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Abstract

We study the one-player game Spiral Galaxies from an algorithmic viewpoint.
Spiral Galaxies has been shown to be NP-hard [Friedman, 2002] more than
a decade ago, but so far it seems that no one has dared exploring its algorithmic
universe. We take this trip and visit some of its corners.

Keywords: NP-hard problems, fixed-parameter algorithms, one-player game

1. Orbital Launch

Spiral Galaxies (also called Tentai Show) is a one-player game, de-
scribed as follows by the Help of its Linux version: “You have a rectangular
grid containing a number of dots. Your aim is to draw edges along the grid
lines which divide the rectangle into regions in such a way that every region is
180◦ rotationally symmetric, and contains exactly one dot which is located at
its center of symmetry”. Similarly to many other such puzzles (e.g., Sokoban,
Sudoku), apart from being a discrete pastime in boring meetings, it is also a
nice combinatorial and algorithmic problem that one might try to solve compu-
tationally. This trend has been developed, among others, by Demaine [1] who
presented a survey over hardness results in games. For a more general introduc-
tion into combinatorial games, we also refer to the book by Hearn and Demaine
[7].

Apart from the beauty (and fun!) aspect of such a study, this work is
motivated by the fact that, while small to medium-size instances of Spiral
Galaxies are still fun to solve, larger problems become just too hard. This can
be frustrating for many players... and might even lead to fits of rage (something
you may want to avoid in boring meetings). Hence, an automatic solver for
Spiral Galaxies is highly desirable for these cases. In this paper, we thus
visit the algorithmic universe of Spiral Galaxies. Our results are as follows.
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• In Section 2, we strengthen the previous NP-hardness result [6] for Spiral
Galaxies by showing that it is NP-hard to decide whether there is a
solution in which all galaxies have size at most seven.

• In Section 3, we present polynomial-time algorithms for several special
cases of Spiral Galaxies such as: checking for solutions with galaxies
of size at most two, checking for solutions that have only square galaxies,
and checking for solutions that consist only of a certain type of trivially
connected galaxies. We also provide exact exponential-time algorithms for
the general case and for the case in which all galaxies are rectangles.

• In Section 4, we provide a polynomial-time algorithm for the case in which
all galaxies are hole-free and the overall number of “galaxy corners” is
bounded.

The latter two algorithms are fixed-parameter algorithms. Note that a problem
with input size n is said to be fixed-parameter tractable with respect to a param-
eter k if it can be solved in f(k) ·poly(n) time, where f is a computable function
only depending on k. For an introduction to parameterized algorithmics refer
to [2]. Before presenting our results we give a formal problem definition and
introduce the notation used throughout the paper.

Problem Definition and Notation. We formalize the problem as follows. We
have a two-dimensional universe U , where each field in U is described by the
coordinate (i, j), where i = 1, . . . , N and j = 1, . . . ,M for some N,M ∈ N. We
call two fields (i, j) and (i′, j′) adjacent if |i−i′| = 1 and j−j′ = 0 or if |j−j′| = 1
and i− i′ = 0. That is, a field is adjacent to the four fields that are directly left,
right, above, and below this field. Let n := |U | denote the number of fields. We
furthermore are given a set G of k galaxy centers (’dots’ in the description) along
with the location L : G→ {1, 1.5, 2, 2.5, . . . , N}×{1, 1.5, 2, 2.5, . . . ,M}. We use
the noninteger values to denote the case in which a galaxy center is located
between two rows or columns. A galaxy center with noninteger coordinates is
adjacent to all fields that can be obtained by rounding its location values. This
is the input of Spiral Galaxies. For a galaxy center g ∈ G, we use Lr(g) to
denote the row coordinate of the center of g, and Lc(g) to denote its column
coordinate. We use the same notation to refer to the respective coordinates of
a field f .

There are two natural ways of encoding the input of Spiral Galaxies.
One is to present each field and each possible galaxy location as a position
in a bit string of length Θ(n). Another way is to list the positions of the k
galaxy centers and the dimensions of the universe. This representation has
size Θ(k · log n) which is smaller than the first representation if k = o(n/ log n).
Hence, for our exact algorithms we assume that the input length is Θ(n) and
for our fixed-parameter algorithms (which assume that k is small) we assume
that the input length is Θ(k · log n).

