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Multi-ML: Programming Multi-BSP Algorithms in ML

V. Allombert · F. Gava · J. Tesson

Abstract bsp is a bridging model between abstract execution and concrete
parallel systems. Structure and abstraction brought by bsp allows to have
portable parallel programs with scalable performance predictions, without
dealing with low-level details of architectures. In the past, we designed bsml for
programming bsp algorithms in ml. However, the simplicity of the bsp model
does not fit the complexity of today’s hierarchical architectures such as clus-
ters of machines with multiple multi-core processors. The multi-bsp model is
an extension of the bsp model which brings a tree based view of nested compo-
nents of hierarchical architectures. To program multi-bsp algorithms in ml,
we propose the multi-ml language as an extension of bsml where a specific
kind of recursion is used to go through a hierarchy of computing nodes. We
define a formal semantics of the language and present preliminary experiments
which show performance improvements with respect to bsml.

Keywords bsp · multi-bsp · ml.

1 Introduction

Context of work. Nowadays, parallel programming is the norm in many areas
but it remains a hard task. And the more complex the parallel architectures
become, the harder the task of programming them efficiently is. As we moved
from unstructured sequential code cluttered with goto statement toward struc-
tured code, there has been a move in parallel programming community to leave
unstructured parallelism, with pairwise communications, in favour of global
communication scheme [2,6,26] and of structured abstract models like bsp [2,
33] or of higher-level concepts like algorithmic skeletons [15].

Programming in the context of a bridging model, such as bsp, allows to sim-
plify the task of the programmer, to ease the reasoning on cost and to ensure
a better portability from one system to another [2,22,33]. However, designing
a programming language [17,21] for such a model requires to chose a trade-off
between the possibility to control parallel aspects necessary for predictable effi-
ciency (but which make programs more difficult to write, to prove and to port)
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and the abstraction of such features which are necessary to make programming
easier —but which may hampers efficiency and performance prediction.

With flat homogeneous architectures, like clusters of mono-processors, bsp
has been proved to be an effective target model for the design of efficient algo-
rithms and languages [35]: while its structured nature allows to avoid deadlocks
and non-determinism with little care and to reason on program correctness
[13,36,37] and cost, it is general enough to express many algorithms [2]. But
modern parallel architecture have now multiple layers of parallelism. For ex-
ample, supercomputers are made of thousands of interconnected nodes, each
one carrying several multi-cores processors. Communications between distant
nodes cannot be as fast as communications among the cores of a given proces-
sor; Communications between cores, by accessing shared processor cache are
faster than communications between processors through RAM.

Contribution of this paper. Those architectures specifics led to a new bridg-
ing model, multi-bsp [34], where the hierarchical nature of parallel architec-
tures is reflected by a tree-shaped model describing the dependencies between
memories. The multi-bsp model gives a more precise picture of the cost of
computations on modern architectures. While the model is more complex to
grasp than the bsp one, it keeps structured characteristics that prevents dead-
lock and non-determinism. We propose a language, multi-ml, which aim at
providing a way to program multi-bsp algorithms so as our past bsml [14] is
a way to program bsp ones. multi-ml combines the high degree of abstraction
of ml (without poor performances because often, ml programs are as efficient
as c ones) with the scalable and predictable performances of multi-bsp.

Outline. The remainder of this paper is structured as follows. We first give
in section 2 an overview of previous works: the bsp model at Section 2.1 and
then the bsml language at Section 2.2 following with the multi-bsp model
at Section 2.3. Our language multi-ml is presented at Section 3. Its formal
semantics and implementation, together with examples and benchmarks are
given at Section 4. Section 5 discusses some related works and finally, Section 6
concludes the paper and gives a brief outlook on future work.

2 Previous Works

In this section, we briefly present the bsp and multi-bsp models and how
to program bsp algorithms using the bsml language. We assume the reader
is familiar with ml programming. We also give an informal semantics of the
bsml primitives and some simple examples of bsml programs.

2.1 The BSP Model of Computation

In the bsp model [2,33], a computer is a set of p uniform processor-memory
pairs and a communication network. A bsp program is executed as a sequence
of super-steps (Fig. 1), each one divided into three successive disjoint phases:
(1) each processor only uses its local data to perform sequential computa-
tions and to request data transfers to other nodes; (2) the network delivers
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the requested data; (3) a global synchronisation barrier occurs, making the
transferred data available for the next super-step.

local
computations

p0 p1 p2 p3

communication

barrier

next super-step
...

...
...

...
Fig. 1 A bsp super-step.

This structured model enforces a strict
separation of communication and compu-
tation: during a super-step, no communi-
cation between the processors is allowed
but only transfer requests; informations
exchange only occurs at the barrier. Note
that a bsp library can send data during
the computation phase of a super-step,
but this is hidden to the programmers.

The performance of a bsp computer is
characterised by 4 parameters: (1) the local processing speed r; (2) the number
of processors p; (3) the time L required for a barrier; (4) and the time g for
collectively delivering a 1-relation, a communication phase where every pro-
cessor receives/sends at most one word. The network can deliver an h-relation
in time g × h. To accurately estimate the execution time of a bsp program,
these 4 parameters could be easily benchmarked [2]. The execution time (cost)
of a super-step s is the sum of the maximal local processing time, the data
delivery and the global synchronisation times. The total cost (execution time)
of a bsp program is the sum of its super-steps’ costs.

2.2 BSP Programming in ML

bsml [14] uses a small set of primitives and is currently implemented as a
library (http://traclifo.univ-orleans.fr/BSML/) for the ml programming lan-
guage ocaml (http://caml.org). An important feature of bsml is its confluent
semantics: whatever the order of execution of the processors, the final value
will be the same. Confluence is convenient for debugging since it allows to get
an interactive loop (toplevel). That also eases programming since the paralleli-
sation can be done incrementally from an ml program. Last but not least, it is
possible to reason about bsml programs using the coq (https://coq.inria.fr/)
theorem prover [13,36] and to extract actual bsp programs from proofs.

A bsml program is built as an ml one but using a specific data structure
called parallel vector. Its ml type is ’a par. A vector expresses that each of the
p processors embeds a value of any type ’a. The processors are labelled with
ids from 0 to p−1. The nesting of vectors is not allowed. We use the following
notation to describe a vector: 〈v0, v1, . . . , vp−1〉. We distinguish a vector from
an usual array because the different values, that will be called local, are blind
from each other; it is only possible to access the local value vi in two cases:
locally, on processor i (using a specific syntax), or after some communications.

