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LIPSCHITZ CHARACTERISATION OF POLYTOPAL
HILBERT GEOMETRIES

CONSTANTIN VERNICOS∗

Abstract. We prove that the Hilbert Geometry of a convex set
is bi-lipschitz equivalent to a normed vector space if and only if
the convex is a polytope.

Introduction and statement of results

A Hilbert geometry is a particularly simple metric space on the in-
terior of a compact convex set C modelled on the construction of the
Klein model of Hyperbolic geometry inside an euclidean ball. This
metric happens to be a complete Finsler metric whose set of geodesics
contains the straight lines. Since the definition of the Hilbert geometry
only uses cross-ratios, the Hilbert metric is a projective invariant.

In addition to ellipsoids, a second family of convex sets play a dis-
tinct role among Hilbert geometries: the simplexes. If the ellipsoids’
geometry is isometric to the Hyperbolic geometry and are the only Rie-
mannian Hilbert geometries (see D.C. Kay [Kay67, Corollary 1]), at the
opposite side simplexes happen to be the only ones whose geometry is
isometric to a normed vector space (e.g. see De la Harpe [dlH93] for
the existence and Foertsch & Karlsson [FK05] for the uniqueness).

A lot of the recent works done in the context of these geometries
focus on finding out how close they are to the hyperbolic geometry,
from different viewpoints (see, e.g., A. Karlsson & G. Noskov [KN02],
Y. Benoist [Ben03, Ben06] for δ-hyperbolicity, E. Socie-Methou [SM02,
SM04] for automorphisms and B. Colbois & C. Vernicos [CV06, CV07]
for the spectrum). It is now quite well understood that this is closely
related to regularity properties of the boundary of the convex set. For
instance if the boundary is C2 with positive Gaussian curvature, then
B. Colbois & P. Verovic [CV04] have shown that the Hilbert geometry
is bi-lipschitz equivalent to the Hyperbolic geometry.

The present work investigates those Hilbert geometries close to a
norm vector space.
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Along that path it has been noticed than any polytopal Hilbert ge-
ometry can be isometrically embedded in a normed vector space of
dimension twice the number of it faces (see B.C. Lins [Lin07]). Then
B. Colbois & P. Verovic [CV] showed that in fact no other Hilbert ge-
ometry could be quasi-isometrically embedded into a normed vector
space. Furthermore with B. Colbois and P. Verovic [CVVa] we have
shown that the Hilbert geometries of plane polygons are bi-lipschitz to
the euclidean plane. Even though we saw no reason for this result not to
hold in higher dimension, our point of view made it difficult to obtain a
generalisation due to the computations it involved. The present works
aims at filling that gap by giving a slightly different proofs which holds
in all dimension, with less computations, but at the cost of a longer
study of simplexes. Hence our main results is the following,

Theorem 1. Let P ⊂ Rn be a convex polytope, its Hilbert Ge-
ometry (P , dP) is bi-lipschitz to the n-dimensional euclidean geometry
(Rn, ‖·‖). In other words there exist a map F : P → Rn and a constant
L such that for any two points x and y in P ,

1

L
·
∥∥F (x)− F (y)

∥∥ 6 dP(x, y) 6 L ·
∥∥F (x)− F (y)

∥∥.

The main idea is that a polytopal convex set can be decomposed
into pyramids with apex its barycentre and base its faces, and then to
prove that each pyramid is bi-Lipschitz to the cone it defines. However
due to the multitude of available faces in dimension higher than two, a
reduction is needed and consists in using the barycentric subdivision to
decompose each of these pyramids into similar simplexes, and to prove
that each of these simplexes is bi-Lipschitz to the cone it defines.

