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ABSTRACT
A large spectrum of quality indicators have been proposed so far to assess the performance of discrete Pareto set
approximations in multiobjective optimization. Such indicators assign a real-value to any approximation set that
reflects a given aspect of its quality. This is an important issue in multiobjective optimization, not only to com-
pare the performance and assets of different approximate algorithms, but also to improve their internal selection
mechanisms. However, identifying fine-grained theoretical properties between different classes of indicators is
generally out of reach due to the high complexity of the approximation set structures. In this paper, we adopt
a statistical analysis to experimentally investigate by how much a subset of state-of-the-art quality indicators
agree with each other for a wide range of Pareto set approximations from well-known two- and three-objective
benchmark continuous test functions. More particularly, we measure the correlation between the ranking of
low-, medium-, and high-quality limited-size approximation sets with respect to inverted generational distance,
epsilon, R-metric and hypervolume indicator values. Since none of them obtains the exact same ranking of
approximation sets, we show that they actually emphasize different facets of approximation quality. Moreover,
our statistical analysis allows us to quantify the degree of compliance between these quality indicators.

KEY WORDS: multiobjective optimization, set quality indicators, performance assessment, correlation analy-
sis, inverted generational distance, epsilon indicator, R-metrics, hypervolume.

1 Introduction

Set quality indicators have been initially proposed in
the late 1990s, and are still refined nowadays, in or-
der to compare the output of approximate multiobjec-
tive optimization algorithms. By defining a total order
between Pareto set approximations, they are particu-
larly relevant when the partial order induced by dom-
inance relations are not sufficiently qualified to dis-
criminate between different approximation sets. How-
ever, given their different background, structural prop-
erties and focus in terms of quality, it is with no sur-
prise that the order obtained with respect to different

set quality indicators are sometimes contradictory. For
instance, it is often the case that the approximation set
obtained by an Algorithm A is pictured to be better
than the one obtained by an Algorithm B for some in-
dicator, while the opposite is true for another indica-
tor; see e.g. Knowles and Corne (2002). In addition,
they can also be seen as a support for multicriteria de-
cision making, in the sense that they allow to provide
the decision maker with a representative subset of a
potentially very large set of trade-offs for presenting a
compact and reliable “picture” of the Pareto front for
the problem at hand, and also given that any indica-
tor actually makes some assumptions about the deci-
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sion maker preferences (Zitzler et al., 2008). More re-
cently, those quality indicators have been plugged onto
the design principles of evolutionary and other ap-
proximate multiobjective optimization algorithms; see
e.g. Zitzler and Künzli (2004); Beume et al. (2007);
Bader and Zitzler (2011). This class of indicator-based
approaches seeks an approximation set of a given or
bounded cardinality that maximizes or minimizes the
indicator value, then explicitly formalizing the goal of
the search process (Zitzler et al., 2010; Basseur et al.,
2013).

The properties of state-of-the-art quality indicators
have been studied by Zitzler et al. (2003, 2008) and
Knowles et al. (2006) in terms of computational com-
plexity, parameter dependency, scaling invariance, and
monotonicity with respect to dominance relations be-
tween approximation sets. The proportion of mistakes
made by quality indicators in terms of dominance re-
lations has also been experimentally investigated by
Knowles et al. (2006). However, the relation between
any two quality indicators is far from being well un-
derstood. Actually, we usually do not know precisely
what are the differences in terms of quality or in terms
of interpretation each indicator is able to provide. In-
tuitively, this also depends on many factors such as
the shape of the Pareto front, the distribution of non-
dominated vectors in the objective space, or some user-
defined parameters. For instance, the hypervolume is
known to be largely affected by the choice of the ref-
erence point (Knowles and Corne, 2003; Auger et al.,
2012), particularly in the lexicographically optimal re-
gions of the Pareto front. As well, the hypervolume
is believed to favor convex regions over concave re-
gions (Zitzler and Thiele, 1998), and to give more fo-
cus on knee points (Beume et al., 2007). Similarly,
the distribution of solutions from an approximation set
optimizing the epsilon indicator clearly depends on the
shape of the Pareto front (Bringmann et al., 2015).

