
HAL Id: hal-01159962
https://hal.science/hal-01159962

Submitted on 4 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Perfect sampling for multiclass closed queueing networks
Anne Bouillard, Ana Bušić, Christelle Rovetta

To cite this version:
Anne Bouillard, Ana Bušić, Christelle Rovetta. Perfect sampling for multiclass closed queueing net-
works. 12th International Conference on Quantitative Evaluation of SysTems (QEST 2015) , Sep
2015, Madrid, Spain. �hal-01159962�

https://hal.science/hal-01159962
https://hal.archives-ouvertes.fr

Perfect sampling for multiclass closed queueing

networks

Anne Bouillard, Ana Bušić, and Christelle Rovetta

June 4, 2015

Abstract

In this paper we present an exact sampling method for multiclass
closed queuing networks. We consider networks for which stationary dis-
tribution does not necessarily have a product form. The proposed method
uses a compact representation of sets of states, that is used to derive a
bounding chain with significantly lower complexity of one-step transition
in the coupling from the past scheme. The coupling time of this bounding
chain can be larger than the coupling time of the exact chain, but it is
finite in expectation. Numerical experiments show that coupling time is
close to that of the exact chain. Moreover, the running time of the pro-
posed algorithm outperforms the classical algorithm.

Keywords: multiclass queueing networks, simulation, coupling from
the past

1 Introduction

Closed queueing networks are largely used in various application domains due to
their modeling simplicity and product-form stationary distribution [10]. In the
multiclass case, the product-form structure remains valid only under restrictive
conditions on the service policy [3].

When the stationary distribution does not have a product-form, the exact
analysis may not be computationally tractable, and we may turn to approxima-
tions [2, 15, 4, 17], bounds [19, 7], or simulation [1].

This paper concerns simulation, with a focus on stopping criteria. The
asymptotic variance appearing in the Central Limit Theorem has been the most
common metric to devise stopping rules, while mixing times have become a
standard alternative [1, 14]. Unfortunately, there are no generic and tractable
techniques to compute or bound either the asymptotic variance or the mixing
time for non-reversible Markov chains.

Propp and Wilson introduced a method for sampling a random variable
according to the stationary distribution of a finite ergodic Markov chain [16]: the
coupling from the past (CFTP) algorithm. The CFTP algorithm automatically
detects and stops when the sample has the correct distribution. In this way it is
possible to generate i.i.d. samples from the chain, and the asymptotic variance
of the resulting simulator is the standard variance of the random variable whose
mean we wish to estimate.

1

The main drawback of the original CFTP is that it considers a coupling from
all initial conditions. In the case of closed queueing networks the cardinality of
the state space is exponential in the number of queues, which is intractable.

Different techniques can be used to efficiently compute one step of the CFTP
algorithm: the simplest solution, for monotone Markov chains, is to compute
the minimal and maximal trajectories only [16]. For Markov chains with no
monotone representations, new techniques have been developed to approximate
each step of the computation, at the cost of slightly increasing the number of
iterations of the algorithm. Bounding chains have been constructed to detect
coalescence for state spaces with lattice structure [12, 9], or for models with
short range local interactions, such as interacting particle systems [11]. For
applications to queueing networks, see for instance [18, 8].

The main difficulty with closed queueing networks is that the customer pop-
ulation is constant. This imposes a global constraint on the model, so the
approach of [12] cannot be applied directly. Without monotonicity, the com-
plexity of one iteration of the original CFTP algorithm by Propp and Wilson
[16] depends on the cardinality of the state space, which is exponential in the
number of queues.

For the single class closed queueing networks, Kijima and Matsui [13] pro-
posed a perfect sampling algorithm with overall complexity O(K3 ln(KM)),
where K is the number of queues and M the total number of customers. How-
ever, their method strongly relies on the product form representation of the
stationary distribution and it cannot be applied to the general case of multi-
class networks. In Bouillard and al. [6], a new representation of the sets of states
has been proposed. This representation is used to derive a bounding chain for
the CFTP algorithm for closed queueing networks, that enables exact sampling
from the stationary distribution without considering all initial conditions in the
CFTP. This method is far more general, as it does not rely on the product-form
property.

In this paper, we propose a generalization of the compact state space rep-
resentation in [6] for the multiclass closed queueing networks. Each state is
represented by a path in a multidimensional diagram. This diagram is a di-
rected graph with nodes in {0, . . . ,K} ×

∏Z
z=1{0, . . . ,Mz}, where K denotes

the number of queues, Z the number of classes, and Mz the total number of
customers of class z (the detailed description of diagrams is given in Section
3). The diagram transition function used in our MDCFTP (multiclass diagram
CFTP) algorithm needs to read only once this multidimensional diagram, so

the complexity of one step of our algorithm is in O(K
∏Z
z=1Mz). On the other

hand, multiclass diagrams are an over-representation of the states (a set of paths
that represents a set of states may represent more states than just the desired
subset). Thus the coupling time of the MDCFTP algorithm is in general larger
than the coupling time of the classical CFTP. Numerical experiments (Section
4) suggest that the coupling times of the two algorithms are very close. Overall,
the proposed MDCFTP algorithm significantly outperforms the classical one.

A major difficulty in the multiclass case is the fact that the class to be served
depends on the current state of the system, so the coupling construction needs
a very careful design of the event representation of the dynamic of the system.
We provide such an event description under the assumption that the class to be
served in queue i depends only on the current state of queue i.