The following corollary ”à la” Bourbaki sums up the known charac-
terisations of the polytopal Hilbert geometries

Corollary 2. Let C ∈ Rn be a properly open convex set and (C, dC)
its Hilbert geometry. Then the following are equivalent

(1) C is a polytopal convex domain;
(2) (C, dC) is bi-lipschitz equivalent to an n-dimensional vector space;
(3) (C, dC) is quasi-isometric to the euclidean n-dimensional vector

space;
(4) (C, dC) isometrically embeds into a normed vector space;
(5) (C, dC) quasi-isometrically embeds into a normed vector space;

Note. Theorem 1 was found and proved with a completely different
approach by Andreas Bernig [AB09]. The two approaches are some-
what dual to one another: where Bernig uses faces, we use vertices.
Let us also stress out that the heart of our proof lies on the comparison
Theorem 8 which is interesting on its own.
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1. Definition of a Hilbert Geometry and notations

1.1. Hilbert Geometries. Let us recall that a Hilbert geometry (C, dC)
is a non empty bounded open convex set C on Rn (that we shall call
convex domain) with the Hilbert distance dC defined as follows : for
any distinct points p and q in C, the line passing through p and q meets
the boundary ∂C of C at two points a and b, such that one walking on
the line goes consecutively by a, p, q b (figure 1). Then we define

dC(p, q) =
1

2
ln[a, p, q, b],

where [a, p, q, b] is the cross ratio of (a, p, q, b), i.e.,

[a, p, q, b] =
‖q − a‖
‖p− a‖

× ‖p− b‖
‖q − b‖

> 1,

with ‖ · ‖ the canonical euclidean norm in Rn.

a

b

p

q

∂C

Figure 1. The Hilbert distance

Note that the invariance of the cross-ratio by a projective map im-
plies the invariance of dC by such a map.

These geometries are naturally endowed with a C0 Finsler metric FC
as follows: if p ∈ C and v ∈ TpC = Rn with v 6= 0, the straight line
passing by p and directed by v meets ∂C at two points p+ and p− ; we
then define

FC(p, v) =
1

2
‖v‖
(

1

‖p− p−‖
+

1

‖p− p+‖

)
and FC(p, 0) = 0.

The Hilbert distance dC is the length distance associated to FC.
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p

p+

p−

vv

∂C

Figure 2. The Finsler structure

1.2. Faces. Recall that to a closed convex set K we can associate an
equivalent relation, stating that two points A and B are equivalent if
there exists a segment [C,D] ⊂ K containing the segment [A,B] such
that C 6= A,B and D 6= A,B. The equivalent classes are called faces.
A face is called a k-face, if the dimension of the smallest affine space
containing it is k. As usual we call vertex a 0-dimensional face.

In this paper a simplex in Rn is the convex closure of n+1 projectively
independent points, i.e., a triangle in R2, a tetrahedron in R3, etc...

Definition 3 (Conical faces). Let C be a convex set. If there is
a simplex S containing C such that a non-empty k-face f ⊂ ∂C is
included in a k-face of S, we say that f is a conical face and that C
admits a conical face.

Figure 3. Conical faces in dimension 3

When a face f is in the boundary of another face F we write f < F .

Definition 4 (Conical flag). Let C be a convex set in Rn. If there
exist a simplex S contained in C, with a flag ∅ < f0 < f1 < f2 < . . . <
fn−1 < S, such that for any k = 0, . . . , n− 1,

(1) fk is inside a k-conical face of C;
(2) no other k-face of S is inside a k-conical face of C;
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then we will call f0 < f1 < f2 < . . . < fn−1 < C a conical flag and say
that C admits a conical flag. Furthermore we will call S a conical flag
neighborhood.

1.3. Prismatic neighborhoods and cones.

Definition 5 (Prismatic neighborhoods). Let S be a simplex in Rn

and let xk be a point inside a k-face of S. Let Ak be the k-dimensional
affine space containing xk and its k-face. Let (e1, e2, . . . , ek) be an
orthonormal basis of the vector space Ak − xk completed into an or-
thonormal basis of Rn with v1, . . . , vn−k, where each of these vectors
is parallel to one of the k + 1-faces of S which contain xk in their
boundary.

• An (ε, α)-prismatic neighborhood with k-dimensional apex of

xk is the convex closure of a k-cube of diameter 2
√
kε centred

at xk in Ak and its translate by αvi, i = 1, . . . , n− k.