For all these reasons, it might be interesting to quan-
tify the agreements and disagreements those quality
indicators have by assessing one approximation set
better than another, depending on the problem char-
acteristics, and given a large-picture of approxima-
tion set quality. In this paper, we propose to adopt
a statistical analysis in order to experimentally inves-
tigate by how much (unary) quality indicators agree

with each other on the induced ranking of approxi-
mation sets. More particularly, we are interested in
the inverted generational distance (Coello Coello and
Cortés, 2005), the additive and multiplication versions
of the epsilon indicator (Zitzler et al., 2003), the R2
and R3 indicators from the R-metric family (Hansen
and Jaszkiewicz, 1998), and the hypervolume (Zitzler
and Thiele, 1998). We compute the indicator value
for a sample of possible low-, medium- and high-
quality approximation sets over a representative sub-
set of multiobjective optimization problems, particu-
larly in terms of the shape of the Pareto front. For
this, we rely on the well-known multiobjective contin-
uous functions from the CEC 2009 special session and
competition on the performance assessment of multi-
objective optimization algorithms (Zhang et al., 2008).
Based on this sample of approximation sets, we mea-
sure the obtained value for each indicator and each ap-
proximation set from our sample, and we experimen-
tally investigate the correlation between indicator val-
ues. This allows us to quantify the degree of com-
pliance between any pair of quality indicators, and to
highlight their differences depending on the problem
characteristics and on the properties of approximation
sets. This analysis gives a first step towards a bet-
ter understanding of the relations between set quality
indicators, and might provide important implications
in terms of performance assessment, algorithm design
and decision making in multiobjective optimization.

The remainder of the paper is organized as follows.
In Section 2, we recall some definitions related to mul-
tiobjective optimization and we describe the quality
indicators under consideration in our study. In Sec-
tion 3, we present the setup of the experiments. In
Section 4, we provide a throughout correlation anal-
ysis on the CEC 2009 benchmark functions. Finally,
we conclude the paper and discusses further research
in the last section.

2 Background

This section introduces the necessary definitions and
provides a subset of conventional quality indicators
from the multiobjective optimization literature.
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2.1 Multiobjective Optimization

Let us assume that we are given an arbitrary multiob-
jective optimization problem (X, f), where X is the
solution space, and f = (f1, . . . , fi, . . . , fd) is an ob-
jective function vector such that fi is to be minimized
for all i ∈ {1, . . . , d}. Let Z = f(X) be the objective
space, Z ⊆ IRd. Each solution x ∈ X is associated
with an objective vector z ∈ Z such that z = f(x). An
objective vector z ∈ Z is dominated by an objective
vector z′ ∈ Z (z ≺ z′) iff ∀i ∈ {1, . . . , d} : zi 6 z′i
and ∃i ∈ {1, . . . , d} such that zi < z′i. Two objec-
tive vectors z, z′ ∈ Z are mutually non-dominated iff
z 6≺ z′ and z′ 6≺ z. An objective vector z? ∈ Z is
Pareto optimal or non-dominated iff 6 ∃z ∈ Z such
that z? ≺ z. Analog definitions can be formalized
for solutions x ∈ X by using the associated objec-
tive vectors z ∈ Z such that z = f(x). The Pareto
front Z? ⊆ Z is the set of non-dominated objective
vectors; the Pareto set X? ⊆ X is a set of solutions
that maps to the Pareto front, i.e. f(X?) = Z?. One
of the most challenging issue in multiobjective opti-
mization is to identify the Pareto set/front, or a good
approximation of it for complex problems. More par-
ticularly, EMO and other approximate algorithms aim
to identify an approximation set of limited cardinality,
ideally a subset of the exact Pareto set/front, that is to
be presented to the decision maker for further consid-
eration (Deb, 2001; Coello Coello et al., 2007; Branke
et al., 2008). For the sake of clarity, we will focus
on Pareto front approximations in the following sec-
tions. This can be easily extended by considering the
mapping of a Pareto set approximation in the objective
space.