Since a bsml program deals with a whole parallel machine and individual
processors at the same time, a distinction between the 3 levels of execution
that take place will be needed: (1) Replicated execution r is the default;
Code that does not involve bsml primitive is run by the parallel machine as it
would be by a single processor; Replicated code is executed at the same time by
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Primitive Level Type Informal semantics
�e� g ’a par (if e:’a) 〈e, . . . , e〉
pid g int par A predefined vector: i on processor i
$v$ l ’a (if v: ’a par) vi on processor i, assumes v ≡ 〈v0, . . . , vp−1〉
proj g ’a par→ (int→ ’a) 〈x0, . . . , xp−1〉 7→ (fun i→ xi)
put g (int→ ’a)par→ (int→ ’a)par 〈f0, . . . , fp−1〉 7→〈fun i→fi 0, . . . , fun i→fi (p−1)〉

Fig. 2 Summary of the bsml primitives.

every processor, and leads to the same result everywhere; (2) Local execution
l is what happens inside parallel vectors, on each of their components; The
processor uses its local data to do computation that may be different from the
other’s; (3) Global execution g concerns the set of all processors together as for
bsml communication primitives. The distinction between local and replicated
is strict: the replicated code cannot depend on local information. If it were to
happen, it would lead to replicated inconsistency.

Parallel vectors are handled through the use of different communication
primitives. Fig. 2 shows their use. Informally, they work as follows: let �e�
be the vector holding e everywhere (on each processor), the � � indicates
that we enter a vector and switch to the local level. Replicated values are
available inside the vectors. Now, only within a vector, to access to local infor-
mation, we add the syntax $x$ to read the vector x and get the local value it
contains. The ids can be accessed with the predefined vector pid. For example,
using the toplevel for a simulated bsp machine with 3 processors:

# let vec1 = � ”HLPP” � in∣∣ � $vec1$ˆ”, proc ”ˆ(string of int $pid$) � ;;
— : string par = <”HLPP, proc 0”, ”HLPP, proc 1”, ”HLPP, proc 2”>

The # symbol is the prompt that invites the user to enter an expression to be
evaluated. Then, the toplevel gives the evaluated value with its type. Thanks
to bsml confluence, it is ensured that the results of the toplevel or of the
distributed implementation are identical.

The proj primitive is the only way to extract local values from a vector.
Given a vector, it returns a function such that, applied to the pid of a processor,
the function returns the value of the vector at this processor. proj performs
communications to make local results available globally and ends the current
super-step. For example, if we want to convert a vector into a list, we write:

# let list of par vec = List.map (proj vec) procs;;
— : val list of par : ’a par → ’a list = <fun>
# list of par � $pid$ � ;;
— : int list = [0; 1; 2]

where procs is the list of ids [0; 1; · · · ;p-1].
The put primitive is another communication primitive. It allows any local

value to be transferred to any other processor. It is also synchronous, and
ends the current super-step. The parameter of put is a vector that, at each
processor, holds a function of type (int→ ’a) returning the data to be sent to
processor j when applied to j. The result of put is another vector of functions:
at a processor j the function, when applied to i, yields the value received from
processor i by processor j. For example, a total exchange could be written:

# let total exchange vec =∣∣ let msg = put � fun dst → $vec$� in∣∣ ∣∣ � List.map $msg$ procs � ;;
— : val total exchange : ’a par → ’a list par = <fun>
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multi-bsp

Multi Core

core0

th0 th1 th2 th3

core1

th0 th1 th2 th3

bsp

Network

th0 th1 th2 th3 th4 th5 th6 th7

Fig. 4 The difference between the multi-bsp and bsp models for a multi-core architecture.

# total exchange � $pid$ � ;;
— : int list par = <[0;1;2], [0;1;2], [0;1;2]>

where the bsp cost is (p−1)×s×g+L where s is the size of the biggest sent value.

2.3 The multi-bsp Model for Hierarchical Architectures

The multi-bsp model [34] is another bridging model as the original bsp, but
adapted to clusters of multi-cores. The multi-bsp model introduces a vision
where a hierarchical architecture is a tree structure of nested components (sub-
machines) where the lowest stage (leaf) are processors and every other stage
(node) contains memory. Fig. 4 illustrates the difference between both models
for multi-cores. There exist other hierarchical models [38], such as d-bsp [1]
or h-bsp [7], but multi-bsp describes them in a simpler way. An instance of
multi-bsp is defined by d the depth of a tree and 4 parameters for each stage i:
– pi is the number of components inside the i stage. We consider p1 as a basic

computing unit where a step on a word is considered as the unit of time.

Level i

Level i− 1

n

n.1 . . . . . . n.pi

gi

gi−1

mi

Li

Fig. 3 multi-bsp parameters.

– gi is the bandwidth between stages i and
i + 1: the ratio of the number of operations
to the number of words that can be trans-
mitted in a second (illustrated in Fig. 3).

– Li is the synchronisation cost of all compo-
nents of i−1 stage, but no synchronisation
across above branches in the tree. Every components can execute codes
but they have to synchronise in favour of data exchange. Thus, multi-bsp
does not allow subgroup synchronisation as the d-bsp does: at a stage i
there is only a synchronisation of the sub-components, a synchronisation
of each of the computational units that manage the stage i−1.

– mi is the amount of memory available at stage i.
A node executes some code on its nested components (aka “children”), then
waits for results, does the communications and synchronises the children. Con-
sidering Ci

j = hi×gj +Lj , the communication cost of a super-step i at stage j
with hi the size of the exchanged messages at step i, gj the communication
bandwidth with stage j and Lj the synchronisation cost. We can recursively
express the cost of a multi-bsp algorithm as follows:

∑N−1
i=0 wi +

∑d−1
j=0

∑Mj−1
i=0 Ci

j

where N is the number of computational super-steps, wi is the cost of a single
computation step and Mj is the number of communication phases at stage j.

3 Design of the Multi-ML Language

multi-ml is based on the idea of executing a bsml-like code on every stage
of the multi-bsp architecture, that is on every sub-machine. Hence, we add a
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specific syntax to ml in order to code special functions, called multi-functions,
that recursively go through the multi-bsp tree. At each stage, a multi-function
allows the execution of any bsml code. We first present the execution model
that follows this idea; we then present the specific syntax and we finally give
the limitations when using some advanced ocaml features.