2

The paper is organized as follows. In Section 2 we present the model and an
event representation of the system that ensures the convergence of the CFTP
scheme in finite expected time. In Section 3, we describe the multiclass diagram
representation of the state space, propose the MDCFTP algorithm and discuss
its complexity. Numerical experiments are given in Section 4. Final remarks
and conclusions are contained in Section 5.

2 Model

2.1 Description

We consider a multiclass closed queueing network of K queues and Z classes of
customers. Each queue k ∈ {1, . . . ,K} has an infinite buffer capacity, a single
exponential server and a service discipline that will be detailed in Section 2.3.
For simplicity of exposition, we assume a class-independent service rate µk. The
generalization to class-dependent service times is straightforward, by adding fake
transitions that do not modify the state for the classes that have smaller service
rates. The set of classes that can be in queue k is denoted by Z(k) ⊆ {1, . . . , Z}.

Customers are not allowed to change class, thus the number of customers in
each class remains constant. For each class z ∈ {1, . . . , Z} of customer, the total
number of customers in this class is denoted by Mz, the set of queues visited
by customers of class z by K(z) ⊆ {1, . . . ,K} and P z ∈ RK,K is the routing
matrix for class z: P zi,j is the probability that a customer of class z leaving queue
i is routed to queue j, with the convention that if i /∈ K(z), then P zi,i = 1 and
P zi,j = 0 if j 6= i. Matrix P z is stochastic, so for all i, j ∈ {1, . . . ,K}, P zi,j ≥ 0

and
∑K
j=1 P

z
ij = 1.

We assume that the directed graph Gz = (K(z), Rz) where Rz = {(i, j) ∈
K(z)

2
such that P zij > 0} is strongly connected. The total number of customers

in the system is denoted by M =
∑Z
z=1Mz.

2.2 State space

A state of the network is a matrix x = (xz,k) ∈ NZ×K where xz,k represents the
number of customers of class z in queue k. A state x must satisfy the following
constraints:

K∑
k=1

xz,k = Mz and ∀k /∈ K(z), xz,k = 0. (1)

Throughout the paper, we will use the following notations.
For k ∈ {1, . . . ,K} and z ∈ {1, . . . , Z}, we denote by:

• xz,∗ = (xz,k, . . . , xz,K) ∈ NK is the queue repartition (row)-vector of class
z;

• x∗,k = (x1,k, . . . , xZ,k)t ∈ NZ is the class repartition (row)-vector in
queue k;

• |x∗,k| =
∑Z
z=1 xz,k is the total number of customers in queue k.

3

G2

G1

1 2

3 4

5

1

1

0.5

0.5
0.3

0.5

0.5

0.7

0.8

0.2

1

Figure 1: The multiclass network described in Example 1.

The set of all possible state matrices is denoted by S = {x ∈ NZ×K satisfying (1)}.
Its cardinality is

|S| =
Z∏
z=1

(
Mz

Mz + |K(z)| − 1

)
.

If for each class z, K(z) � Mz then |S| = O(
∏Z
z=1M

|K(z)|
z) = O(MK

×),

where M× =
∏Z
z=1Mz.

Example 1 Consider the multiclass queueing network of Figure 1 having 5
queues, 2 classes, with M1 = 2 and M2 = 3, and routing matrices

P 1 =


0 0.5 0.5 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 and P 2 =


1 0 0 0 0
0 0 0.3 0 0.7
0 0 0 1 0
0 0.8 0.2 0 0
0 0 0.5 0.5 0

 .

The total number of customers is M = 5 and the queues visited by each class
are K(1) = {1, 2, 3} and K(2) = {2, 3, 4, 5}. The cardinality of the state space
is |S| = 120 and an example of such a state is

x =

(
1 1 0 0 0
0 2 0 0 1

)
∈ S.

2.3 Service discipline and transitions

In order to perform the perfect sampling algorithm for multiclass queueing net-
works, we need to define transitions on sets of states. These transitions depend
on the service discipline of the queues.

The function t̃i,j,z : S → S describes the routing of a class z customer from
queue i to queue j:

t̃i,j,z(x) = x− 1{xz,i>0}ezi + 1{xz,i>0}ezj ,

where ezk ∈ NZ×K is the matrix having all its coefficients equal to 0 except
(ezk)z,k = 1.

When there are several classes of customers in a queue, then the queue disci-
pline determines the class of customers to serve. For each queue i ∈ {1, . . . ,K},
fi : NZ× [0, 1]→ Z(i)∪{0} is the function that describes the discipline in queue
i. We assume that fi has the following properties:

4

Assumption 1 For a state x and a parameter θ ∈ [0, 1]:

1. The service discipline is Markovian and fi only depends on θ and x∗,i.

2. |x∗,i| = 0 if and only if fi(x∗,i, θ) = 0 (the service is greedy).

3. If |x∗,i| > 0 then fi(x∗,i, θ) ∈ {z such that xz,i > 0} (there is a customer
of the chosen class in queue i).

We give two examples of disciplines that satisfy Assumption 1:

• PRIORITY gives the preemptive priority to the class with the smallest
index. It can be defined to any total order � on the classes.

fi(x∗,i, θ) = min{z | xz,i > 0}1{|x∗,i|>0}.

• LONGEST (serve-the-longest-queue)

fi(x∗,i, θ) ∈ arg max{xi,z | z ∈ Z(i)} ∪ {0}.