Sx2 S
x1

Figure 4. Prismatic neighborhoods of a point in a 1-
face and a 2-face in dimension 3

• An ε-prismatic cone with k-dimensional apex centred at xk is
the union of all (ε, α)-prismatic neighborhoods with k-dimensional
apex of xk for α ∈ R+.

S
x1

Figure 5. Prismatic cone of a 1-face in dimension 3

The following lemma, which compares the Hilbert geometries of a
prismatic neighborhood of a point x and its corresponding cone around
that point x, will play a critical role in the sequel.

Lemma 6. Let S be a simplex in Rn and let xk be a point inside
a k-face of S. For any pair of positive numbers ε, α > 0 let Pk be a
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(ε, α)-prismatic neighborhood with k-dimensional apex of xk, and PCk
the corresponding prismatic cone. Then for any sequence (yn, vn)n∈N
in Pk × Rn such that the sequence (yn)n∈N tends to xk, one has

lim
n→∞

FPk
(yn, vn)

FPCk(yn, vn)
= 1.

This lemma is a straightforward consequence of proposition 2.6’s
proof in [BBV10] which can be restated in the following way

Proposition 7. Let K,K ′ be closed convex sets not containing
any straight line and for any point x in K ∩ K ′, let ‖ · ‖x, ‖ · ‖′x be
their respective Finsler norm induced by the their respective Hilbert
geometries. Let p ∈ ∂K, E0 a support hyperplane of K at p and E1 a
hyperplane parallel to E0 intersecting K. Suppose that K and K ′ have
the same intersection with the strip between E0 and E1 (in particular
p ∈ ∂K ′). Then as functions on RP n−1, ‖ · ‖x/‖ · ‖′x uniformly converge
to 1.

2. Metric comparison around a conical flag

Theorem 8. Let A and B bet two convex set with a common con-
ical flag neighborhood S then there exists a constant C such that for
any x ∈ S and v ∈ Rn one has

(1)
1

C
· FB(x, v) 6 FA(x, v) 6 C · FB(x, v)

Example 9. In the two dimensional case the condition is that A
and B contain a triangle S, one of its edges on their boundaries, a
vertex of which, and only one, is an extremal point of both of them
where they fail to be C1.

A B

A0 = B0

S

Figure 6. Illustration of Example 9
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To prove Theorem 8 we will reduce to the case where both A and
B are simplexes and A ⊂ B (see Figure 7). This is the intermediate
Lemma 10 whose statement and illustration follow.

∂Cout
∂Cin

∂S

Figure 7. The simplexes of lemma 10

Lemma 10. Suppose that S, Cin and Cout are three n-simplexes
such that S ⊂ Cin ⊂ Cout and S is a common conical flag neighborhood
of Cin and Cout. Then there exists a constant M such that for any x ∈ S
and any vector v ∈ Rn one has

FCout(x, v) 6 FCin(x, v) 6M · FCout(x, v)

We can now present Theorem 8’s proof as a corollary.

Proof of Theorem 8. Thanks to our assumption we can built a simplex
Cin inside A ∩ B containing S and a simplex Cout containing A ∪ B
satisfying the assumptions required by lemma 10.

Then the inclusions Cin ⊂ A∩B and A∪B ⊂ Cout give the following
sets of inequalities

FCout(x, v) 6 FA(x, v) 6 FCin(x, v),

and

FCout(x, v) 6 FB(x, v) 6 FCin(x, v).

We combine these inequalities to obtain

FCout(x, v)

FCin(x, v)
6
FA(x, v)

FB(x, v)
6

FCin(x, v)

FCout(x, v)
,

and we conclude thanks to Lemma 10.
Let us make the construction of Cin and Cout precise. To do so, let

us consider the conical flag f0 < f1 < · · · < fn−1 < S. Then we will
denote the k-face of A containing fk by Ak and similarly by Bk the
corresponding face of B.
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For n > k > 0, let us denote by vk the vertex of S inside Ak ∩ Bk,
but not inside Ak−1 ∩ Bk−1 and by pk the barycentre of the vertexes
vk, . . . , v0. Then by assumption there exists a point vk 6= vk,1 ∈ Ak∩Bk
such that the segment [pk, vk,1] contains vk. We take for Cin the convex
hull of vn,1, . . . , v0,1.