3.1 Execution Model

A multi-ml tree is formed by nodes and leaves as proposed in multi-bsp with
the difference that a node is not only a memory but has the ability to manage
(coordinate) the values exchanged by its sub-machines. However, as common
architectures do not have dedicated processors for each memory, one (or more,
implementation dependent) selected computation unit has the responsibility
to perform this management task, which is limited in practice. Because leaves
are their own computing units, our approach coincides with multi-bsp if we
consider that all the computations and memory accesses, at every nodes, are
performed by one (or more) leaf: replicated codes (outside vectors) that takes
place in nodes will be costlier than in leaves. This is why computations on
nodes are reserved to the simple task of coordination. The multi-ml approach
is also a bit more relaxed than multi-bsp regarding synchronisation. Unlike
multi-bsp, we allow asynchronous codes in the sub-machines when only lower
memories accesses are used. Of course, we do synchronise if a communication
primitive is used. As suggested in [34], we also allow flat communications be-
tween nodes and leaves without using an upper level.

Parent

Child . . . Child

1)Data

2)Computations

3)Result

Fig. 5 Code propagation.

oto stands for a multi-ml tree of type ′a tree;
every node and leaf contains a value of type ′a in
its own memory. It is important to notice that the
values contained in a tree are accessed by the cor-
responding node (or leaf) only. It is impossible to
access the values of another component without us-
ing explicit communications. In multi-ml codes,
we discern four strictly separated execution levels:

(1) the level m (multi-bsp) is the upper one (outside trees) and is appro-
priate to call multi-functions and managing the trees; codes at this level are
executed by all the computation units in a spmd fashion; (2) the level b (bsp)
is use inside multi-functions and is dedicated to execute bsml codes on nodes;
(3) level l (local) corresponds to the codes that are run inside vectors; (4)
level s stands for standard ocaml codes finally executed by the leaves. It is
to notice that it is impossible to exchange vectors or trees and, like in bsml,
the nesting of parallelism (of vectors/trees) is forbidden.

e . . . e

let v= � e�

� �
Fig. 6 Vector distribution.

The main idea of multi-ml is to structure
the codes to control all the stage of a tree:
we generate the parallelism by allowing a node
to call recursively a code on each of its sub-
machines (children). When leaves are reached, they will execute their own
codes and produce values, accessible by the top node using a vector. As shown
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in Fig. 5, the data are distributed on the stages (toward leaves) and results are
gathered on nodes toward the root node. Let us consider a code where, on a
node, the following code is executed: �e�. As shown in Fig. 6, the node cre-
ates a vector containing e for each children i. As the code is run asynchronously,
the execution of the node code will continue until reaching a barrier.

3.2 The multi-ml Language

0

0.0

0.0.0 0.0.1

0.1

0.1.0 0.1.1

Fig. 7 Node identifiers.

Fig. 9 shows the multi-ml primitives (without re-
call the bsml ones); their authorised level of execu-
tion and their informal semantics. n denotes the id
of a node/leaf, i.e. its position in the tree encoded by
the top-down path of positions in node’s vectors. For
example, 0 stands for the root, 0.0 for its first child,
etc. For the ith component of a vector at node n, the id is n.i. Fig. 7 illustrates
this naming. We now describe in details these primitives and multi-functions.

The let-multi Construction. The goal is to define a multi-function i.e. a
recursive function over the multi-bsp tree. Except for the tree’s root, when
the code ends on a stage i, the values are made available to the upper stage
i − 1 in a vector. The let-multi construction offers a syntax to declare codes
for two levels, one for the nodes (level b) and one for the leaves (level s):

let multi f [args] =
where node = ... (∗ bsml code ∗)
where leaf = ... (∗ ocaml code ∗)

[args] are the arguments of the newly define
multi-function f. In the leaf block (i.e. level s),

we find usual ml computations and most of the calculations need to take place
here. In the node block (i.e. level b), we find the code that will be executed
at every stage of the tree but on the leaves. Typically, a node is charged to
propagate the computations and the data using vectors (level l); to manage
the sub-machine computations; and finally, gather the results using the proj
(extraction of values from a vector). To go one step deeper in the tree, the node
code must recursively call the multi-function inside a vector. This call must be
done inside a vector in order to spread the computation all over the tree in the
deeper stages. It is also to notice that a multi-function can only be called at
m level of the code and values at this level are available throughout the multi-
function execution. Fig. 8 shows, as an example of how data moves through
the multi-bsp tree, a simple program summing of the elements of a list.
1 let multi par fold l =
2

∣∣ where node =
3

∣∣ ∣∣ let v=mkpar (fun i→split i l) in
4

∣∣ ∣∣ let res=�par fold $v$� in
5

∣∣ ∣∣ ∣∣ sum (flatten res)
6

∣∣ where leaf =
7

∣∣ ∣∣ List.fold left (fun x y→x+y) 0 l
8 (∗ flatten:’a par→’a list ∗)
9 (∗ sum: int list→int ∗)
Fig. 8 Sum multi-ml example.

It works as follows: We define the multi-
function (line 1); lines 2 − 5 give the code
for the nodes and lines 6−7 give the code for
the leaves; the list is scattered across each
component i of the vector (line 3); on line
4, we recursively call the multi-function on
the sub-lists (i.e. call in the contexts of the

sub-nodes); we finally gather the results in line 5 (sum is a bsml code that
performs a proj to sum the pn projected integers).

Tree Construction. It is similar to the above multi-functions: instead of
generating a single usual ml value, functions defined with let multi tree build
a tree oto of type ′a tree. For this, a new constructor determines the values that
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Primitive Level Type Informal semantics
§e§ m ’a tree Build oeo, a tree of e
at(v) b,l,s ’a vn on node n of tree ovo (if v: ’a tree)
gid m id tree The predefined tree of nodes and leaves ids
�...f...� l ’a In a vector, recursive call of the multi-function
#x# l ’a In a vector, reading the value x at upper stage
mkpar f b ’a par 〈v0, . . . , vpn 〉, where ∀i, f i = vi, at id n of the tree
finally v1 v2 b,s ’a Return value v1 to upper stage and keep v2 in the tree
this b,l,s ’a Current value of the tree

Fig. 9 Summary of the multi-ml primitives.

are stored (keep) at each id and those that are ascended (up) to the upper stage
—until now, the value returned by nodes and leaves was implicitly considered
as the value given to the upper stage. This is the role of finally which works
as follows: finally ˜up:v1 ˜keep:v2 sends up the value v1 and stores in the tree
the value v2 (thus replacing the previously stored value). The primitive this
returns the last value stored using finally or the default value initialised thanks
to a where default construction. It is useful to update the tree.