2.2 Quality Indicators

A (unary) quality indicator is a function 2Z → IR that
assigns each approximation set to a (scalar) value re-
flecting its quality (Zitzler et al., 2008). In the follow-
ing, we introduce a subset of conventional quality indi-
cators from the multiobjective literature. The reader is
referred to Knowles and Corne (2002); Knowles et al.
(2006) or Zitzler et al. (2003, 2008) for a broader re-
view. Let A ⊆ Z be a set of mutually non-dominated
objective vector (i.e. a Pareto front approximation, or

approximation set), and R ⊆ Z be a reference set
(ideally the exact Pareto front when it is discrete, i.e.
R = Z?). In the following, we assume that there does
not exist any vector in A that dominates a vector in R;
i.e. ∀r ∈ R, 6 ∃a ∈ A such that r ≺ a. In other words,
the reference set R weakly dominates any approxima-
tion set A (Zitzler et al., 2003).

IGD: The inverted generational distance (Coello
Coello and Cortés, 2005) is an inverted version of the
generational distance (Veldhuizen and Lamont, 1998).
It gives the average distance between any point from
the reference set R and its closest point from the ap-
proximation set A.

IGD(A) :=
1

|R|
∑
r∈R

min
a∈A
||a− r||2

The euclidean distance (L2-norm) in the objective
space is usually used for distance calculation. Obvi-
ously, the smaller the IGD value, the closer the ap-
proximation set from the reference set. An indicator
value of 0 actually implies A = R.

EPS: The epsilon indicator family (Zitzler et al.,
2003) gives the minimum factor by which the approx-
imation set has to be translated in the objective space
in order to (weakly) dominate the reference set. The
additive epsilon indicator (EPS(+)) is based on an ad-
ditive factor.

EPS(+)(A) := max
r∈R

min
a∈A
||ai − ri||∞

The multiplicative version (EPS(×)) is based on a mul-
tiplicative factor, and assumes that all objective func-
tion values are strictly positives.

EPS(×)(A) := max
r∈R

min
a∈A
||ai/ri||∞

Both epsilon indicator versions are to be minimized;
and EPS(+)(A) = 0 or EPS(×)(A) = 1 implies that
A = R.

R: The family of R-metrics (Hansen and
Jaszkiewicz, 1998) are based on a set of utility
functions. A utility function u : Z → IR maps an
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objective vector to a scalar value based on specified
parameters. A typical example is the weighted
Chebyshev scalarizing function defined below.

uλ(z) = max
i∈{1,...,d}

λi ·
∣∣z?i − zi∣∣

where z ∈ Z is a candidate objective vector, z? ∈
IRd is the ideal point (i.e. z?i = minz∈Z zi, i ∈
{1, . . . , d}) and λ ∈ IRd is a weighting coeffi-
cient vector. By defining a set of uniformly-defined
weighting coefficient vectors Λ such that for all λ =

(λ1, . . . , λi, . . . , λd) ∈ Λ, λi ≥ 0 and
∑d
i=1 λi = 1,

the R2 and R3 indicators can be defined as follows.

R2(A) :=
1

|Λ|
∑
λ∈Λ

(
min
r∈R

uλ(r)−min
a∈A

uλ(a)
)

R3(A) :=
1

|Λ|
∑
λ∈Λ

minr∈R uλ(r)−mina∈A uλ(a)

minr∈R uλ(r)

Once again, both R2 and R3 indicators are to be mini-
mized; and R2(A) = 0 or R3(A) = 0 implies A = R.

RHV: The hypervolume (Zitzler and Thiele, 1999)
gives the multidimensional volume of the portion of
the objective space that is weakly dominated by an ap-
proximation set.

HV(A) :=

∫ zmax

zmin

αA(z)dz

such that:

αA(z) :=

{
1 if ∃a ∈ A such that z ≺ a
0 otherwise

In practice, only the upper-bound vector zmax ∈ IRd

is required to compute the hypervolume; this param-
eter is called reference point. In the following, we
will be interested in the relative hypervolume indica-
tor (RHV), that is the relative deviation of the approxi-
mation set’s hypervolume to the reference set’s hyper-
volume.

RHV(A) :=
HV(R)− HV(A)

HV(R)

This allows us to consider minimizing indicator values
as well, such that RHV(A) = 0 means that A = R.

2.3 Properties
In this section, we summarize a number of properties
from Knowles et al. (2006) and Zitzler et al. (2008)
that describe the quality indicators presented above.