For Cout, we will actually built its convex dual. Indeed, if we take the
dual convexes of A, B and S with respect to some point in the interior
of S, we obtain respectively three convex sets B∗, A∗ and S∗ such that
both B∗ and A∗ are inside S∗. Furthermore, for k = 0, · · · , n−1, let us
denote by S∗k the k-face of S∗ corresponding to the hyperplanes tangent
to fn−k−1. Then by assumption, S∗k contains the hyperplanes tangent
to An−k−1 and to Bn−k−1 but not to An−k or Bn−k.

Let us also remark that as fn−k−1 is in the intersection of An−k−1 and
Bn−k−1, which are both conical faces of A and B respectively. Therefore
the intersection of hyperplanes containing both these faces but no other
faces of either A or B, and simultaneously tangent to A and B is an
open and not empty set of S∗k , which we shall denote by O∗k.

In particular the vertex S∗0 = O∗k corresponds to the common hyper-
plane containing the three faces An−1, Bn−1 and fn−1.

Now, let w0 be the vertex S∗0 , and for k = 1, . . . , n− 1 take a point
wk in Ok. Let also take a point wn in the intersection of the convex
sets A∗ and B∗. Then by construction, if we let C∗out be the interior
of the convex hull of w0, · · · , wn, it is a simplex, which is a common
conical flag of A∗, B∗ and S∗. Thus its dual will contain both A and
B, and admits S as a conical flag neighborhood. Therefore that is our
simplex Cout.

�

2.1. Proof of lemma 10.

2.1.1. Notation needed along the proof. Recall that S, Cin and Cout are
three n dimensional simplexes such that S ⊂ Cin ⊂ Cout. By assumption
the closure of one of the n−1 dimensional faces of S is the intersection
of the closure of these three simplexes. In fact, for every k 6 n − 1,
there is a unique k dimensional face of S, denoted by fk, which is also
inside a k dimensional face of Cin and Cout, denoted respectively by ϕin,k

and ϕout,k. Our assumptions imply

fk ⊂ ϕin,k ⊂ ϕout,k.

We will denote by Ak the k-dimensional affine space containing the
three faces fk, ϕin,k and ϕout,k for 0 6 k 6 n. Hence A0 is a common
vertex to the three simplexes and An the whole space Rn.

2.1.2. Step 0: Ignition. The left inequality of lemma 10 is a straight-
forward consequence of the fact that Cin ⊂ Cout.

For the right inequality, by homogeneity we can restrict to vectors v
in the unit euclidean sphere Bn. Hence we will focus on the following
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ratio, where x is inside S and v a unit vector

Q(x, v) =
FCin(x, v)

FCout(x, v)
.

We want to show that Q remains bounded on S × Bn
Hypothesis. Let us suppose by contradiction thatQ is not bounded.

Thanks to that hypothesis we can find a sequence (xl, vl)l∈N such
that for all l ∈ N, xl ∈ S, vl ∈ Bn and most importantly

(2) Q(xl, vl)→ +∞.

Due to the compactness of S×Bn, at the cost of taking a sub-sequence,
we can assume that this sequence converges to (x∞, v∞)

Remark 11. If x remains in a compact set U inside Cin , then Q
remains bounded as a continuous function of two variables over the
compact set U × Bn.

2.1.3. Step 1: Focusing on faces. Thanks to the above remark 11, if
(xl)l∈N were to converge toward a point in Cin, we would get a contra-
diction. Hence x∞ has to be on the boundary of Cin, which implies that
x∞ is on a common face of the three simplexes.

We will suppose that x∞ belongs to the k-dimensional face fk of S
and obtain a contradiction.

To do so we will make two simplifications:

(1) We first replace the three simplexes by three prismatic neigh-
borhoods of x∞, is such a way that Q(xl, vl) remains bounded if
the analogous quotient for these prismatic neighborhoods does
(Step 2 and 3).

(2) We then replace the three prismatic neighborhoods by their
three corresponding prismatic cones centred at x∞ and then we
prove that the corresponding quotient remains bounded (Step
4, lemmata 6 and 13).

