i=1

xi.

For the same reason, one can also replace (4/n)n by 4n/(n!) in this
lower bound. In that case one can actually make a precise computation
and obtain, for instance,

Leb
(
βSn(x)

)
= 12x1 · x2

Proposition 13. Let S4 be a tetrahedron in R3 endowed with its
Hilbert geometry. Consider a cone which is the closure of a disc inside
the tetrahedron with apex on one of its edges. Then the volume of that
cone is finite.
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Proof. If the disc and the apex are in the same plane the result is
straightforward, thus we can suppose that this is not the case. The
finiteness only depends on the finiteness around the summit of the cone.
Hence we can focus on a neighborhood around the apex. To do so we
can notice that there is a prismatic neighborhood around the summit
with respect to the tetrahedron, i.e. an edge is a segment centred at
the summit included in the tetrahedron’s edge the apex belongs to, and
the two faces of the tetrahedron whose intersection defines that edge,
contains two of the faces of the prism (see also [Ver14]). Besides by
the comparison of volumes, the volume around the summit of the cone
with respect to the Hilbert geometry of this prism is bigger than with
respect of the tetrahedron’s Hilbert geometry. Therefore it suffices to
prove the result for such a prism.

Without loss of generality, we can now suppose that: The prism is
given by the intersection of the planes z + x > 0, z − x > 0, z < 1,
and −1 < y < 1. The edge we are interested in will be the intersection
of z = x = 0 and −1 < y < 1 and the summit of the cone is the
origin. The cone C itself will be given in cylindrical coordinates by
λρ < z < s < 1, with λ > 1.

Now thanks to the corrollary 5, we know that the volume of this
cone is bounded from above, from some constant K, by

(19) I = K

∫ s

0

∫ z/λ

0

∫ π/2

0

ρ dρ dt dz

(z2 − ρ2 cos2 θ)(1− ρ2 sin2 θ)(1− z)
.

Where we took into account the symmetries involved for the integral
(noticeably the π/2). Now taking into account that (1 − z) ≥ (1 − s)
and (1− ρ2 sin2 θ) ≥ (1− s2/λ2) we obtain that

(20) I ≤ K

(1− s2/λ2)(1− s)

∫ s

0

∫ z/λ

0

∫ π/2

0

ρ dρ dt dz

z2 − ρ2 cos2 θ
.

Now we compute this last integral∫ s

0

∫ z/λ

0

∫ π/2

0

ρ dρ dt dz

z2 − ρ2 cos2 θ

=

∫ s

0

∫ z/λ

0

∫ π/2

0

dρ dt dz

2 cos θ

(
1

z − ρ cos θ
− 1

z + ρ cos θ

)
=

∫ s

0

∫ π/2

0

− ln

(
1− cos2 θ

λ2

)
dθ

2 cos2 θ
dz

= s

∫ π/2

0

− ln

(
1− cos2 θ

λ2

)
dθ

2 cos2 θ
.(21)

The integral (21) being convergent this concludes our proof.
�
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Institut de mathématique et de modélisation de Montpellier, Uni-
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