1 let par scan list op e li =
2

∣∣ let multi tree m scan flag l =
3

∣∣ ∣∣ where default = §[ ]§
4

∣∣ ∣∣ where node =
5

∣∣ ∣∣ ∣∣ if flag then
6

∣∣ ∣∣ ∣∣ ∣∣ let spl=mkpar (fun i→split i l) in
7

∣∣ ∣∣ ∣∣ ∣∣ let deep=bsp scan op e �m scan true $spl$� in
8

∣∣ ∣∣ ∣∣ ∣∣ let v=last �if $pid$6=0
9

∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ then (m scan false [$deep$])
10

∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ else at(this)� in
11

∣∣ ∣∣ ∣∣ ∣∣ finally ˜up:v ˜keep:[v]
12

∣∣ ∣∣ ∣∣ else
13

∣∣ ∣∣ ∣∣ ∣∣ let v=last �m scan false #l#� in
14

∣∣ ∣∣ ∣∣ ∣∣ ∣∣ finally ˜up:v ˜keep:[v]
15

∣∣ ∣∣ where leaf =
16

∣∣ ∣∣ ∣∣ let final,l’= if flag then (seq scan op e l)
17

∣∣ ∣∣ ∣∣ ∣∣ else (map and last op l at(this)) in
18

∣∣ ∣∣ ∣∣ finally ˜up:final ˜keep:l’
19 in m scan true li
20 (∗ bsp scan:’a par→(’a→’a→’a)→’a’→’a par ∗)
21 (∗ last:’a par→’a ⇒ gives the last element of a vector ∗)
22 (∗ seq scan:’a list→(’a→’a→’a)→’a’→’a∗’a list
23 ⇒ computes the scan and also returns the last element ∗)
24 (∗ map and last:’a list→(’a→’a)→’a∗’a list
25 ⇒ do a map and also returns the last element ∗)
Fig. 10 Scan multi-ml example.

Fig. 10 shows the modifi-
cations that has to be added
to sum list in order to ob-
tain a tree containing the
list of partial sums on ev-
ery leaves and the maximal
sub-sums on each node —
thus the final sum on the
root node. The code works
as follows: We use a generic
operator op, a neutral ele-
ment e and a list li to be
distributed (line 1); then we
traverse twice (phases distin-
guished by a boolean flag),
first to split the list and then
to compute the partial sums;
for the nodes, we split the list
(line 6) and then we do a recursive call over the scattered lists to continue the
splitting at lower levels and then recover the partial sums of children nodes
(line 7), bsp scan is used on this partial results to transfer and compose partial
results from sibling nodes left to right (bsp scan could be any bsml scan code);
finally, we do a recursive call again in a vector (lines 8 − 10) to complete the
partial sums with the communicated values and for this, we transmit down
a list containing only the last value for each branch, keep it in the tree and
give it to the upper level (line 11); when reaching the leaves the first time,
we compute the partial sums (line 16) and, each time a value (communicated
by other branches) comes down to a leaf, we add it to its own partial sums
(line 17). Note that using two multi-functions, one to first split the list and
another one to compute the partial sums, is surely easier, but using a one-shot
multi-function, we exhibit more features of multi-ml.
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Variables Accesses. There are three different ways to access to variables in
addition to the usual ml access. First, $v$ stands for reading the local value
of a vector “v” inside a vector (l level, as in bsml).

The second way is to read a value inside a vector which had been declared
outside. As explained above, the values available on a node are not implicitly
available on the child nodes. It is thus necessary to copy them from a node to its
sub-machines. For example, the code let x=1 in let vect=�x+1� is incorrect
because “x” is not available on children. It is imperative to use �#x#+1�
to copy the value of x from the b level into the vector (l level).

The last way is for reading the value of a tree. Within the tree construction
§e§ (syntax explained below), at(t) stands for reading the value of “t” at id
n. Outside a vector (b level), accessing to a tree t is done in the same way.
Finally, gid is the predefined tree of nodes/leaves ids. When executed inside a
vector (l level) at a level n, at(gid) stands for the id n.i. However, inside a §e§
code, it stands for the id of the current level. As expected, in a node (b level)
or a leaf (s level), at(gid) is the identifier at the corresponding level. However,
at level m, it is the tree of level identifiers.

A Convenient Tree Construction. For building a tree without using a multi-
function (which induce communications), we add the §e§ syntax. It allows to
execute e on every nodes and leaves. One can read the values of a previously
defined tree oto using the $t$ access in the code of e. In this way, using the
predefined tree gid, we can execute different codes on each components of a
tree without any need (and possibility) of communication between the stages.

A New Primitive. For performances reason, we chose to add the new
primitive mkpar. Indeed, in bsml a replicated code is duplicated on every
processors, so it is not necessary to take care of data transfer in code like:
let lst=[...] in �split $pid$ lst� where lst is a large list and split a splitting
function. With the multi-ml model, data are not distributed everywhere and
we have to transfer data explicitly. One can write �split $pid$ #lst#� but
it is not useful to copy the whole list on every children in order to extract a
sub list and throw the rest. This is the reason why mkpar computes, first, pn

values and then distributes them to the sub-machines, thus building a vector.
This method is more expensive for the node n in terms of computation time,
but it reduces drastically the amount of data transfers.

3.3 Current Limitations

Exceptions and Partially Evaluated Trees. Exceptional situations are handled
in ocaml with a system of exceptions. In parallel, this is at least as relevant:
if one processor triggers an exception during a computation, bsml [14] as well
as multi-ml have to deal with it, like ocaml would, and prevent a crash.

The problem is when an exception is raised locally (l level) on (at least)
one processor but other processors continue to follow the execution stream,
until they are stopped by the need of synchronisation. This happens when an
exception escapes the scope of a parallel vector. Then, a crash can occur: a
processor misses the global barrier. To prevent this situation, in [14], we intro-
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duce a specific handler of local exceptions that have not been caught locally.
The structure trypar...withpar catches any exception and handles it as usual in
ocaml. To do this, when a barrier occurs, all exceptions are communicated to
all processors in order to allow a global decision to be taken. Furthermore, any
access to a vector that is in an incoherent state will raise, again, the exception.

For multi-ml, if an exception is no correctly handled in a stage, it must be
propagated to the upper stage at the next barrier —as in bsml. If an exception
is no handled in a multi-function, it must be thrown at the global level m as a
standard ocaml exception. An exception thrown in a node of a tree leads this
node in an incoherent state until the exception has been caught in a upper
level. Any access to this tree must raise again the exception. This handling
has not been yet implemented for multi-ml but the first author works on it.

An application case is partially evaluated trees. Take for example the follow-
ing code: �if random() then raise Error else 0� where f is a multi-function.
A part of the tree will never be instantiated. If a partially evaluated tree is
accessed during a code execution an exception could be immediately thrown.