2.1.4. Step 2: The prismatic neighborhoods. For the following con-
structions we fix k and we suppose that the limit point x∞ belongs
to the k-dimensional face of S, i.e., x∞ ∈ fk.

If k 6= 0, choose 0 < α < β < γ such that

(i) the (α, α)-prismatic neighborhood of x∞ with respect to S is in-
side S;

(ii) the (β, β)-prismatic neighborhood of x∞ with respect to Cin is
inside Cin;

(iii) the (γ, γ)-prismatic neighborhood of x∞ with respect to Cout con-
tains Cout;

(iv) the (β, β)-prismatic neighborhood of x∞ with respect to Cin con-
tains the (α, α)-prismatic neighborhood of x∞ with respect to S.

Then we will denote by
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(i) PS,k the (α/2, α/2)-prismatic neighborhood of x∞ with respect to
S;

(ii) Pin,k the (β/2, β/2)-prismatic neighborhood of x∞ with respect to
Cin;

(iii) Pout,k the (2γ, 2γ)-prismatic neighborhood of x∞ with respect to
Cout;

∂Cout
∂Cin

∂S

PS,1
Pin,1

Pout,1

Figure 8. Prismatic neighborhoods of a 1-face in di-
mension 3

For k = 0, we take S = PS,0, Cin = Pin,0 and Cout = Pout.0.
Now let us define for any point x in the prismatic neighborhood of

x∞ with respect to S, PS,k, and any unit vector v ∈ Bn the following
ratio

(3) Rk(x, v) =
FPin,k

(x, v)

FPout,k
(x, v)

.

We introduce this ratio because for any point x ∈ PS,k and vector v
it bounds from above Q, i.e.:

(4) Q(x, v) 6 Rk(x, v).

2.1.5. Step 3: The prismatic cones. Let us denote by

(i) PCS,k the α/2-prismatic cone centred at x∞ with respect to S;
(ii) PCin,k the β/2-prismatic cone centred at x∞ with respect to Cin;
(iii) PCout,k the 2γ-prismatic cone centred at x∞ with respect to Cout.
by construction we have PCS,k ⊂ PCin,k ⊂ PCout,k.

Finally we associate the following ratio with these prismatic cones.

(5) Rk(x, v) =
FPCin,k(x, v)

FPCout,k(x, v)
.
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PCS,1

PCin,1
PCout,1

Figure 9. Prismatic cones of a 1-face in dimension 3

2.1.6. Step 4: Comparisons. First notice that there exist an integer N
such that for all l > N , xl will be inside PS,k. Hence, applying lemma
6 we get the following equivalence.

Lemma 12. Let us fix 0 6 k 6 n and let (yl, wl) be a sequence with
yl in the interior prismatic cone PCS,k converging toward (x∞, w∞) with
w∞ ∈ Bn, then

lim
l→∞

Rk(xl, vl)

Rk(xl, vl)
= 1

The previous lemma 12 allows us to focus on the prismatic cones,
therefore the heart of our proof now lies in the following key lemma.

Lemma 13. Let us fix 0 6 k 6 n and let (yl, wl) be a sequence with
yl in the interior prismatic cone PCS,k converging toward (x∞, w∞) with
w∞ ∈ Bn, then there is a constant c such that for all l ∈ N one has

(6) Rk(yl, wl) 6 c.

Proof of Lemma 13. We suppose that x∞ is the origin thus the affine
k-dimensional subspace Ak containing fk is actually a sub-vector space.
We then consider the decomposition

Rn = Ak ⊕ A⊥k ,

and the vectorial affinity V Aλ which is defined as the identity on Ak
and as the dilation of ratio λ on A⊥k . When k = 0 this is just a dilation
centred at the origin.

The three prismatic cones are invariant by these vectorial affinities,
hence V Aλ is an isometry with respect to their Hilbert Geometries.