Monotonicity: An indicator is monotonic with re-
spect to the weak Pareto dominance relation (Pareto-
compliant in Knowles et al. (2006)) if for any approx-
imation set that dominates another approximation set,
its indicator value is better; i.e. a monotonic indicator
does not disagree with the (partial) order induced by
the dominance relation (Zitzler et al., 2008). All the
indicators presented in the previous section are mono-
tonic, with the exception of IGD, despite its regular
use as an absolute performance metric. A strict ver-
sion of monotonicity can also be defined by consider-
ing the standard Pareto dominance relation and a strict
inequality between indicator values. The hypervol-
ume is the only known indicator that satisfies the strict
monotonicity property (Zitzler et al., 2007). Notice
that an empirical analysis of the degree of monotonic-
ity for some non-monotonic indicators are reported by
Knowles et al. (2006).

Scaling invariance: An indicator is scaling invariant
if the order of approximation sets induced by the indi-
cator values remain the same when applying a mono-
tonic transformation of the objective function values.
However, as the indicators under consideration all ex-
plicitly exploit the objective function values, none of
them actually satisfies this scaling invariance property.

Parameters and problem knowledge: In our defi-
nitions of quality indicators, a reference set R is al-
ways required. In addition, the definition of R2 and
R3 is based on the ideal point and on a user-given
number weighting coefficient vectors, while the defi-
nition of RHV is based on a reference point that must
be specified by the practitioner. Actually, the ordering
of the approximation sets induced by the hypervolume
is known to be affected be the setting of this reference
point (Zitzler et al., 2008).

Computational complexity: Since an in-depth ex-
perimental analysis may require the comparison of a
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large number of approximation sets, and given that an
indicator can potentially be integrated into the search
process of an approximate algorithm, the computa-
tional resources required to compute an indicator value
is also an important feature of the indicator charac-
teristics. Obviously, the computational complexity for
IGD, EPS and the R-metrics is polynomial in the ob-
jective space dimension, the approximation set and the
reference set cardinalities (and the number of weight-
ing coefficient vectors for R2 and R3), whereas it is
exponential in the number of objectives for the hyper-
volume; see e.g. While (2005) or Chan (2013).

3 Experimental Setting
In this section, we shall describe the benchmark func-
tions, the approximation set samples, the parameter
setting, and the correlation measure of our experi-
mental analysis. All the experiments have been con-
ducted in R (R Core Team, 2013), using the ggplot2
(Wickham, 2009), emoa (Mersmann, 2012), and mco
(Mersmann, 2014) packages.

3.1 CEC 2009 Benchmark Functions

In order to analyse the indicator values of approxima-
tion sets and their correlation, we consider nine mul-
tiobjective continuous functions from the CEC 2009
special session and competition on the performance
assessment of constrained and bound-constrained mul-
tiobjective optimization algorithms (Zhang et al.,
2008). This set of benchmark functions has been
specifically designed to resemble complicated real-
life optimization problems. They present different
properties in terms of dimension, separability, multi-
modality, and shape of the Pareto front. More par-
ticularly, we consider all the unconstrained (bound-
constrained) functions UF01–10, with the exception of
UF05 which contains a very limited number of points
in the Pareto front. The first six problems consist of
two-objective functions, whereas the last three prob-
lems consist of three-objective functions, all to be min-
imized. The Pareto front from UF01, UF02 and UF03
is convex, the one from UF04, UF08 and UF10 is con-
cave, and the one from UF06, UF07 and UF09 is a

line or plane. In addition, there are gaps on the Pareto
front of UF06 and UF09. Notice that, for all problems,
all objective functions roughly have the same range,
and the objective function values of solutions from the
Pareto set all lie in [0, 1]. The formulation of these
test functions can be found in Zhang et al. (2008); we
consider them under their original setting.

During the CEC 2009 competition, the competing
algorithms were run multiple times for a maximum
number of function evaluations. For each problem
instance, the average IGD indicator value of the final
approximation sets was the only merit of figure for
comparing the algorithms. In addition, the orga-
nizers provided a source code to generate a set of
uniformly distributed points along the Pareto front
in the objective space, available at the following
URL: http://dces.essex.ac.uk/staff/
qzhang/moeacompetition09.htm. We used
it for computing a reference set R for each function
in our analysis. The cardinality of this reference
set is provided in Table 1 for each function. Notice
that there exists some restriction on the values the
size of the reference set can take, which explains
the difference in terms of cardinality for two- and
three-objective problems.