PRIORITY does not depend on θ, but this parameter is used to break ties
in LONGEST between the classes where the number of customers is maximal.

For i ∈ {1, . . . ,K}, J = (j1, . . . , jZ) ∈ {1, . . . ,K}Z a vector of queues, x a
state, and θ ∈ [0, 1], we define a transition on state x by the function:

ti,J,θ(x) = t̃i,jz,z(x),

where z = fi(x∗,i, θ) is the class chosen by queue i. This transition describes the
routing of a customer from queue i and J gives the destination queue according
to the class that is served in queue i. If the transition does not depend on θ (as
in PRIORITY), we will write ti,J,θ(x) = ti,J(x) to alleviate the notations.

Example 2 Consider state x =

(
1 1 0 0 0
0 2 0 0 1

)
in Example 1. Queue 2

contains 3 customers (x∗,2 = (1, 2)) and function t2,(1,5),θ describes a possible
routing for a customer in queue 2: if a customer of class 1 is served, then it is
routed to queue 1; a customer of class 2 would be routed to queue 5. For θ = 0,
the class of the served customer is given by z = f2(x∗,2, 0).

• If queue 2 has the PRIORITY discipline then z = 1 and

t2,(1,5)(x) = t̃2,1,1(x) =

(
2 0 0 0 0
0 2 0 0 1

)
.

• If queue 2 has the LONGEST discipline then z = 2 and

t2,(1,5),0(x) = t̃2,5,2(x) =

(
1 1 0 0 0
0 1 0 0 2

)
.

This definition of a transition enables to define it for sets of states: for
all S ⊆ S, θ ∈ [0, 1], i ∈ {1, . . . ,K} and J = (j1, . . . , jZ) ∈ {1, . . . ,K}Z ,
ti,J,θ(S) := ∪

x∈S
ti,J,θ(x) and ti,J(S) := ∪

x∈S
ti,J(x) if the transition do not depend

on θ.

5

2.4 Markov chain and perfect sampling

Denote by (Wn)n∈N an i.i.d. sequence of random variables with distribution

P(Wn = (i, J)) =
µi∑K
k=1 µk

Z∏
z=1

P zi,jz ,

where i ∈ {1, . . . ,K} and J = (j1, . . . , jZ) ∈ {1, . . . ,K}Z . It can easily be
checked that the probability that the first component of Wn is i equals µi∑K

k=1 µk
,

the probability that the next service occurs at queue i. Moreover, denoting
Wn = (k, J), for each class z ∈ {1, . . . ,K}, P(jz = j | k = i) = P zi,j , which is
the probability of routing a customer of class z from queue i to queue j.

Let (Θn)n∈N be an i.i.d sequence of random variables, uniformly distributed
on [0, 1] and independent of (Wn)n∈N. We set (Un)n∈N = (Wn,Θn)n∈N.

Let (Xn)n a random sequence such that X0 ∈ S and

Xn+1 = tUn
(Xn).

This equation describes the Markov chain of our model of multiclass network.
This Markov chain is ergodic, due to the assumption that the routing graph of
each class is strongly connected and Assumption 1. Our objective is to sample
the stationary distribution of (Xn)n∈N with the perfect sampling technique [16]1.
The following theorem concerns the termination and correctness of Algorithm

Algorithm 1: CFTP using sets of states

Data: (U−n = (i−n, J−n,Θ−n))n∈N an i.i.d sequence of r.v
Result: x ∈ S

1 begin
2 n← 1;
3 t← tU−1 ;
4 while |t(S)| 6= 1 do
5 n← 2n;
6 t← tU−1

◦ · · · ◦ tU−n
;

7 return x, the unique element of t(S)

1.

Theorem 1 If for each class z the routing graph Gz is strongly connected, and
the service policies satisfy Assumption 1, then Algorithm 1 terminates in finite
time with probability 1 and the termination time has a finite expectation. The
state s0 is distributed according to the stationary distribution of {Xn}.

The proof is a straightforward corollary of the result by Propp and Wilson
[16] and Theorem 2, that gives the existence of a coupling sequence, i.e. a
sequence that leads to coalescence of the trajectories started in all the initial
conditions.

1Algorithm 1 is the variant of the CFTP algorithm from [16] that doubles the value of n at
each iteration. In the case when all the states are considered, the basic CFTP algorithm can
be used, but this choice has been made to simplify comparison with Algorithm 3 in Section 3.

6

Theorem 2 If the service discipline of each queue satisfies Assumptions 1 then
there exists a finite sequence of transitions t = tU1

◦· · ·◦tUn
such that |t(S)| = 1.

The proof of Theorem 2 is postponed to Appendix A.1. Note that the complexity
of this algorithm is at least linear in |S|.

3 Diagram representation

The cardinality of the state space is exponential in K and Z, so it is not possible
to perform the perfect sampling algorithm directly, as one must first enumerate
all the state space in order to compute a transition. In this section, we present
multiclass diagrams, a more compact way to describe sets of states. In most
of the cases, a diagram representing a given set of states will in fact represent
more states, but we show that this representation ensures the termination of
the perfect sampling algorithm in finite expected time, and the complexity of
the transition becomes linear in K (while still exponential in Z).