Now consider a supporting hyperplane E0 to these prismatic cones
at the origin, and an affine hyperplane E1 parallel to E0 intersecting
the prismatic cones and the face fk+1. Then for any l, there is a λ such
that yl is is pushed away from the origin onto the hyperplanes E1 while
staying in the interior of the inside prismatic cone PCS,k, i.e.

∃λ, V Aλ(yl) ∈ E1 and V Aλ(yl) ∈ PCS,k.
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This gives a new sequence (y′l, w
′
l), with w′l = V Aλ(wl)/||V Aλ(wl)||,

which stays in the hyperplaneE1, and such thatRk(yl, wl) = Rk(y
′
l, w

′
l).

Case k = n: In that situation, the new sequence remains in the in-
tersection of E1 with the interior prismatic cone PCS,n, which is a
common compact set of the prismatic cones Pin,n and Pout,n, and thus
we conclude thanks to remark 11, that the ratio Rn(yl, wl) remains
bounded.

Case k < n: By descending induction, suppose that for any triple
of prismatic cones with k′-dimensional apex of type PC∗,k′ which can
occur in a construction in step 3, with k′ > k, our conclusion holds.
The initial step was done in the previous case.

Regarding the sequence (y′l, w
′
l): either it stays away from the com-

mon hyperplane An−1, which means that the sequence remains in a
common compact set of the prismatic cones Pin,k and Pout,k, and thus
by remark 11 we conclude once again that there is a constant c such
that

Rk(yl, wl) = Rk(y
′
l, w

′
l) 6 c,

or the sequence admits a sub-sequence converging to the common hy-
perplane An−1 while remaining in the hyperplane E1, hence away from
Ak. Without loss of generality we thus can suppose that the whole
sequence (y′l, w

′
l) converges to (y∞, w∞), with y∞ in some common k′-

dimensional, with k′ > k face of the three prismatic cones.
Remark that from a projective point of view, the prismatic cones

are actually prismatic polytopes, having another common face, the
projective hyperplane at infinity. In other words, up to a change of
affine chart, which is an isometry for the respective Hilbert Geometries,
we can suppose that the prismatic cones are prismatic polytopes.

Once we remarked this, we can now build three new prismatic poly-
topes of type P∗,k′ and their corresponding prismatic cones of type
P∗,k′ containing y∞, obtaining a new ratio of type Rk′ which bounds
from above our ratio Rk. Now the induction assumption allows us
to conclude that this new ratio is bounded from above, and therefore
Rk(yl, wl) also stays bounded from above as l goes to infinity and our
proof is completed. �

2.1.7. Step 5: Conclusion. Let us consider a converging sub-sequence
(xl, vl)l∈N satisfying the divergence (2). Then for some 0 6 k 6 n, the
limit x∞ belongs to the face fk.

Therefore lemmata 12 and 13 imply that Rk(xl, vl) remains bounded
as l → ∞, and by the inequality 4 that Q(xl, vl) as well, which is
absurd.

Hence our initial hypothesis, that Q is not bounded is false, which
concludes our proof.
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3. Polytopal Hilbert geometries are bi-lipschitz to
euclidean vector spaces

The barycentre of a polytope and its faces induce a de-
composition of the polytope into pyramids with apex
the barycentre and base the faces. These pyramids also
give rise to cones with summit their apex which in turn
decompose the ambient space. We built a map which
sends these pyramids to their corresponding cones and
which is a bi-lipschitz map between the Hilbert geome-
try of the polytope and the Euclidean geometry of the
ambient space.

The proof consists in building a bi-lipschitz map and goes along the
following steps:

(1) Using the barycentric subdivision, in section 3.1 we decompose
a polytopal domain of Rn into a finite number of simplexes Si,
which we call barycentric simplexes.

(2) In section 3.2 we prove that each barycentric simplex Si of a
polytope admits a bi-lipschitz embedding onto a barycentric
simplex Sn of the n-simplex.

(3) We show that we can send isometrically the barycentric simplex
of a n-simplex onto a cone of a vector space Wn, using a known
isometric map between the n-simplex and Wn (see section 3.3).
This cone is then sent isometrically to the cone associated to a
barycentric simplex of a polytope.