3.2 Sampling Strategy
We consider the following strategies in order to sam-
ple a subset of all possible approximation sets for each
function.

low-Q: We generate a number of µ = 100 solu-
tions at random in the solution space, i.e. following
a uniform distribution within the boundary provided
for each problem variable (Zhang et al., 2008), from
which we extract the subset of non-dominated vectors.

med-Q: We run a black-box (randomized) EMO al-
gorithm with a population size µ = 100, and consider
the subset of mutually non-dominated approximate so-
lutions identified by the algorithm as an approximation
set. In our experiments, we perform NSGA-II (Deb
et al., 2002) for 1 000 generations, using the SBX
crossover operator with a rate 0.7 and a polynomial
mutation with a rate 0.2.
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Table 1: Description of the nine benchmark functions used in the experimental analysis and of the average
cardinality of the sample of approximation sets.

reference avg. approximation set size
function # objectives (d) fi-values Pareto front structure set size low-Q med-Q high-Q
UF01 2 [0, 7] convex no gap 1 000 8.43 100.00 100.00
UF02 2 [0, 5] convex no gap 1 000 11.55 100.00 100.00
UF03 2 [0, 10] convex no gap 1 000 6.92 99.95 100.00
UF04 2 [0, 2] concave no gap 1 000 46.97 99.93 100.00
UF06 2 [0, 25] line gaps 1 000 6.51 83.72 100.00
UF07 2 [0, 7] line no gap 1 000 7.31 100.00 100.00
UF08 3 [0, 25] concave no gap 961 18.6 100.00 100.00
UF09 3 [0, 25] plane gaps 961 17.87 100.00 100.00
UF10 3 [0, 99] concave no gap 961 17.54 99.91 100.00

high-Q: We sample uniformly at random a subset of
µ = 100 solutions from the reference set. This means
that the obtained approximation set does not contain
any dominated solutions, but actually contains around
ten times less elements than within the reference set.

Each sampling strategy is repeated 1 000 times for
each multiobjective problem under consideration. The
average cardinality of the obtained approximation sets
is reported in Table 1. In Section 4, we analyse the cor-
relation between the indicator values obtained by these
samples of approximation sets.

3.3 Parameter Setting
As reported in Table 1, each approximation set con-
tains at most µ = 100 solutions. For each function,
we consider a fixed reference set of 1 000 solutions
for d = 2 and 961 for d = 3. Notice that, for
all problems, the objective function values of all so-
lutions lie in [0, fmax]. In order to avoid any issue
in the computation of the indicators, in particular for
EPS(×), we simply shift the objective function values
in the hyper-box [1, fmax + 1]d without modifying the
shape of the Pareto front. The ideal point z? ∈ IRd is
then defined such that z?i = 1 for all i ∈ {1, . . . , d}.
For computing the R-metrics, we generate |Λ| = 100
uniformly-defined weighting coefficient vectors, and
we use the ideal point z? as a reference point. At last,
we analyze the impact of the reference point zmax for

the hypervolume indicator with two different settings:
(i) zmax

i = fmax, and (ii) zmax
i = 1.1 × fworst for

all i ∈ {1, . . . , d}, such that fmax is the maximum
objective function value for the problem under consid-
eration, and fworst is the worst objective function value
found for a given problem and a given sampling strat-
egy.

3.4 Measuring Correlation
In order to measure the association between the indi-
cator values obtained by a given sample of approxi-
mation sets, we consider the Kendall rank correlation
coefficient τ (Kendall, 1938), which is a rank-based
nonlinear correlation coefficient measure. Indeed, we
do not provide a more conventional Pearson correla-
tion coefficient, which gives the linear relationship be-
tween the indicator values. Instead, we focus on the
ranking of approximation sets obtained within each in-
dicator, i.e. by how much do the indicators rank the
approximation sets similarly. In other words, we are
not interested in the correlation between the values ob-
tained by each indicator, but rather on the underlying
ranking they obtain within the sample of approxima-
tion sets.