A solution to Spiral Galaxies is given by assigning each field of U to some
galaxy g. We describe this using the function b : U → G. Before defining the
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Figure 1: Two screenshots of a single Spiral Galaxies scenario. Left: the field of squares U
with the circular galaxy centers. Right: the corresponding solution. For example, b(1, 1) =
g ∈ G, where L(g) = (2, 1). Similarly, b(1, 5) = g′ ∈ G, where L(g′) = (1, 6.5).

Figure 2: A galaxy with its corners marked as black dots.

properties of a solution, we give some further definitions. An area A is a subset
of U . An area is called connected if between each field (i, j) ∈ A and (i′, j′) ∈ A
there exists a path of adjacent fields that belong to A.

A total function b : U → G is a solution if it satisfies the following conditions:

• rotational symmetry, that is, if b(i, j) = g then b(i′, j′) = g, where i′ =
2 · (Lr(g)− i) + i and j′ = 2 · (Lc(g)− j) + j,

• connectivity, that is, {u ∈ U | b(u) = g} is a connected area, and

• each galaxy center is contained in its galaxy, that is, b(Lr(g), Lc(g)) = g.

We call (i′, j′) ∈ U the g-twin of (i, j). The notation is displayed in the screen-
shot in Figure 1.

A corner of an area A is a pair of noninteger coordinates (y, x) such that
either one or three of the four neighboring fields (dye, dxe), (dye, bxc), (byc, dxe),
and (byc, bxc) belongs to A (see Figure 2).

2. A “Binary Star”-like Hardness Proof

The original proof for showing the NP-hardness of Spiral Galaxies uses
a reduction from Circuit Satisfiability [6]. In this reduction, each gate is
replaced by a gadget consisting of a constant number of galaxy centers. The
Spiral Galaxies instance then has a solution if and only if there is an as-
signment to the input variables of the circuit such that the output is true. The
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largest galaxy in such a solution has 22 fields. Thus, it is NP-hard to decide
whether Spiral Galaxies has a solution with galaxies of size at most 22.

Our aim is to determine for which galaxy sizes the problem becomes tractable.
As we will discuss in Section 3, it is trivial to decide whether there is a solution
in which all galaxies have size at most two. To make progress towards a com-
plexity dichotomy for Spiral Galaxies with respect to the maximum galaxy
size we describe a new reduction. This reduction mostly follows the ideas of the
original construction. Our main result is that is NP-hard to decide whether a
Spiral Galaxies instance has a solution with galaxies of size at most seven.

The first difference to the old NP-hardness proof is that we do not reduce
Circuit Satisfiability but the following, more constrained satisfiability prob-
lem.

Positive Planar 1-in-3-SAT
Input: A collection C of clauses, each containing three variables and
a planar embedding of the clause-variable graph.
Question: Is there an assignment to the variables such that each
clause contains exactly one variable that is true?

Herein, the clause-variable graph has a vertex for each variable and each
clause and an edge between a variable and a clause if the clause contains the
variable. Positive Planar 1-in-3-SAT is NP-complete [9]; the embedding
can be assumed to be rectilinear.

The general outline of the reduction of Positive Planar 1-in-3-SAT to
Spiral Galaxies is as follows. We build an instance of Spiral Galaxies
based on the planar embedding of the clause-variable graph. The instance will
be composed of variable gadgets which will correspond to setting a variable to
either true or false. Then, wire gadgets carry this truth value to the clause
gadgets. The variable gadgets are placed at the position of the variables of the
planar embedding of the clause-variable graph. The wire gadgets correspond
to the edges of this embedding. Finally, the clause gadgets are placed at the
positions of the clause vertices of the clause-variable graph. To ensure that the
gadgets are far enough apart from each other we set the width and height of
the universe to a sufficiently large (but polynomial in the size of the Positive
Planar 1-in-3-SAT instance) value. Every field that does not belong to any
of the shown gadgets will contain a galaxy center. This enforces that all the
galaxies between the gadgets have size one and thus that the gadgets do not
interfere with each other.

We first describe the wire gadgets galaxies that carry the information whether
the variable connected to this wire is either true or false. The two wire con-
figurations for a true and a false signal are shown in Figure 3. The top and
bottom rows of the gadget have size-two galaxies, this is ensured by the fact
that each field above and below the wire gadget contains a galaxy center. The
signal will be carried either from left to right or from right to left. There are
two inner rows which carry the signal and two outer rows which will “shield”
the signal from the rest of the instance. The galaxy centers of the inner rows
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Figure 3: The wire gadget and the variable gadget for initializing a wire as true or false. The
top part shows the two wire configurations for a true variable value (left) and a false variable
value (right). Herein, columns i with i mod 4 = 0 are drawn in gray. The bottom part shows
the variable gadget for initializing a wire as either true (left) or false (right).

have even column coordinates. If the variable is true, then the galaxies where
the column coordinate of the center is a multiple of four have size three and the
other galaxies have size one. If the variable is false, then the configuration will
be exactly inverted. Accordingly, we call a wire true or false. The subsequent
statement follows immediately from the construction of the wire gadget.