(4) Finally this allows us in section 3.4 to define a map from the
polytopal domain to Rn by patching the bi-lipschitz embeddings
associated to each of its barycentric simplexes.

3.1. Cell decomposition of the polytope. Consider P a polytope
in Rn. We will denote by fij the ith face of dimension 1 6 j 6 n.

Let pn be the barycentre of P , and pij be the barycentre of the face
fij. Let us denote by Dij the half line from pn to pij.

We recall the following well known property, emphasizing an aspect
we need.

Property 14. A polytopal domain P in Rn can be uniquely de-
composed as a union of n-dimensional simplexes, called barycentric
simplexes or cells, such that the vertexes are barycentre of the faces
and each cell is a conical flag neighborhood of the polytope P .

In the sequel let us adopt the following notations and conventions: If
P is a polytope in Rn, we will suppose that its barycentre is the origin
and denote by Si for i = 1, . . . , N , its barycentric simplexes.
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Figure 10. The three last steps of the decomposition
in dimension 3

Remark 15. The intersection of two barycentric simplexes is a
lower dimensional simplex: it is the closure of a common face containing
the barycentre of the polytope.

Si is the simplex whose vertexes are the point vi,0, . . . , vi,n, where
vi,n = pn is the barycentre of P , and for k = n − 1, . . . , 0, vi,k is the
barycentre of a k-dimensional face, always on the boundary of the face
vi,k+1 belongs to (see Figure 11).

To i = 1, . . . , N we will also associate the positive cone Ci based on
pn and defined by the vectors $i,k = vi,k − vi,n for k = n − 1, . . . , 0.
We will call them the barycentric cones associated to the polytope (see
Figure 12)

The convex hull in Rn+1 of the n+1 points (1, 0, . . . , 0), (0, 1, . . . , 0),
. . . , (0, 0, . . . , 1) will be denoted by Sn and called standard n-simplex.

We will call standard barycentric n-simplex of the standard n-simplex,
and denote it by Sn, the convex hull of the points (see Figure 13):

(7) v̂k :=
( 1

k + 1
, · · · , 1

k + 1︸ ︷︷ ︸
k+1 times

, 0, · · · , 0︸ ︷︷ ︸
n−k times

)
for n > k > 0.

We will denote by Wn the n-dimensional hyperplane in Rn+1 defined
by the equation

x1 + · · ·+ xn+1 = 0
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S1

S2
· · ·

· · · S9

S10

v2,2

v2,1 = v1,1

v3,0 = v2,0

Figure 11. Barycentric simplexes of a polygon

C1

C2
· · ·

· · · C9

C10

$2,2

$2,1 = $1,1

$3,0 = $2,0

Figure 12. Barycentric cones of a polygon

3.2. Embedding into the standard simplex. We keep the nota-
tions of the previous subsection. Let Li be the linear map sending
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v̂3

v̂0

v̂2

v̂1

S3

Figure 13. The standard barycentric 3-simplex of the
3-simplex

the barycentric simplex Si onto the standard barycentric n-simplex
Sn ⊂ Sn by mapping the point vi,k to v̂k.

Let Pi = Li(P) the image of the convex polytope by this linear map.
Li is an isometry between the Hilbert geometries of Pi and P , in other
words for any x in the interior of P we have (identifying Li with its
differential)

FPi

(
Li(x), Li(v)

)
= FP(x, v).

This way, Sn is a common flag conical neighborhood of both Pi and
Sn and by theorem 8 we obtain:

Property 16. There exists a constant ki such that for any point x
of the standard barycentric simplex Sn and any vector v one has

1

ki
· FPi

(x, v) 6 FSn(x, v) 6 ki · FPi
(x, v)

3.3. From the standard simplex to Wn. Let Φn : Sn → Wn '
Rn ⊂ Rn+1 defined by

Φn(x1, · · · , xn+1) = (X1, · · · , Xn+1) =

(
ln
(x1
g

)
, · · · , ln

(xn+1

g

))
with g = (x1 · · ·xn+1)

1/n+1

Thanks to P. de la Harpe [dlH93], we know that Φn is an isometry
from the simplex Sn into Wn endowed with a norm whose unit ball is
a centrally symmetric convex polytope.