3.1 Definition

Let D = (N,A) be a directed graph where N ⊆ {0, . . . ,K} × NZ is the set of
nodes and A the set of arcs. Let g : S → P(N2) denote the function which
associates a set of arcs to a state x ∈ S:

g(x) =

K⋃
i=1

{(
[i− 1, (

i−1∑
k=1

x1,k, . . . ,

i−1∑
k=1

xZ,k)], [i, (

i∑
k=1

x1,k, . . . ,

i∑
k=1

xZ,k)]
)}
.

Graphically, g(x) can be seen in D as a path from node [0, (0, . . . , 0)] to node
[K, (M1, . . . ,MZ)] (Figure 2). Moreover, consider an arc a =

(
[k−1, s], [k,d]

)
∈

g(x) where s = (s1, . . . , sZ) ∈ NZ and d = (d1, . . . , dZ) ∈ NZ are two row-
vectors. The slope of a on its second component can be considered as a class-
repartition vector in queue k. Indeed,

d− s = (

k∑
i=1

x1,i −
k−1∑
i=1

x1,i, . . . ,

k∑
i=1

xZ,i −
k−1∑
i=1

xZ,i) = (x1,k, . . . , xZ,k) = x∗,k.

Definition 1 A directed graph D = (N,A) is called a diagram if there exists
S ⊆ S such that

A = g(S) :=
⋃
x∈S

g(x).

A diagram is said to be complete if A = g(S). It is denoted D = (N,A).

For an arc a =
(
[k − 1, s], [k,d]

)
∈ A, vector v(a) = d− s ∈ NZ is called

the value of a. It represents the class-repartition vector in queue k. Subset
Ak = {

(
[k − 1, s], [k,d]

)
∈ A} denotes the set of all arcs in column k.

Example 3 Consider S the state space of Example 1 and state x =

(
1 1 0 0 0
0 2 0 0 1

)
.

Diagram D = (N, g({x})) is given in Figure 2 and has 5 arcs:(
[0, (0, 0)], [1, (1, 0)]

)
,
(
[1, (1, 0)], [2, (2, 2)]

)
,
(
[2, (2, 2)], [3, (2, 2)]

)
,(

[3, (2, 2)], [4, (2, 2)]
)
,
(
[4, (2, 2)], [5, (2, 3)]

)
.

7

The value of a2 is v(a2) = (1, 2) = x∗,2. The complete diagram D = (N, g(S))
is depicted on Figure 3 and has |g(S)| = 71 arcs.

Figure 2: Diagram D = (N, g({x})). Figure 3: Complete diagram
D = (N, g(S)).

Lemma 1 Let D = (N,A) be a diagram. If K ≥ 2, then

|A| ≤ 2

Z∏
z=1

(Mz + 1) + (K − 2)

Z∏
z=1

(Mz + 1)(Mz + 2)

2
.

Proof 1 (Sketch of proof) The first term bounds the number of arcs in the
first and last columns (≤ Mz + 1 each), the second term bounds the number of

arcs in the other K − 2 columns (≤
∏Z
z=1

∑Mz

m=0m).
The equality in Lemma 1 holds for the complete diagram when each class

can visit every queue.

A consequence of Lemma 1 is that the space needed for the representation
of a diagram is |A| = O(KM2

×).

Diagrams and sets of states. In order to perform the transition on the
diagrams, we first need to define functions that transform a set of states into a
diagram and the reverse. For S ⊆ S, φ associates to a set of states S ∈ S the
diagram φ(S) = (N, g(S)). For D = (N,A), ψ transforms diagram D = (N,A)
into the largest set of states S ⊆ S such that g(S) = A:

ψ(D) =
⋃

S⊆S, A=g(S)

S.

The followings properties are straightforward from the definitions of φ and ψ.

Lemma 2 For S ⊆ S a set of states and D = (N,A) a diagram:

1. D is complete if and only if ψ(D) = S.

2. If D contains only one path (i.e. |A| = K) then |ψ(D)| = 1.

3. If |S| = 1 then φ(S) contains only one path.

4. If S ⊆ S such that A = g(S) then S ⊆ ψ(D).

8

3.2 Transition algorithm

We now extend the transitions to diagrams. Let (i, J) ∈ {1, . . . ,K}Z+1 and
θ ∈ [0, 1]. Function Ti,J,θ is defined for each diagram D as

Ti,J,θ(D) = φ ◦ ti,J,θ ◦ ψ(D).

Lemma 3 Let S ⊆ S be a set of states and D be a diagram. For all (i, J) ∈
{1, . . . ,K}Z+1 and θ ∈ [0, 1],

1. if S ⊆ ψ(D) then ti,J,θ(S) ⊆ ψ(Ti,J,θ(D));

2. if |ψ(D)| = 1 then |ψ(Ti,J,θ(D))| = 1.

We now present the algorithm to compute Ti,J,θ(D) directly without having
to use ti,J,θ(φ(D)), which would be too costly. The intuition is that the transfor-
mation will be similar for sets of paths, and then it can be done simultaneously
for them all. The algorithm that computes Ti,j,θ(D) is given as Algorithm 2.

Before describing it, we adapt the definition of the class to be served to
diagrams. As the service disciplines we consider satisfy Assumption 1, the way
a path is transformed according to (i, J, θ) depends only on the value of the arc
in column i. For a ∈ Ai and θ ∈ [0, 1], we can define Fi(a, θ) = fi(v(a), θ),
which selects the class to be served for arc a. This class will be the same for
every path going through that arc.