Observation 1. The output of a wire gadget is true if and only if its input is
true.

In the following gadget drawings, we will not draw the size-two galaxies above
and below the wires in order to simplify the figures. At the position of the vari-
able vertices in the clause-variable graph, we place a gadget which initializes
the truth value of a wire as either true or false. This gadget is shown at the
bottom of Figure 3. The wire gadget and the variable gadget are very similar
to the original gadgets for these two purposes. The main difference is that in
the original construction, the galaxies in the wires have height two and hori-
zontal distance three. In our wires, the galaxy centers have height one and the
horizontal distance between the centers is two.

Observation 2. Using the variable gadget, each wire can be initialized to be
either true or false.

In order to realize a crossing-free embedding of the wires into the universe,
we devise the two gadgets shown in Figure 4. The gadget for shifting a wire
vertically is again roughly the same as the original gadget for this purpose. The
gadget for reversing the horizontal direction of a wire signal is new: The original
reduction featured a crossing gadget and thus the circuit can be drawn from left
to right. In the planar clause-variable graph, however, there might be some
variables which appear in a clause that is to the left and one clause that is to
the right of this variable vertex. Hence, we need the ability to extend wires
in any possible direction, which can be accomplished by combining the shifting
and reversing gadget.

5



Figure 4: The gadgets for shifting a wire vertically (top) and for reversing the horizontal
direction of a wire (bottom).

With the current gadgets we can build wires representing a variable and these
wires can carry the values true and false in any direction. Since the variables
of the Positive Planar 1-in-3-SAT instance may appear in an unbounded
number of clauses, we need a gadget to duplicate the signal of a wire. This
gadget is shown in Figure 5. It is the largest gadget of our construction and it
also has the largest galaxy, namely a galaxy that has size seven if the input wire
is false. Note that the gadget has two output wires. The bottom wire carries
the same value as the input wire. The top wire has exactly the opposite truth
value, that is, it is false if and only if the input wire is true. By a simple gadget,
shown in Figure 6, we can negate the truth value of this top wire and obtain a
wire that carries the same signal as the input wire.

So far, we are able to initialize variables, and to transport, duplicate, and
negate their signal via wires. It remains to device a gadget for checking that
each clause of the Positive Planar 1-in-3-SAT instance contains exactly one
variable that is set to true. This is achieved by using two copies of the gadget
shown in Figure 7. Consider a clause (x, y, z). Then in the construction we
first move the wires of x and y next to each other and then place the first two
galaxies of the first part of the clause gadget on a column that is a multiple of
four. If both input wires are true, then, since the available area for the next
two galaxy centers narrows down from four to two rows, there is no solution to
the Spiral Galaxies instance. If one of the two input signals is true, then
the signal carried by the output wire is true. Otherwise, if both input wires
are false, then the output is false. Now, in the second part of the gadget we
have the output wire of the first gadget as one input wire and the wire of z as
the other input wire. If both input wires are true, then there is no solution. If
exactly one of the two is true, then the output is true. Finally, if both are false
signal, then the output is false.

Observation 3. The clause gadget has as input three wires and outputs a true
wire if and only if exactly one of the three input wires is true.
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Figure 5: The gadget to duplicate a signal. The input wire is shown in the upper left part
of the illustration. The left illustration corresponds to a true input and the right illustration
corresponds to a false input.

Figure 6: The gadget for negating the signal of the upper wire following the duplication
gadget.

This almost completes the construction. The final check that needs to be per-
formed is that the output wire of the second part of each clause gadget carries a
true signal. This can be done by letting the wire “stop” after two galaxies that
are narrow if the wire is true. That is, immediately after the two galaxy centers
that are in an even column which is not a multiple of four we place two galaxy
centers, one in each row. The construction can be performed in polynomial
time. Altogether we arrive at the following.

Theorem 1. Given an instance of Spiral Galaxies it is NP-complete to
decide whether there is a solution in which every galaxy has size at most seven.