Type System. The main limitation of our prototype is the lack of a type
system. Currently, nesting of bsml vectors/trees are not checked. A type sys-
tem for bsml exists [14] but has not been implemented yet. We are convinced
that adding multi-functions will not fundamentally change the type system:
it’s mainly a matter of adding just a new level of execution.

Other ml Features. We have not yet studied all the interactions of all the
ocaml features with the multi-function (as well in bsml). Mainly: objects,
first-order modules and gadt. We let them for future works.

4 Semantics, Implementation and Examples

We present a formal semantics of multi-ml as well as two implementations. A
semantics is useful as a specification of the language so as to simplify the design
of the implementations. To get the assurance that both implementations are
coherent, using the semantics, we first prove that multi-ml is confluent. We
also give some examples and benchmarks to illustrates the usefulness of multi-
ml. Our prototype is freely available at http://www.lacl.fr/vallombert/Multi-ML.

4.1 Operational Semantics

We give a big-step semantics of a core-language —without tree creation to
simplify the presentation. The syntax (Fig. 11) extends the popular core-ml.

e ::= /* core-ml */
| x | cst | op | (e, e) | let x = e in e | (e e)
| if e then e else e | (fun x→e) | (rec f→e)
/* bsml-like primitives */
| $x$ | #x# | <e> | pid
| mkpar e | gid | proj e | put e
/* multi-fun, without tree construction */
| (multi f x→ e † e)

Fig. 11 Syntax of core-multi-ml.

Programs contain variables, con-
stants (integers, etc.), operators (≤, +,
etc.), pairing, let, if, fun statements
as usual in ml, rec for recursive calls,
the bsml primitives (<e>, put, proj),
mkpar, access $x$ to the local value
of a vector x, local copy #x# of a par-
ent’s variable x, the vector of pid component and gid the tree of ids. Finally,
we define let-multi as particular functions with codes for nodes and leaves.
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The semantics is a big-step one with environments that represent the
memories. We have a tree of memories (one per node and leaf) and we note
them E . ‖E‖n denotes the memory of E at n where n is the id of the node/leaf.
{x 7→ v} denotes a binding of a variable x to a value v in the memory; ∈ de-
notes a membership test and ⊕ denotes an update. Those operators have the
subscript n that denotes the application in a specific memory.

E ` e ⇓ v denotes the evaluation of e in the environment E to the value v. A
value is a constant, an operator or a functional closure (noted (funx→ e)[E ])
that is a function with its own environment of execution. The rules of evalu-
ation are defined by induction and given in Fig. 12. To simplify the reading
of the rules, we count vector pids from 1 to pn and not from 0 to pn−1. For
core-ml the semantics are as usual.

Even if the semantics contains many rules, there is no surprise and it has to
be read naturally. As explain before, there are 4 different levels of execution:
level m for the execution on all computation units; bsp level b for bsml codes.
These rules are subscripted with the id n of the sub-machine as for memories;
local level l for the codes inside a vector; and finally level s on the leaves. In
this way, the evaluation ⇓ is upscripted by the level. Note that a code at level
l becomes at level b if a recursive call of a multi-function occurs.

The rules for the bsml primitives (Fig. 12) work as follows: (1) creating
a new vector for the machine of id n is triggering pn local evaluations, each
with n.i as subscript since we are going one step deeper, in the ith component;
proj (2) and put (3) rules build the functions of exchanges; $pid$ rule (4)
returns i on child n.i; $x$ rule (5) read at n.i the ith value of the vector x
created by node n; #x# rule (6) read the value x at the node n from its child;
the rule (7) is the evaluation of the core ml part (sequential); mkpar rule (8)
creates the vector but first the node creates the values to be sent down.

For the multi-functions, we have a rule to create them (9) and a rule (12) to
initialise the deeper computations. In this way, at level m, we start to recurse
down in the machine from id 0 with the appropriate environment and level
g. Then, inside the component i of a vector of sub-machine n, the recursive
call of the multi-function generates an evaluation on n.i (rule 13), except if we
reach a leaf, then the rule (14) says that the code is evaluated on leaf n.i with
level s. The rule (10) is for the tree of ids. By induction, we can prove:

Lemma 1 (Confluence) ∀E if E ` e ⇓m v1 and E ` e ⇓m v2 then v1 ≡ v2

Co-inductive rules [25] ⇓∞ (for diverging programs) can be easily infered from
the above rules. For sake of conciseness, we only present some typical examples:

E ` e1 ⇓δ true E ` e2 ⇓∞

E ` if e1then e2else e3 ⇓∞

∃i ∈ {1, . . . ,pt} E ` e ⇓∞

E `<e>⇓∞

E ` e ⇓∞

E ` proj e ⇓∞

We can then prove by co-induction the following lemma:

Lemma 2 (Mutually exclusive) ∀E if E ` e ⇓m v then ¬(E ` e ⇓m∞)

Results do not depend of the order of evaluation of the processors nor of the
bsp sub-machines. All strategy work and return the same values, especially a
sequential simulation and a distributed implementation. The former is fine for
debugging whereas the latter is for benchmarking. We now present both.
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(1)
∀i ∈ {1, . . . ,pn} E ` e ⇓ln.i vi
E `<e>⇓bn 〈v1, . . . , vpn 〉

(2)
E ` e ⇓bn 〈v1, . . . , vpn 〉

E ` proj e ⇓bn (fun i→ vi)[]

(3)
E ` e ⇓bn 〈f1, . . . , fpn 〉

E ` put e ⇓bn 〈f
′
1, . . . , f

′
pn
〉 where f ′i j = fj i

(4)
E ` $pid$ ⇓ln.i i

(5)
{x 7→〈v1, . . . , vi, . . . , vpn 〉}∈‖E‖n

E ` $x$ ⇓ln.i vi
(6)

{x 7→v}∈‖E‖n
E ` #x# ⇓ln.i v

(7)
‖E‖n ` e ⇓δ v

E ` e ⇓b,ln v

(8)
E ` e ⇓bn f ∀i ∈ {1, . . . ,pn} E ` (f i) ⇓bn vi with f ≡ (fun x→ e′)[E′]

E ` mkpar e ⇓bn 〈v1, . . . , vpn 〉�� ��Multi functions inductive rules ⇓m

(9)
E ` (multi f x→ e1 † e2) ⇓m (multi f x→ e1 † e2)[E]

(10)
E ` gid ⇓b,ln n

In what follows g ≡ (multi f x→ e′1 † e′2)[E′]

(11)
E ` e ⇓δ v

E ` e ⇓m v
(12)

E ` e1 ⇓m g E ` e2 ⇓m v E′⊕0{x 7→v}⊕0{f→g} ` e′1 ⇓
b
0 v′

E ` e1 e2 ⇓m v′

(13)
E ` e1 ⇓ln.i g E ` e2 ⇓ln.i v E′⊕n.i{x 7→ v}⊕n.i{f→g} ` e′1 ⇓

b
n.i v

′

E ` e1 e2 ⇓ln.i v
′

(14)
E ` e1 ⇓ln.i g E ` e2 ⇓ln.i v E′⊕n.i{x 7→v}⊕n.i{f→g} ` e′2 ⇓

s
n.i v

′

E ` e1 e2 ⇓ln.i v
′

Fig. 12 Operational big-step semantics rules of a core multi-ml.