For a diagram D = (N,A) and b ∈ A, we denote by Paths(b, A) ⊆ A the
subset of arcs on paths through arc b:

Paths(b, A) = {a ∈ A | ∃x ∈ S s.t. a ∈ g(x) AND b ∈ g(x)},

and for B ⊆ A, Paths(B,A) denotes the subset of arcs on paths through an arc
b ∈ B:

Paths(B,A) =
⋃
b∈B

Paths(b, A).

Example 4 Consider D = (N, g(S)) the complete diagram of Example 3 and
a =

(
[2, (2, 0)], [3, (2, 0)]

)
∈ A, b =

(
[2, (1, 0)], [3, (2, 0)]

)
∈ A two arcs in col-

umn 3. For B = {a, b} ⊆ Ak. Subset Paths(b, A) is given in Figure 4 and
subset Paths(B,A) in Figure 5.

Figure 4: Subset Paths(b, A) Figure 5: Subset Paths(B,A)

9

For each arc a ∈ Ai, function Fi gives the class for which the transition will
be performed. As there are |Z(i)| + 1 different possible values for Fi(a, θ), we
will compute |Z(i)|+ 1 different types of transition. For all z ∈ Z(i) ∪ {0}, set

P [z] = {a ∈ Ai | Fi(a, θ) = z} and Serve[z] = Paths(P [z], A).

Serve[0] corresponds to the sub-diagram of the states where queue i is empty.
It will remain a sub-diagram of Ti,J,θ(D). For all z ∈ Z(i), Serve[z] is the sub-
diagram corresponding to states where a customer of class z is served, and routed
to queue j = J [z]. This sub-diagram is transformed into Serve′[z]. We focus
on the case i < j (the case i > j is similar). Each arc b =

(
[k − 1, s], [k,d]

)
∈

Serve[z] is transformed into c the following way:

• If k < i or k > j, b is not affected by the transformation, so c = b.

• If k = i then b corresponds to a class-repartition vector of queue i, where
one customer of class z is served. Then c =

(
[k − 1, s], [k,d− ez]

)
.

• If i < k < j then b corresponds a class-repartition vector that is not
affected by the service. However, the origin of the arcs it was connected
to has changed from s to s− ez, so its destination must change similarly.
So c =

(
[k − 1, s− ez], [k,d− ez]

)
.

• If k = j, b corresponds to a class-repartition vector of queue j, where one
customer of class z arrives. As the origin of the arc it was connected to
has changed to s− ez, we have c =

(
[k − 1, s− ez], [k,d]

)
.

Diagram Ti,J,θ(D) = (N,A′) with A′ =
⋃
z∈Z(i)∪{0} Serve′[z]. Indeed, this

construction ensures that for all x ∈ ψ(D), tiJ,θ(x) ∈ ψ(Ti,J,θ(D)).
Suppose that the complexity of computing Fi(a, θ) is C. Then the com-

plexity of Algorithm 2 is C|Ai| + Z|A| = O((C + KZ)M2
×). For PRIOR-

ITY and LONGEST service discipline, C = O(Z), so the overall complexity
is O(KZM2Z).

Example 5 Consider the complete diagram of Example 3 and transition T2,(1,5).
Suppose that queue 2 has a PRIORITY discipline (class 1 has the priority). Fig-
ure 6 illustrates the partition of arcs in column 2 into P [0], P [1] and P [2].

• P [0] = {a ∈ A2 | v(a) = (0, 0)} and Serve[0] = Paths(P [0], A)

• P [1] = {a ∈ A2 | v(a) = (v1, v2), v1 > 0} and Serve[1] = Paths(P [1], A)

• P [2] = {a ∈ A2 | v(a) = (0, v2), v2 > 0} and Serve[2] = Paths(P [2], A)

Notice that sets Serve[0], Serve[1] and Serve[2] are not necessary disjoint. For
example, arc b =

(
[4, 2, 3], [5, 2, 3]

)
∈ Serve[1] ∩ Serve[2] (see Figures 7 and 8).

Then for all z ∈ {1, . . . , Z} we will compute Serve′[z] from Serve[z] according to
Algorithm 2. For class 1, the transition is performed for arcs in Serve[1] from
queue 2 to queue 1. For class 2, the transition is performed for arcs in Serve[2]
from queue 2 to queue 5.

Finaly, Ti,J(D, θ) = (N,A′), with A′ = Serve[0] ∪ Serve′[1] ∪ Serve′[2].

10

Algorithm 2: Algorithm Ti,J,θ

Data: D = (N,A), i ∈ {1, . . . ,K}, J ∈ NZ , θ ∈ [0, 1]
Result: Ti,J,θ(D)

1 begin
2 for z = 0 to Z do P [z]← {a ∈ Ai | Fi(a, θ) = z};
3 Serve′[0]← Paths(P [0], A);
4 for z = 1 to Z do
5 Serve[z]← Paths(P [z], A);
6 Serve′[z]← ∅;
7 j ← J [z] ;
8 if i < j then
9 foreach b =

(
[k − 1, s], [k,d]

)
∈ Serve[z] do

10 c =
(
[k − 1, s− 1{i<k≤j}ez], [k,d− 1{i≤k<j}ez]

)
;

11 Serve′[z]← Serve′[z] ∪ {c};
12 if i > j then
13 foreach b =

(
[k − 1, s], [k,d]

)
∈ Serve[z] do

14 c =
(
[k − 1, s + 1{j<k≤i}ez], [k,d + 1{j≤k<i}ez]

)
;

15 Serve′[z]← Serve′[z] ∪ {c};
16 A′ ←

⋃Z
z=0 Serve′[z] ;

17 return (N,A′)

Figure 6: Arc repartition in column 2 with PRIORITY discipline.