Proof. We give a brief sketch of the correctness of the reduction.
If the Positive Planar 1-in-3-SAT instance is a yes-instance, then the

Spiral Galaxies instance is also a yes-instance which can be seen as follows.
Set the variable gadgets to the true configuration if the variable is true in the
satisfying assignment for the Positive Planar 1-in-3-SAT instance. Oth-
erwise, set them to the false configuration. Then, propagate the signal along
the wire according to the configurations shown in the figures. When the wires
meet the clause gadget, then exactly one of its three input wires is true since
the assignment is satisfying. By the observation above, the output of the clause
gadget will be true. This means there is a solution for all galaxies contained in
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Figure 7: The gadget used for modeling the clauses. Left: If both input wires are true, then
there is no solution. Middle: If exactly one input wire is true, then the output wire is true.
Right: If both input wires are false, then the output wire is false.

the gadgets. All other galaxies have trivial solutions since they have either size
one or two.

Conversely, if the Spiral Galaxies instance is a yes-instance, then the
wires directly correspond to an assignment of the variables. Moreover, every
clause gadget has a true output. By the above observation, this implies that the
assignment is a satisfying one for the Positive Planar 1-in-3-SAT instance.

�

In a solution for the constructed Spiral Galaxies instance, all except two pos-
sible galaxy shapes are rectangles. While we might replace the nonrectangular
galaxy in the shifting gadget and in the duplication gadget, we do not know how
to create the clause gadget and the variable gadget by using only rectangles.

3. A Nebula of Exact Algorithms

Although Spiral Galaxies is NP-hard even for small galaxies, one might
still try to find algorithms that solve the problem. In this section, we will
first focus on special cases of Spiral Galaxies, providing a polynomial-time
algorithm for each of them. Then, we will focus on the general case, where three
exact (thus exponential-time) algorithms will be given.

3.1. Polynomial-time Solvable Special Cases

In this section, we give several polynomial-time algorithms, for specific in-
stances of Spiral Galaxies. The results mainly concern three types of con-
straints: on the sizes of the galaxies, on the shapes of the galaxies, and on the
way galaxies are connected.

Before going further, we introduce some terminology: for any galaxy center
g, we define the kernel of g, κ(g), as the fields of U whose integer coordinates
are obtained by rounding (from below and from above) the coordinates of g.
In other words, if g has two (resp. one, zero) integer coordinates, then κ(g)
is of size one (resp. two, four). A rectangular galaxy with top-left corner f
and galaxy center g is denoted by R(f, g). In the particular case where the
rectangle is actually a square, the notation becomes S(f, g). Finally, let us
recall that n = |U | is the number of fields in the universe.

We begin by describing an easy result concerning small galaxies.
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Proposition 1. One can determine in poly(k log n) time whether an instance
of Spiral Galaxies has a solution that contains only size-1 and size-2 galaxies.

Proof. Any size-1 or size-2 galaxy of center g is exactly its kernel κ(g). Thus
any galaxy is completely determined by the location of its center. If we assume
the input is correct (that is, no two kernels overlap), then we just need to check
whether a field not belonging to a kernel exists in U . If this is the case, we have
a no-instance. Otherwise, we have a yes-instance. The time complexity is in
poly(n). Since we can reject any instance such that k < n

2 , we have k = Θ(n).
Thus, poly(n) is polynomial in the input size. �

The next three results, Theorems 2 to 4, are polynomial-time algorithms for
restricted cases in which the shapes of the galaxies in a solution are constrained.
These three results rely on the same generic idea. We iteratively fill the universe
with galaxies. A field that is not yet assigned to any galaxy is called free in
this process. Because of the shape constraint, it is always possible to find a
free field f for which we can determine the unique galaxy center g it belongs to,
together with the exact extent of the galaxy. If this process stops because no free
field remains, it suffices to check whether the computed galaxies are pairwise
nonoverlapping. Otherwise, at least one free field could not be assigned to any
galaxy, and thus we are in presence of a no-instance.

Theorem 2. One can determine in poly(k log n) time whether an instance of
Spiral Galaxies has a solution that contains only square galaxies.

Proof. First, if at least one of the galaxy centers has exactly one noninteger
coordinate, then it cannot be the center of a square galaxy, and thus we are in
presence of a no-instance. Otherwise, the algorithm iteratively constructs the
square galaxies in the following manner: Find the leftmost free field f among
the topmost ones and determine the unique galaxy center g to which f should
belong. If, at a given iteration, no galaxy center is found for f , then we are
in presence of a no-instance, and the algorithm stops. If no free field is left
at the end of the process, it suffices to check whether all squares are pairwise
nonoverlapping to determine whether this is a yes-instance.