More particularly, let us consider two arbitrary indi-
cators I1 and I2 to be minimized, and a pair (A1, A2)
of approximation sets from our sample. The pair is
said to be concordant if I1(A1) > I1(A2)∧ I2(A1) >
I2(A2), or if I1(A1) < I1(A2) ∧ I2(A1) < I2(A2).
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On the contrary, the pair is said to be discordant if
I1(A1) > I1(A2) ∧ I2(A1) < I2(A2), or if I1(A1) <
I1(A2) ∧ I2(A1) > I2(A2). If I1(A1) = I1(A2) or
I2(A1) = I2(A2), the pair is neither concordant nor
discordant. The Kendall coefficient τ quantifies the
difference between the proportion of concordant and
discordant pairs among all possible pairwise approxi-
mation sets. It is defined as follows:

τ =
(% concordant pairs)− (% discordant pairs)

% pairs

The coefficient τ ranges in [−1, 1], from perfect dis-
agreement (τ = −1), to perfect agreement (τ = 1).
When τ is approximately zero, the indicator values are
independent.

4 Correlation Analysis

In this section, we analyze the correlation between the
indicator values obtained by the sample of approxi-
mation sets for the different problem functions. Fig-
ures 1 — 4 report the Kendall rank correlation coef-
ficient between all pairs of set quality indicators for
each benchmark function and each sampling strategy.
A given figure provides the correlation between a par-
ticular indicator (written on top) and each other indi-
cator (corresponding to colored curves), for each prob-
lem function (on the x-axis) and each sampling strat-
egy (low-Q, med-Q, high-Q, from left to right). The
higher the correlation degree, the higher the agreement
between the two corresponding indicators.

Overall, the indicators under consideration are never
in conflict one against another, as there is always some
positive amount of correlation (τ > 0), even if it is
sometimes insignificant. However, we clearly see that
there does not exists any two indicators that fully agree
with each other on any of the problem function. This
highlights that the performance of multiobjective op-
timizers cannot be analyzed properly within a single
set quality indicator, and that each performance metric
actually measures a different facet of approximation
quality. We analyze those correlations in details for
each indicator below.

IGD: Let us start with the inverted generational dis-
tance (IGD) in Figure 1. For low-quality approxi-
mation sets, the correlation degree between IGD and
any other indicator is quite low (τ < 0.7). For
medium-quality approximation sets, this correlation
gets higher, but τ is always below 0.75, except for two-
objective problems with a linear Pareto front (UF06
and UF07), and for all indicators but RHV. For high-
quality approximation sets, IGD is actually slightly
correlated with RHV with a tight reference point (de-
noted as RHV(worst)) for two-dimensional convex
Pareto front (τ ≈ 0.7), but not for other problems
(τ ≈ 0.3). This means that one could be a reason-
able estimator of the other on those cases. This trends
is roughly the same for all other indicators but EPS(+),
which is moderately correlated to IGD for all two-
objective problems but not as much for three-objective
problems.

Overall, the IGD indicator is fairly correlated with
EPS(+) and RHV, when the later is based on the
(slightly shifted) worst-found objective function val-
ues for the sampling strategy under consideration. On
the contrary, the correlation is very low for EPS(×) and
the RHV setting based on the absolute maximum ob-
jective function values for the problem at hand. The
correlation with the remaining indicators is lower for
low-quality approximation sets than for medium- and
high-quality approximation sets. Let us remind that
IGD is the only indicator considered in our analysis
which is not monotonic with respect to the (weak)
Pareto dominance relation. This means that IGD
agrees more with monotonic indicators for good ap-
proximation sets than for bad ones. As a consequence,
IGD might actually be an acceptable measure for al-
gorithm performance assessment. Notice that some
experiments on the number of mistakes made by IGD
with respect to Pareto dominance have been recently
reported by Ishibuchi et al. (2015).

As a side remark, the results of the CEC 2009 com-
petition, which were based on IGD only, might actu-
ally be different if another indicator was used to as-
sess the performance of the competing algorithms. It
would be worth revisiting those results with a set of
complementary quality indicators. Indeed, the com-
petition winner, and more importantly the understand-
ings we have from the competing algorithms, might
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Figure 1: Kendall rank correlation coefficient τ between IGD and any other quality indicator for each sampling
strategy (low-Q, med-Q, high-Q) and each problem function (UF01–10).

change while using another, or several others, indica-
tor(s) to assess the quality of the identified approxima-
tion sets.