3.3 Perfect sampling with diagrams

In this section, we show that the diagram representation can be used in the
perfect sampling algorithm. First, as in Section 2.4, we need to ensure that the
complete diagram can be reduced to a diagram containing only one state by a
finite sequence of transitions.

Theorem 3 If each queue discipline satisfies Assumptions 1 then there exists
a finite sequence of transitions T such that |ψ(T (D)| = 1.

The proof is given in Appendix A.2.

Theorem 4 Algorithm 3 samples a state according to the stationary distribu-
tion on the states and terminates in finite expected time.

Proof 2 Theorem 3 implies that Algorithm 3 ends in finite expected time. Let
N < ∞ be the value of n when Algorithm 3 ends. Consider t = tU−1

◦ · · · ◦

11

Figure 7: Serve[1] =
Paths(P [1], A).

Figure 8: Serve[2] =
Paths(P [2], A).

Algorithm 3: Multiclass Diagram CFTP

Data: (U−n = (i−n, J−n),Θ−n)n∈N an i.i.d sequence of r.v
Result: x ∈ S

1 begin
2 n← 1;
3 T ← TU−1

;
4 while |ψ(T (D))| 6= 1 do
5 n← 2n;
6 T ← TU−1

◦ · · · ◦ TU−n
;

7 return x, the unique state of ψ(T (D))

tU−N
with the same random sequence (U−n)n∈N. Lemma 3 implies that t(S) ⊆

ψ(T (D)) ⊆ S. But |ψ(T (D))| = 1, which means, by Lemma 2, that |t(S)| = 1.
Let x be the unique state of ψ(T (D)) = t(S), the state returned by Algorithm 3.
State x is also the result returned by Algorithm 1. So it samples the stationary
distribution.

4 Numerical experiments

In this section, we compare our MDCFTP (Algorithm 3) with the classical
CFTP algorithm (Algorithm 1).

We compare the size of the state representation, the coupling times and the
running times. The coupling time is the value n when the algorithm stops.
Throughout the experiments, we use the PRIORITY discipline where class 1
is given the priority over class 2. The algorithms have been implemented in
Python and performed on a laptop.

4.1 Network of Example 1

We first consider the network of Example 1 with m customers in each class
(M = 2m), with m ∈ [1, 20]. In Figure 9 we compare the performance of
Algorithms 1 and 3 (using the same sequences (U−n)). Each value is the mean
of 100 random samples.

12

Figure 9: Comparisons for the network of Example 1. Left: cardinality of the
state space |S| vs. number of arcs in the diagram |g(S)|; center: comparison of
the coupling times; right: comparison of the running times.

As expected, the cardinality of the state space grows exponentially with
m, while |g(S)| only grows polynomially. The coupling times are very close,
which indicates that our representation is precise enough to ensure a reasonable
coupling time. Algorithm 3 significantly outperforms Algorithm 1 in terms of
the running times. For Algorithm 1, the sampling could not be computed in
less than six hours for m > 15.

4.2 Bidirectional ring network

We consider a bidirectional ring network with K queues and 2 classes, and matri-
ces transitions P 1

i,i mod (K)+1 = 0.9, P 1
i mod (K)+1,i = 0.1, P 2

i,i mod (K)+1 = 0.1

and P 2
i mod (K)+1,i = 0.9. The number of customers in each class is 5.

We perform exactly the same experiments as in the previous example, but
make the number of queues vary between 2 and 20 (Figure 10).

Figure 10: Bidirectional network: left: cardinality of the state space |S| vs.
number of arcs in the diagram |g(S)|; center: comparison of the coupling times;
right: comparison of the running times.

Not surprisingly, the cardinality of the state space grows exponentially with
K. We were able to perform Algorithm 1 only for very small values (K ≤ 7).
Indeed, the number of states is in O(m2K) whereas the state representation
with diagrams is in O(Km4). In those cases, the coupling times of the two
algorithms are very close and the running time correlated with the cardinality
of the representation.

13

4.3 Comparisons of the number of states |S| and the size
of the diagram representation |g(S)|

As our representation is still exponential in Z, we have restricted ourselves to
experiments with two classes of customers. We compare the size of the represen-
tation of the state space for Algorithms 1 and 3. The size of the representation
only depends on the sets of queues visited by each class, and not on the exact
topology of the network. For the sake of simplicity, we assume that each class
has m customers and visits every queue. We make m vary for several values of
Z and K. The results are depicted in Figure 11.

Figure 11: Ratio |S|
|g(S)| . Left: K = 5, Z ∈ {2, 3, 5}; right: Z = 3, K ∈ {3, 5, 10}.

5 Conclusion

The main contribution of the paper is the derivation of the CFTP algorithm
for multiclass closed queueing networks under various service policies. The only
assumption made is that each station i choses the class to serve using only local
information - the current state of queue i.