Correctness of the algorithm comes from the fact that since each galaxy is a
square, knowing its top-left corner f and its center g completely determines the
galaxy; moreover, if a square galaxy of center g contains f as its top-left field,
then g lies below f and on the diagonal of U which contains f . Moreover, g
is the closest galaxy center on this diagonal (choosing any other center on this
diagonal leads to an invalid square containing at least two galaxy centers).

Now we bound the running time of the algorithm. First, the number of
iterations is at most k (each iteration creates a new galaxy). In each iteration,
the leftmost free field f among the topmost ones should be searched among
O(k) candidates: such a field is either to the right of the top-right corner, or
below the bottom-left corner of a previously constructed square galaxy. Thus, it
suffices to maintain a list of candidate free fields, removing from this list the field
f each time it is chosen to create a new square galaxy, and storing the two new
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candidate fields each time a new square galaxy is found. Moreover, storing the
coordinates of both f and g completely determines the square galaxy S(f, g).
Finally, determining whether two squares overlap can be done by considering
their corners only. Hence, (i) finding the next free field f , (ii) finding the
galaxy center g, and (iii) determining whether two galaxies overlap all come
down to simple computations (additions, subtractions, comparisons) using the
coordinates of the fields and the galaxy centers. Each individual computation
takes time O(log n), and is performed among O(k) objects ((cases (i) and (ii))
or among O(k2) objects (case (iii)). �

Theorem 3. One can determine in poly(k log n) time whether an instance of
Spiral Galaxies has a solution that contains only horizontal rectangle galax-
ies, of height either one or two.

Proof. First, note that for any g being the center of a horizontal height-one
rectangle, Lr(g) is an integer. On the other hand, for any g being the center of
a horizontal height-two rectangle, Lr(g) is not an integer. Now, the algorithm is
similar to the one presented in the previous result: iteratively take the leftmost
free field among the topmost ones, say f , and determine the unique galaxy
center g that yields a galaxy which could contain f as its top-left corner. If
the algorithm fails to find a rectangle for a given free field, then output no.
Otherwise, when the algorithm stops, check that no two rectangles overlap.

Correctness of the above algorithm essentially follows from the fact that
once f is fixed, there is a unique horizontal rectangle of height either one or two
that has g as its center and f as its top-left field. First note that g necessarily
lies on the right of f ; besides, no two centers of height-one (resp. height-two)
rectangles could simultaneously be considered (only the closest to f is relevant).
Hence, the only remaining choice could occur between two “candidate centers”
g1 and g2 yielding two different types of rectangles (one of height one, the other
of height two).

We will now argue that it is sufficient to consider only the center whose
column coordinate Lc() is closest to the one of f . Indeed, suppose, without
loss of generality, that Lr(g1) is an integer (thus Lr(g2) is not), that is, g1
(resp. g2) is the center of a height-one (resp. height-two) rectangle R1(f, g1)
(resp. R2(f, g2)). Thus, we have Lr(f) = Lr(g1) and Lr(f) = Lr(g2) − 0.5.
Now, let us compare Lc(g1) and Lc(g2). If Lc(g1) ≥ Lc(g2), then R1(f, g1) would
overlap κ(g2), and thus would not be valid. In other words, the only rectangle
to consider is R2(f, g2). Conversely, if Lc(g2) ≥ Lc(g1), R2(f, g2) contains g1,
and the only rectangle to consider is R1(f, g1). In summary, for each field f
considered in the algorithm, g is uniquely determined to be the center g whose
Lr() coordinate is in {Lr(f), Lr(f) + 0.5}, and whose Lc() coordinate is the
closest to Lc(f).

The time complexity follows from the proof of Theorem 2 above: finding the
next free field, computing and storing the determined rectangles, and checking
whether rectangles are pairwise nonoverlapping are performed in a similar way.
Here again, we have at most k iterations of the algorithm, each of which only
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takes poly(k) operations, and each such operation can be performed in O(log n).
Altogether, the running time of our algorithm is poly(k log n). �

Recall that the universe U consists of N rows and M columns. A row-
decomposition of a solution of Spiral Galaxies is a partition {U1, U2, . . . , Up}
of U such that each Ui, 1 ≤ i ≤ p, contains Ni consecutive rows and M columns,
and each galaxy is completely contained in a single Ui. We say that a row
decomposition of a solution is a rectangle row-decomposition if each Ui contains
only rectangles of height Ni.