4.2 Sequential Simulation and Distributed Implementation

Sequential Simulation. We propose a sequential simulator that works as the
ocaml toplevel. Given an architecture as a configuration file, the toplevel al-
lows simulating multi-ml codes on a single core machine and printing the re-
sults. Currently, all the basic features of ocaml are available, without typing.
To be executed, the multi-ml code is converted into a sequential code using a
modified ocaml parser. The simulator creates a tree structure to represent the
whole multi-bsp machine. Vectors are represented as arrays of data. A global
hash table is used to simulate the memory available at each stages as suggested
by the semantics. Fig. 13 shows the result when using the toplevel for a simu-
lated multi-bsp machine composed of 2 processors with respectively 2 cores.

#let multi tree f n =∣∣ where default = ””∣∣ where node =∣∣ ∣∣ let =�f ($pid$ + #n# + 1) � in∣∣ ∣∣ ∣∣ finally ˜up:() ˜keep:(gidˆ”=>”ˆn)∣∣ where leaf=finally ˜up:() ˜keep:(gidˆ”=>”ˆn);;
— : val f : int→string tree = <multi-fun>
#(f 0)

o ”0→ 0”∣∣
o ”0.0→ 1”∣∣ ∣∣ → ”0.0.0→2”∣∣ ∣∣ → ”0.0.1→3”
o ”0.1→ 2”∣∣ ∣∣ → ”0.1.0→3”∣∣ ∣∣ → ”0.1.1→4”

Fig. 13 Example of the Toplevel.

Distributed Implementation. To
be portable, our implementation is
written to use various communication
libraries. We have thus a modular ap-
proach and our implementation de-
pends on a generic functor that re-
quires the architecture configuration
and some particular communication
routines: asynchronous broadcasting
and gathering for a group of pro-
cessors, total exchange and building
groups of processes. Our implementation of this module is currently based on
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mpi. We create one mpi process for every nodes and leaves of the architecture.
Those processes are distributed over the physical cores and threads in order
to balance the charge. As the code executed by nodes is, most of the time, a
simple task of parallel management, this extra job is thus distributed over the
leaves to reduce its impact.

Our implementation is based on a daemon running on each mpi processes.
Each daemon have 3 mpi communicators to communicate with their parent
(upper node), their children (leafs) and their siblings (processes at the same
sub-level).These daemon are waiting for a task given by their parent. When a
task is received, it is executed by the daemon, then the daemon returns to the
waiting state until it receives a ”kill” signal, corresponding to the end of the
program.

As the code is a spmd one, every processes know the entire code and they
just need to receive a signal to execute a task. To do so, and to avoid serial-
ising codes that are inside functional values (the closures) and known by all
the nodes due to a spmd execution, when transmitting down values and thus
creating parallel vectors, we identify the vectors by two kinds of identifiers: (1)
a static identifier is generated globally for every vectors and references their
computations through the execution; (2) when a node need to create a parallel
vector, it generates a dynamic identifier that represents the data on its leaves.
Then, when a node executes some code using parallel values inside a vector, it
just sends the static identifier (that references the code to execute) with the dy-
namic identifier (to substitute the distributed value) to its children which can
then execute the correct tasks. The main advantage of this method it to avoid
serialising unnecessary codes when creating vectors, and thus to reduce the
size of the data exchanged by the processes. But, associating a value to a dy-
namic identifier can lead to a memory over-consumption, for example in loops.
When the life cycle of a vector is terminated, we manually clean the memory
by removing all the obsolete identifier and calling the garbage collector.

Shared memory. We propose an implementation to avoid some unnecessary
copies of the transmitted data. Indeed, the ocaml memory is garbage collected
and, to be safe, only a copy of the data can be transmitted. Using the stan-
dard posix “mmap” routine and some ipc functionalities (to synchronise the
processes), the child (as daemons) can read asynchronously the transmitted
serialised value in the mapping of the virtual address space of the father and
synchronise with the father only, as the multi-bsp model suggest. As architec-
tures can have different types of memory (distributed or shared), it is possible
to mix executions schemes. Since the ocaml memory is garbage collected (cur-
rently with a global thread lock), we sadly cannot use pthreads as done in [35]
to share values without performing first a copy. We are currently working on
using some tricks to overcome this limitation but we leave it as future work.

4.3 Benchmarks

In this section we present the benchmarks of a simple scan with integer addi-
tion and a naive implementation of the sieve of Eratosthenes. A scan can be
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used to perform the sieve of Eratosthenes using a particular operator which
implies more computations and communications than a simple list summing.
The multi-bsp cost of the scan algorithm (Fig. 10) is as follows:∑

i∈[0...d[

Vsp(i) +O(|ld|) +
∑

i∈[0...d[

Ci.

Where
∑

i∈[0...d[ Vsp(i) is the total cost of splitting the list toward the leaves (at

depth d−1); O(|ld|) is the time needed to compute the local sums in the leaves;
and

∑
i∈[0...d[ Ci corresponds to the cost of diffusing partial sum back to leaves

and to add these values to the values held by leaves. This diffusion is done once
per node. Vsp(i) is the work done at level i to split the locally held chunk li and
scatter it among children nodes. Splitting li in pi chunks costs O(|li|) where
|li|, the size of li, is n ∗

∏
j∈[0...i[

1
pj

where n is the size of the initial list holds

by the root node. Scattering it among children nodes costs pi ∗gi−1 + ni
pi

+Li.