Our CFTP algorithm uses multiclass diagrams, a more compact represen-
tation of the state space. As in the monoclass case, using diagrams allows
reduction of the complexity of the one-step transition function in the CFTP
scheme from exponential to linear, in terms of the number of queues in the sys-
tem. Unfortunately, diagram CFTP is still exponential in terms of the number
of classes, so it is efficient only when the number of classes stays relatively small
(less than 5). The main open question is the existence of a compact representa-
tion that is also polynomial in the number of classes, while keeping the coupling
time of the bounding chain close to that of the original one.

We plan to investigate more closely the implementation of the transition
function for the multiclass diagrams and the possible generalizations of the
gap free diagrams in [5] that allowed a complexity reduction from O(KM2) to
O(KM) in the monoclass case.

For simplicity of exposition, we focused here on infinite capacity case. Ex-
tension to buffers with finite capacity does not represent any major difficulty,
but it is not straightforward.

The major theoretical challenge is the study of the coupling times.

14

Acknowledgments

The work presented in this paper has been carried out at LINCS (www.lincs.fr)
and has been founded by the French National Research Agency grant ANR-12-
MONU-0019.

References

[1] S. Asmussen and P. W. Glynn. Stochastic simulation: algorithms and
analysis. Springer, New York, 2007.

[2] S. Balsamo. Queueing networks with blocking: Analysis, solution algo-
rithms and properties. In D. D. Kouvatsos, editor, Network Performance
Engineering, volume 5233 of LNCS, pages 233–257. Springer Berlin Heidel-
berg, 2011.

[3] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed,
and mixed networks of queues with different classes of customers. J. Assoc.
Comput. Mach., 22:248–260, 1975.

[4] B. Baynat and Y. Dallery. A product-form approximation method for
general closed queueing networks with several classes of customers. Perfor-
mance Evaluation, 24(3):165–188, 1996.

[5] A. Bouillard, A. Bušić, and C. Rovetta. Clones: Closed queueing networks
exact sampling. In 8th International Conference on Performance Evalua-
tion Methodologies and Tools, VALUETOOLS 2014. ICST, 2014.

[6] A. Bouillard, A. Bušić, and C. Rovetta. Perfect sampling for closed queue-
ing networks. Performance Evaluation, 79(0):146–159, 2014.

[7] A. Bušić, I. Vliegen, and A. Scheller-Wolf. Comparing Markov chains:
aggregation and precedence relations applied to sets of states, with ap-
plications to assemble-to-order systems. Math. Oper. Res., 37(2):259–287,
2012.

[8] A. Bušić, B. Gaujal, and F. Perronnin. Perfect sampling of networks with
finite and infinite capacity queues. In 19th International Conference on
Analytical and Stochastic Modeling Techniques and Applications, ASMTA
2012, volume 7314 of LNCS, pages 136–149. Springer, 2012.

[9] A. Bušić, B. Gaujal, and F. Pin. Perfect sampling of Markov chains with
piecewise homogeneous events. Performance Evaluation, 69(6):247–266,
2012.

[10] W. Gordon and G. Newel. Closed queueing systems with exponential
servers. Oper. Res., 15,2:254–265, 1967.

[11] M. Huber. Perfect sampling using bounding chains. Ann Appl Probab,
14(2):734–753, 2004.

[12] W. Kendall and J. Møller. Perfect simulation using dominating processes
on ordered spaces, with application to locally stable point processes. Adv.
in Appl. Probab., 32(3):844–865, 2000.

15

[13] S. Kijima and T. Matsui. Randomized approximation scheme and per-
fect sampler for closed Jackson networks with multiple servers. Annals of
Operations Research, 162(1):35–55, 2008.

[14] D. Levin, Y. Peres, and E. Wilmer. Markov Chains and Mixing Times.
American Mathematical Society, 2009.

[15] R. Marie. An approximate analytical method for general queueing net-
works. IEEE Transactions on Software Engineering, 5(5):530–538, 1979.

[16] J. G. Propp and D. B. Wilson. Exact sampling with coupled Markov chains
and applications to statistical mechanics. Random Struct. Algorithms, 9(1-
2):223–252, 1996.

[17] K. Satyam, A. Krishnamurthy, and M. Kamath. Solving general multi-
class closed queuing networks using parametric decomposition. Computers
& Operations Research, 40:1777–1789, 2013.

[18] K. Sigman. Exact simulation of the stationary distribution of the FIFO
M/G/c queue: the general case for ρ < c. Queueing Systems, 70(1):37–43,
2012.

[19] N. M. van Dijk. Bounds and error bounds for queueing networks. Ann.
Oper. Res., 79:295–319, 1998.

16

A Additional proofs

A.1 Proof of Theorem 2

If each queue discipline satisfies Assumptions 1 then there exists a finite sequence
of transitions t on the network such that |t(S)| = 1.

We first remove the dependence on the parameters θ by performing the same
transition M times. The following lemma is the key of the proof.

Lemma 1 Let (i, J) ∈ {1, . . . ,K}Z+1 such that for all z ∈ Z[i], J(z) 6= z, and
(θ1, . . . , θ|M |) ∈ [0, 1]M . Then y = ti,J,θM ◦ . . . ◦ ti,J,θ1(x) satisfies the following
properties:

1. |y∗,i| = 0 (the departure queue is empty);

2. For all z ∈ {1, . . . , Z}, yz,J[z] = xz,J[z] + xz,i (customers have moved
destination queues);

3. yz,k = xz,k otherwise.