EPS: The results for EPS(+) and EPS(×) are re-
ported in Figure 2. Unsurprisingly, those two indica-
tors are highly correlated with each other for medium-
and high-quality approximation sets. However, they
are only slightly correlated with each other for low-
quality approximation sets, as with any other indicator.
With respect to the remaining indicators, there is a low
correlation between the EPS indicators and R2, R3 or
RHV (τ < 0.75), except for medium-quality approxi-
mation sets with a linear or planar Pareto front (UF06,
UF07, UF09). EPS is also moderately correlated with
IGD, as already mentioned above.

R: The R-metrics globally show higher correlation
degrees, as reported in Figure 3. As expected, R2
and R3 are highly correlated with each other for all
functions and all types of approximation set samples
(τ > 0.9). As mentioned before, the R-metrics are

only moderately correlated with IGD and EPS. In fact,
the correlation seems to be particularly low for low-
quality approximation sets and for medium-quality ap-
proximation sets with a concave Pareto front (UF04,
UF08, UF10). At last, the correlation between the
R-metrics and RHV is particularly high for low- and
medium-quality approximation sets for all problem
functions (τ is always higher than 0.65, except for
UF04 and medium-quality approximation sets where
it is around 0.5). However, for high-quality approx-
imation sets, this correlation degree drops substan-
tially, even if the correlation with the RHV setting with
a tight reference point remains significant for some
of the problem instances, with two objectives and a
Pareto front which is not convex. But overall, the cor-
relation between R2 or R3 and RHV is is in average the
highest we obtained for a pair of indicators belonging
to two different families.

RHV: Finally, Figure 4 reports the correlation co-
efficients for RHV. Both settings of RHV, with a
tight and a wide reference point, are highly correlated
with each other for low- and medium-quality approx-
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Figure 2: Kendall rank correlation coefficient τ between EPS (+) (top), EPS (x) (bottom) and any other quality
indicator for each sampling strategy (low-Q, med-Q, high-Q) and each problem function (UF01–10).

imation sets on all functions (τ > 0.8, except for
UF04). This correlation largely decreases for high-
quality approximation sets, particularly for UF06 and
UF09, whose Pareto front is discontinuous. As also
pointed out by Knowles and Corne (2003) or Auger
et al. (2012), this means that the hypervolume indica-
tor might rank high-quality approximation sets quite

differently depending on the position of the reference
point, in our case either as the (shifted) nadir point or at
the maximum objective function vector. In fact, addi-
tional experiments provided in Figure 5 reveal that the
correlation between RHV indicator values with differ-
ent settings of the reference point is always very high
(τ > 0.7) for low- and a medium-quality approxima-
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Figure 3: Kendall rank correlation coefficient τ between R2 (top), R3 (bottom) and any other quality indicator
for each sampling strategy (low-Q, med-Q, high-Q) and each problem function (UF01–10).

tion sets (except, once again, for UF04, i.e. the only in-
stance with a two-dimensional concave Pareto front),
while the setting appears to be more sensitive for high-
quality approximation sets, particularly when there are
gaps on the Pareto front (UF06 and UF09). In addition,
as reported above, RHV is slightly to moderately cor-
related with IGD and EPS, whereas it is significantly

correlated with R2 and R3 for low- and medium-
quality approximation sets, but not as much for high-
quality approximation sets. This would actually sug-
gest that the R2 or R3 indicator, which is relatively
cheap to compute, could potentially be used to approx-
imate the hypervolume indicator at the early stages
of an indicator-based search process, while computa-
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Figure 4: Kendall rank correlation coefficient τ between RHV using the problem’s maximum objective function
vector as a reference point (top), RHV using the sampling and problem’s worst-seen objective function vector
shifted by a factor 1.1 as a reference point (bottom), and any other quality indicator for each sampling strategy
(low-Q, med-Q, high-Q) and each problem function (UF01–10).

tionally expensive hypervolume calculations would be
dedicated to the latest refinements, when the approxi-
mation set gets closer to the Pareto front.