The sequential list scan cost at leaves is O(|ld|) = O(n ∗
∏

i∈[0...d[
1
pi

).
The cost Ci at level i is the cost of a bsp scan, of the diffusion of the

computed values toward the leaves, in addition to the sequential cost of a map
on list held by leaves. Let s be the size of the partial sum, the cost of bsp scan
at level i is s ∗ pi ∗ gi−1 + Li, the diffusion cost is

∑
j∈]i...d] gj ∗ s + lj and the

final map cost is O(sd). The size s may be difficult to evaluate: for a sum of
integers it will simply be the size of an integer, but for Eratosthenes sieve, the
size of exchanged lists varies depending on which data are held by the node.
1 let scan direct op vv =
2

∣∣ let mkmsg pid v dst =
3

∣∣ ∣∣ if dst<pid then None else Some v in
4

∣∣ let procs lists =
5

∣∣ ∣∣ � fun pid → from to 0 pid� in
6

∣∣ let receivedmsgs =
7

∣∣ ∣∣ put � mkmsg $vv$ � in
8

∣∣ let values lists =
9

∣∣ ∣∣ � List.map ((compose noSome)
10

∣∣ ∣∣ $receivedmsgs$) $procs lists$ � in
11

∣∣ � (fun (h::t)→ List.fold left op h t)
12 $values lists$ �
Fig. 14 bsml direct scan code.

The sieve of Eratosthenes generates a
list of primary numbers below a given in-
teger n. From the list of all elements less
than n, it iteratively removes elements
that are a multiple of the smaller element
of the list that as not been yet consid-
ered. We generate only the integers that
are not multiple of the 4 first prime num-
bers, then we iterate

√
n time (as it is

known to be the maximum number of needed iterations). On our architectures,
the direct and logarithmic scans are as efficient. Fig. 14 gives the bsml code
of the direct scan. This code build the values to be communicated to its neigh-
bours and exchange the values using the put primitive. Then every processes
maps the received values on their own data. We used the following functions:
elim:int list→ int→ int list which deletes from a list all the integers multiple of
the given parameter; final elim:int list→ int list→ int list iterates elim using el-
ements from the first list to delete elements in the second; seq generate:int
→ int→ int list which returns the list of integers between 2 bounds; and
select:int → int list→ int list which gives the

√
n first prime numbers of a list.

For this naive example, we use a generic scan computation with final elim
as the ⊕ operator. In our computation, we also did extend the scan so that the
sent values are first modified by a given function (select) to just sent the

√
n

first prime numbers. The bsp methods is thus simple: each processor i holds
the integers between i × n

p + 1 and (i + 1) × n
p . Each processor computes a
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p0 = 4 g0 =∞ L0 = 149000 m0 = 0
p1 = 2 g1 = 89 L1 = 1100 m1 = 64Gb
p2 = 16 g2 = 6 L2 = 1800 m2 = 20Mb
p3 = 0 g3 = 3 L3 = 0 m3 = 0

p0 = 8 g0 =∞ L0 = 195400 m0 = 0
p1 = 2 g1 = 14 L1 = 472 m1 = 16Gb
p2 = 4 g2 = 6 L2 = 800 m2 = 6Mb
p2 = 0 g2 = 5 L2 = 0 m2 = 0

Fig. 15 Multi-BSP parameters of Mirev3 (left) and Mirev2 (right).
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Fig. 16 The g and L bsp parameters of Mirev2 and Mirev3 in flops.

local sieve (the processor 0 contains thus the first prime numbers) and then
our scan is applied. We then eliminate on processor i the integers that are
multiple of integers received from processors of lower identifier.

Benchmark were done on two parallel architectures named Mirev2 and
Mirev3. Here are the main specifications of these machines:

– Mirev2: 8 nodes with 2 quad-core (AMD 2376) at 2.3Ghz with 16Gb of
memory per node and a 1Gb/s network.

– Mirev3: 4 nodes with 2 hyper-threaded octo-core (16 threads) (Intel XEON
E5−2650) at 2.6Ghz with 64Gb of memory per node and a 10Gb/s network.

The multi-bsp and bsp model can be used to estimate the cost of an algo-
rithm. Thus, we estimated the cost of transferring values and the sequential
cost of summing lists of integers. Then, we used the multi-bsp parameters
given in Fig. 15 in order to predict and compare the execution time of scan.
The bsp parameters g and L are given in Fig. 16, one can notice that until
64 cores g evolves linearly, but after that, too many cores access the network,
producing a bottleneck and severely hindering performances.

We measured the time to compute the sieve without the time to gener-
ate the initial list of values. The experiments have been done on Mirev2 and
Mirev3 using bsml (mpi version) and multi-ml over lists of increasing size
on an increasing number of processors. The processes have been assigned to
machines in order to scatter as much as possible the computation among the
machines, i.e. a 16 process run will uses one core on each processor of the 8
machines of Mirev3. Tables 1 and 2 shows the results of our experimentations.
We can see that the efficiency of multi-ml on small list is poor but as the list
grows, multi-ml exceeds bsml. This difference is due to the fact that bsml
communicates through the network at every super steps; while multi-ml is
focusing on communications through local memories and finally communicates
through the distributed level.
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100 000 500 000 1 000 000 3 000 000
multi-ml bsml multi-ml bsml multi-ml bsml multi-ml bsml

8 0.7 1.8 22.4 105.0 125.3 430.7 ... ...
16 0.5 0.8 13.3 50.3 68.1 331.5 1200.0 ...
32 0.3 0.5 2.6 18.9 11.3 122.2 173.2 ...
48 0.5 0.4 1.75 14.5 5.5 88.4 69.3 ...
64 0.3 0.3 1.3 8.7 4.1 56.1 51.1 749.9
96 0.3 0.38 1.6 6.3 3.9 30.8 38.1 576.1
128 0.5 0.45 2.1 5.2 4.7 24.3 30.6 443.7

Table 1 Execution time of Eratosthenes using multi-ml and bsml on Mirev3.

100 000 500 000 1 000 000
multi-ml bsml multi-ml bsml multi-ml bsml

8 1.5 1.7 64.5 106.1 402.9 1538.1
16 0.45 0.93 16.0 49.3 91.4 631.7
32 0.14 0.45 4.1 18.7 21.1 219.7
48 0.13 0.40 2.6 11.0 10.8 123.5
64 0.11 0.34 1.89 7.5 8.2 80.5

Table 2 Execution time of Eratosthenes using multi-ml and bsml on Mirev2.

5 000 000
multi-ml bsml Pred multi-ml Pred bsml

8 2.91 2.8 3.44 1.83
16 1.42 1.4 1.72 0.92
32 0.92 0.73 0.43 0.46
48 0.84 0.75 0.28 0.31
64 0.83 0.74 0.21 0.23

Table 3 Execution time and predictions of scan (sum of integers) on Mirev3.

Table 3 gives the computation time of the simple scan using a summing
operator. On the sum of integers, we can see that multi-ml introduce a small
overhead due to the level management. However it is as efficient as bsml and
concord to the estimated execution times. As the experiment shows, multi-
ml out-performs bsml with communication intensive algorithms. The bsml
program tends to saturate the network when all the processors start to com-
municate. On the contrary, the multi-ml algorithm avoid this bandwidth over
consumption and takes advantage of the shared memory.