Proof 3 Each time a transition ti,J,θ is performed, the number of customers in
queue k decreases by one if it is non null. As |x∗,i| ≤M , |y∗,i| = 0. Every class
z customer in queue i moves to queue J [z], hence the result.

2

Remark that this composition of transitions ti,J,θM ◦ · · · ◦ ti,J.θ1 does not depend
on (θ1, . . . θM), so, to simplify, we write tMi,J .

We now focus on class z and show that there exists a sequence of transitions
that couples for this class. As the network Gz is strongly connected, there exists
a path w = (w1, w2, . . . , wNz

) ∈ K(z)Nz of length Nz that crosses every queue
in K(z).

Proposition 1 For x ∈ S and J1, . . . , JNz
∈ {1, . . . ,K}Z such that ∀n ≤ Nz −

1, Jn[z] = wn+1. Then y = tMwNz−1JNz−1
◦ · · · ◦ tMw1J1

(x) satisfies yz,wNz
= Mz

and yz,k = 0 for all k 6= wNz .

Proof 4 We prove this result by induction. Set y(n) = t
|M |
wnJn

◦ . . . ◦ t|M |w1J1
(x).

We will prove that for all n ≤ Nz,

y
(n)
z,k =


0 if k ∈ {w1, w2, . . . , wn} \ {wn+1}∑
k∈{w1,...,wn+1}

xz,k if k = wn+1

xz,k otherwise.

The case n = 0 is straightforward as y(0) = x. Suppose that y(n−1) satisfy
the properties above. We apply Lemma 1 to y(n−1) and (wn, Jn). We then

obtain that y
(n)
z,wn+1 = y

(n−1)
z,wn + y

(n−1)
z,wn+1 =

∑n
i=1 xz,wi

+ xz,wn+1
=
∑n+1
i=1 xz,wi

,

and that y
(n)
z,wn = y

(n−1)
z,wn = 0. The other queues are not modified regarding class

z, so y(n) satisfy the properties above.
To conclude, is is sufficient to notice that y = y(Nz−1) with {wi, i ∈

{1, . . . , Nz}} = K(z).

17

2

We now have all the ingredients to conclude the proof of Theorem 2. Denote
by tz the sequence tMwNz−1JNz−1

◦ · · · ◦ tMw1J1
constructed for each z ∈ {1, . . . , Z}.

Then t = tZ ◦ . . . ◦ t1 is a coupling sequence. Indeed, Proposition 1 ensures that
for each class there is some step such that all the customers of this class are in
the same queue. But Lemma 1 also ensures that all the customers once in the
same queue, will remain in a same queue after performing M times the same
transition (and our sequence is constructed this way).

A.2 Proof of Theorem 3

If each queue discipline satisfies Assumptions 1 then there exists a finite sequence
of transitions T such that |ψ(T (D)| = 1.

The proof is similar to that of Theorem 2. In fact, replacing ti,J by Ti,J in
t leads to the sequence T , and we will show that T is a coupling sequence.

The key element is a sort of equivalent of Lemma 1, but we cannot be so
precise. We focus on diagrams such that class z either has no costumers in queue
k in all the states represented by the diagram, or has all its customers in queue
k. More precisely, we say that a diagram D = (N,A) satisfy Ez,k if ∀a ∈ Ak,
v(a)z = 0 (all the states represented by D have no customer of class z in queue
k); and we say that D satisfy Fz,k if ∀a ∈ Ak, v(a)z = Mz (all customers of
class z are in queue k)

Lemma 2 Let (i, J) ∈ {1, . . . ,K}Z+1 and (θ1, . . . , θM) ∈ [0, 1]M , set D′ =
Ti,J,θM ◦ · · · ◦ Ti,J,θ1(D). Then

1. D′ satisfies Ez,i for all z ∈ {1, . . . , Z} (queue i is empty);

2. If D satisfies Ez,j and j 6= J [z], then D′ also satisfies Ez,j;

3. If D satisfies Fz,i, then D′ satisfies Fz,J[z];

4. If D satisfies Fz,j, j 6= i then D′ also satisfies Fz,j.

Proof 5 First consider column i, each time a transition Ti,J(., θ`) is applied,

∀a ∈ Ai, the quantity |v(a)| =
∑Z
z=1 v(a) decreases by 1 if it is positive. Then

after performing M times this transition, v(a) = (0, . . . , 0) for all a ∈ Ai.
Second, consider a class z and a queue j 6= J [z] such that D satisfy Ez,j.

By construction, for all a ∈ Aj, v(a)z is not modified by Ti,J . So Ez,j still hold
in D′.

If D satisfy Fz,j, then it satisfy Ez,k for every k 6= j (there are exactly Mz

customers of class z on every path.

2

Now consider the sequence Tz for a class of customers. Set D(n) = TMwnJn
◦

. . . ◦ TMw1J1
(x). From Lemma 2, one can deduce that D(n) satisfy Ez,wn

, and

Ez,k for all k ∈ {w1, . . . , wn−1} \ {wn+1}. Then D(Nz−1) satisfy Ez,k for all k
except wNz . As a consequence, one must have for all a ∈ ANz , v(a)z = Mz and
D(Nz−1) satisfies Fz,wNz

.
Applying Lemma 2 leads to the desired result: T (D) satisfy either Ez,k or

Fz,k for all (z, k) ∈ {1, . . . , Z} × {1, . . .K}, which means that there is only one
path in the diagram.

18