Impact of scaling: Figure 6 reports, for each indi-
cator, the correlation between the original indicator
value and the indicator value computed over a mono-
tonic transformation of the objective function values.
In our experiments, the normalized objective function



12 A. LIEFOOGHE

low−Q med−Q high−Q

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●● ●
●

●●

●
● ●

●

●●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●
●

●
●
●●
●● ●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

UF01 UF02 UF03 UF04 UF06 UF07 UF08 UF09 UF10 UF01 UF02 UF03 UF04 UF06 UF07 UF08 UF09 UF10 UF01 UF02 UF03 UF04 UF06 UF07 UF08 UF09 UF10

ta
u

● ● ● ● ● ●zmax vs zmed zmax vs 1.1 · zworst zmax vs 2.0 · zworst zmed vs 1.1 · zworst zmed vs 2.0 · zworst 1.1 · zworst vs 2.0 · zworst

Figure 5: Kendall rank correlation coefficient τ between the RHV indicator value with different settings of the
reference point for each sampling strategy (low-Q, med-Q, high-Q) and each problem function (UF01–10), such
that zmax

i = fmax, zmed
i = (fmax − fmin), and zworst

i = fworst for all i ∈ {1, . . . , d}, fmin (resp. fmax) being
the minimum (resp. maximum) objective function value for the problem under consideration, and fworst being
the worst objective function value found for a given problem and a given sampling strategy.

values follow a transformation of the form f ′i(x) =
1 + (fi(x) − fmin)/(fmax − fmin), i ∈ {1, . . . , d},
where fmin (resp. fmax) is the lower (resp. upper)
bound of the objective function values, such that each
normalized objective vector lies in [1, 2]d. As defined
in Section 2.3, by obtaining the same order over the
approximation sets for normalized and unnormalized
objective function values, a given indicator would be
scaling invariant. In such a case, the correlation coef-
ficient would be τ = 1. Despite none of the indica-
tors under consideration satisfies this property in the
general case, the degree of invariance is actually quite
acceptable for most of them, as reveled by our exper-
iments. Indeed, the correlation coefficient is always
larger than 0.9, except for EPS(×) whatever the ap-
proximation set quality, and for the RHV setting with
a tight reference point for high-quality approximation
sets. For EPS(×), this might be explained by the use
of a multiplicative factor over the objective function
values, whereas for RHV, this might actually be an

artefact of the absolute position of the reference point
within this particular setting, the lexicographically op-
timal regions of the Pareto front having more impact
in one case than in the other.

5 Conclusions

In this paper, we experimentally investigated the de-
gree of correlation between the order induced by dif-
ferent set quality indicators. Our analysis highlights
important insights for the performance assessment, the
interpretation of preferences, and the design of algo-
rithms in multiobjective optimization. First, our find-
ings clearly confirms that there does not exist a single
set quality indicator which is able to capture all the
aspects of approximation quality, even if all of them
are at least slightly correlated. Second, the correla-
tion of the epsilon indicator with the other indicators
from our analysis is overall very low. This means that
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Figure 6: Kendall rank correlation coefficient τ between the indicator value over the original objective function
values and the indicator value over a monotonic transformation of the objective function values for each quality
indicator, each sampling strategy (low-Q, med-Q, high-Q) and each problem function (UF01–10).

this indicator actually focus on complementary aspects
with respect to other indicators. The same applies for
the inverted generational distance. For this reason, we
plan to revisit the data from the CEC 2009 competi-
tion, where the inverted generational distance was the
single performance measure under consideration, in
order to enhance our knowledge and understandings of
the algorithms by means of supplementary indicators.
Next, as already pointed out by Knowles and Corne
(2002); Zitzler et al. (2008); Auger et al. (2012), our
statistical analysis reveals that the hypervolume is sen-
sitive to the setting of the reference point, especially
for high-quality approximation sets, i.e. smaller sub-
sets of the (exact) Pareto front. Moreover, the hyper-
volume shows a high correlation with the R-metrics for
completely random solution sets to better approxima-
tions identified by some evolutionary algorithm. As
a consequence, it would be worth investigating more
thoroughly the estimation of the computationally pro-
hibitive hypervolume with the affordable R2 or R3 in-
dicator, as it might for instance enable to speed up the
selection process of an indicator-based approach using

the hypervolume, such as SMS-EMOA (Beume et al.,
2007) or HypE (Bader and Zitzler, 2011). At last,
a similar analysis with additional indicators and for
other classes of problem instances, in particular with
respect to the number of objectives, would allow us to
increase our knowledge on the relations between set
quality indicators in multiobjective optimization.
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