5 Related Work

There are a lot parallel languages or parallel extensions of a sequential language
(functional, iterative, object-oriented, etc.). It would be too long to list all of
them. We chose to point out those that were the most important to our mind.
Notice that, except in [26], there is a lack of comparisons between parallel
languages. It is difficult to compare them since many parameters have to be
taken into account: efficiency, scalability, expressiveness, etc.

5.1 Programming Languages and Libraries for BSP like Computing

Historically, the first library for bsp computing was the bsplib [21] for the
c language; it has been extended in the pub library [4] by adding subgroup
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synchronisations, high performance operations and migration of threads. For
the gpu architectures, a bsp library was provided in [23] with mainly drma
primitives close to the bsplib’s ones. There is also bsp-core [35] primitives
bsplib ou il est possible de faire du nested a la Multibsp. For java, different
libraries exist. The first one is [17]. A library with scheduling and migra-
tion of bsp threads has been designed in [29] —the scheduling is implicit but
the migration can be explicit. The library hama [32] is implemented using a
“mapreduce-like” framework. We can also highlight the work of neststep
[24] which is c/java library for bsp computing, which authorises nested com-
putations in case of a cluster of multi-core but without any safety.

The bsml primitives were adapted for c++ [18]: the bsp++ library pro-
vides nested computation in the case of a cluster of multi-cores (mpi+open-
mp). But it is the responsibility of the programmer to avoid harmful nested
parallelism. bsml also inspired bsp-python [22] and bsp-haskell [28].

5.2 Functional Parallel Programming

A survey to parallel functional programming can be found in [20]. It has been
used as a basis for the following classification with some updates.

Data-parallel Languages. The first functional one was nesl [3]. This lan-
guage allows to create particular arrays and nested computations within these
arrays. The abstract machine is responsible for the distribution of the data
over the available processors. For ml, there is manticore [12], an extension
of nesl with the dynamic creation of asynchronous threads and send/received
primitives. For gpu architectures, an extension of ocaml, using a special syn-
tax for the kernels has been developed in [5].

sac (Single Assignment c) [16] is a lazy language (with a syntax close to
c) for array processing. Some higher-order operations on multi-dimensional
arrays are provided and the compiler is responsible for generating an efficient
parallel code. A data-parallel extension of haskell has been done in [10]
where the language allows to create data arrays that are distributed across
the processors. And some specific operations permit to manipulate them.

The main drawback of all these languages is that cost analysis is hard to
do since the system is responsible for the data distribution.

Explicit process creation. We found two extensions of haskell in this cat-
egory: eden and gph [31]. Both use a small set of syntactic constructs for
explicit process creation. Their fine-grain parallelism, while providing enough
control to implement parallel algorithms efficiently, frees the programmer from
the tedious task of managing low-level details of communications —which uses
lazy shared data. Processes are automatically managed by sophisticated run-
time systems for shared memory machines or distributed ones.

As above, cost analysis is hard to do and, sometimes, the runtime fails to
distribute correctly the data [31]; it introduces too much communication and
thus a lack of scalability. Another distributed language is hume [19]. The main
advantage of this language is that it is provided with a cost analysis of the
programs for real-time purpose but with limitations of the expressiveness.
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Algorithmic skeletons. Skeletons are patterns of parallel computations [15].
They can be seen as high-order functions that provide parallelism. They thus
fall into the category of functional extensions. They are many skeleton libraries
[15]. For ocaml, the most known work is the one of [11].

Distributed functional languages. In front of parallel functional languages,
there are many concurrent extensions of functional languages such as erlang,
clean or jocaml [27]. The latter is a concurrent extension of ocaml, which
added explicit synchronisations of processes using specific patterns.

alice-ml [30] adds what is called a “future” for communicating values. A
future is a placeholder for an undetermined result of a concurrent computation.
When the computation delivers a result, the associated future is eliminated by
globally replacing it by the result value. The language also contains “promises”
that are explicit handles of futures. scala is a functional extension of java
which provides concurrency, using the actor model: mostly, creation of agents
that can migrate across resources. Two others extensions of ocaml are [8] and
[9]. The former uses spmd primitives with a kind of futures. The latter allows
migration of threads that communicate using particular shared data.

All these languages have the same drawbacks: they are not deadlock and
race condition free; furthermore, they do not provide any cost model.

6 Conclusion and Future Work

6.1 Summary of the Contribution

The paper presents a language call multi-ml to program multi-bsp algo-
rithms. It extends our previous bsml that has been designed for programming
bsp algorithms. They both have the following advantages: confluent opera-
tional semantics; equivalence of the results for both toplevel and distributed
implementation; cost model and efficiency.

The multi-bsp model extends the bsp one as a hierarchical tree of nested
bsp machines. multi-ml extends bsml with a special syntax for define spe-
cial recursive functions over this tree of nested machines, each of them pro-
grammed using bsml. In a tree, nodes contain codes to manage the sub-
machines whereas leaves perform the largest parts of the computation. In this
work, we focus on the informal presentation of multi-ml, an operational se-
mantics of a core-language and benchmarks of simple examples with a compar-
ison with predicted performances associated with the multi-bsp cost model.
We also compare multi-ml codes with bsml ones as well as the performances
of both languages on a typical cluster of hyper-threaded multi-cores. As pre-
dicted, multi-ml codes run faster when the cores share the network: there is
no bottleneck; And the multi-core synchronisations are cheaper.

Compared to bsml, multi-ml have several drawbacks. First, the codes, the
semantics and the implementation are a bit more complex. Second, the cost
model associated to the program is more difficult to grasp: designing multi-
bsp algorithms and programming them in multi-ml is more difficult than
using bsml only. But, from our experience, we can say that it is not so hard.
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6.2 Future Work

In a close future, we plan to axiomatise the multi-ml primitives inside coq,
as we did for bsml in [13,36], in order to prove the correctness of multi-bsp
algorithms. We also consider to formally prove that the implementations follow
the formal semantics. We also plan to benchmark bigger examples. We think
of model-checking problems and algebraic computations that better follow
high-level languages than intensive float operations can do.

But the most important work to do is the implementation of a type system
for multi-ml to ensure a true safety of the codes: forbid nesting of vectors,
forbid data-races if imperatives features, such as handling exceptions [14],
are used. In the long term, the type system could be used to optimise the
compiler. Indeed, currently, even in the case of a share-memory architecture,
only serialised values are exchanged between nodes. We consider implementing
a dedicated concurrent garbage collector.
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