For our purpose, let us remark that the image of the standard barycen-
tric simplex Sn by Φn is the positive cone of Wn of summit at the origin
and defined by the vectors

(8) ṽk :=
(
n− k, · · · , n− k︸ ︷︷ ︸

k+1 times

,−(k + 1), · · · ,−(k + 1)︸ ︷︷ ︸
n−k times

)
for n > k > 0
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and we denote it by C̃n and call it standard n-cone.
Now for any polytopal convex set P ∈ Rn, consider the map Mi

which maps the standard n-cone C̃n into the barycentric cone Ci based
on pn, by sending the origin to pn and the vector ṽk to the vector $i,k.

3.4. Conclusion. We can now define our bi-lipschitz map

F : (P , dP)→ (Rn, || · ||)

in the following way.

(9) ∀x ∈ Si, F (x) = Mi

(
Φn

(
Li(x)

))

vi,2 = 0

Si

P

vi,1

vi,0

p

v

vi,2 = 0

Ci

vi,1

vi,0F (p)

TpF ·v

0

1

1

1

v̂2

v̂0
v̂1Sn

Sn

m

V
y

x

z

ṽ0 ṽ1

0 = ṽ2

y

x

z

C̃n
Φn(m)

TmΦn ·V

F

Φn

Li Mi

Figure 14. The application F in dimension 2 illustrated

Thanks to the remark 15, if x ∈ P is a common point of Si and Sj,
then necessarily Li(x) = Lj(x) thus,

Φn

(
Li(x)

)
= Φn

(
Lj(x)

)
= y
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and y is on boundary of the cone C̃n. Now Mi(y) = Mj(y), because Mi

and Mj send the corresponding boundary cone of C̃n to the respective
common boundary cone of the cell-cones Ci and Cj in the same way.
In other words,

∀x ∈ Si ∩ Sj, Li(x) = Lj(x)

and
∀z ∈ Ci ∩ Cj, M−1

i (z) = M−1
j (z)

thus F is well defined and it is a bijection.
To prove that it’s bi-lipschitz, we use the fact that line segments are

geodesic and that both spaces are metric spaces.
Hence let p and q be two points in the polytope P . Then there

are M ∈ N points (pj)j=1,...,M on the segment [p, q] such that p = p1,
q = pM , and each segments [pj, pj+1], for j = 1, . . . ,M − 1, belongs to
a single cell-simplex Sj of the cell-simplex decomposition of P .

Thanks to the key-lemma 16, and the fact that all norms in Rn are
equivalent, we know that for each j, there is a constant k′j such that,
for x, y ∈ Sj, on has∥∥F (x)− F (y)

∥∥ 6 k′j · dP(x, y)

Applying this to pj, pj+1 for j = 1, . . . ,M − 1, we obtain

M−1∑
j=1

∥∥F (pj)− F (pj+1

∥∥ 6 (sup
i
k′i) · dP(p, q)

where the supremum is taken over all cells of the decomposition, then
from the triangle inequality one concludes that∥∥F (p)− F (q)

∥∥ 6 (sup
i
k′i) · dP(p, q).

Starting from a line from F (p) to F (q) and taking it inverse image
after decomposing it in segments, which are all in a single barycentric-
cone, we obtain in the same way the inverse inequality

dP(p, q) 6 ( sup
i
k′i) ·

∥∥F (p)− F (q)
∥∥.

4. Hilbert geometries bi-lipschitz to a normed vector
space

Some remarks and references on the reciprocal of theo-
rem 1 are given.

Colbois and Verovic in [CV] prove that a Hilbert geometry which
quasi-isometrically embeds into a normed vector space is the Hilbert
geometry of a Polytope. Notice that in their paper they state a weaker
result but actually prove this strongest statement.

In our paper [Ver] we prove that the asymptotic volume of a Hilbert
geometry is finite if and only if it is the geometry of a polytope. There-
fore, this allows us to conclude, without the strongest result of Colbois
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and Verovic, that a Hilbert geometry bi-lipschitz to a normed vector
space comes from a polytope.
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