Theorem 4. One can determine in poly(k log n) time whether an instance of
Spiral Galaxies has a solution with a rectangle row-decomposition.

Proof. The proof is very similar to the two previous theorems. The main
difference here is a pre-processing step that computes the row-decomposition
of U (if it exists), before applying the algorithm on each of the Uis. Finding
the row decomposition of U consists of determining the values of the Nis, and
thus the value of p. This is done as follows: set i = 1, start from the top-left
field f of U , and search for a center g whose row coordinate Lr(g) is the closest
to Lr(f). Set Ni = 2 · (Lr(g) − Lr(f) + 0.5), increase i by one, and iterate
the process with the leftmost field f of row coordinate Lr(f) + Ni. The list of
the Nis is sufficient to determine the row decomposition of U . Now, it suffices
to set N0 = 1, and to consider each Ui, 1 ≤ i ≤ p, separately. For each Ui,
1 ≤ i ≤ p, we apply the following algorithm: take the leftmost free field f whose
row coordinate is ri = Ni−1 + 1, and first check whether all galaxies centers
whose row coordinates are in the interval [ri;Ni] have the same row coordinate,
equal to ri+(Ni−ri)/2. If this is not the case, we have a no-instance. Otherwise,
iteratively choose the center g whose column coordinate is the closest to the one
of f , create the rectangle R(f, g), mark all fields in R(f, g) as occupied, and
set f to be the leftmost free field of row coordinate ri. If, for a given i, this
process leaves free fields, or requires to create a rectangle that overpasses the
rightmost column, we have a no-instance. Otherwise, we have a yes-instance.

Once the row-decomposition of U is computed, the algorithm that treats
each Ui independently is clearly correct, because we assume that only rectangles
of height Ni can exist. It thus remains to show that the row-decomposition we
obtain is the correct one. Since we assume there exists a solution that has a
rectangle row-decomposition, we have, by definition, that all galaxies of Ui have
the same height. Thus their centers have to be on the same row, which means
that one must choose a center g whose row coordinate is the closest to the one
of f .

Concerning the time complexity, the pre-processing step that determines the
row-decomposition of U can be achieved in poly(k log n) time, since it consists
in p ≤ k iterations, each of which determines the unique candidate center g for
the free field f , computes and stores Ni, and computes the next f . Thus, the
same argument as in the two preceding proofs applies: each iteration consists
in considering O(k) objects (the galaxy centers), and apply on each of them a
constant number of operations, each costing O(log n). Now, for each of the p
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elements in {U1, U2 . . . Up}, the algorithm is very similar to the previous ones,
and for the same reasons can be achieved in poly(k log n) time. Altogether, we
the algorithm has running time poly(p · k log n) = poly(k log n). �

The next two results (Theorem 5 and Proposition 2) concern specific cases
relying not on the shape of the galaxies, but on their “connectedness”. Before
we can state these results, we need some terminology: a galaxy with center g is
said to be trivially connected if all its fields are either in κ(g) or adjacent to a
field in κ(g), where κ(g) is the kernel of g.

Theorem 5. One can determine in poly(k log n) time whether an instance of
Spiral Galaxies has a solution such that all galaxies are trivially connected.

Proof. First, notice that if, in the input instance, there exists a field not
adjacent to any galaxy kernel κ(g), then we have a no-instance. Otherwise, we
build the graph GU = (V,E), whose vertex set is the set of fields f in U not
belonging to a galaxy kernel, and where an edge connects two vertices uf and
u′f (corresponding to fields f and f ′) whenever f and f ′ are g-twins for some
center g and f and f ′ are adjacent to κ(g). We then compute a maximum
matching M in GU . If M is a perfect matching, then output yes, otherwise
output no. In case of a yes-instance, the edges of the matchingM allow to infer
the (trivially connected) galaxies of a solution.

Correctness of the above algorithm is implied by the following arguments:
connectivity is ensured by the forced adjacency to κ(g); symmetry of the galaxies
is ensured by the definition of E(GU ); galaxies are nonoverlapping because we
ask for a matching in GU ; and finally, no field is left uncovered by either the
pre-processing step or the request for a perfect matching.

Now let us analyze the time complexity of our algorithm. First, notice that
since galaxies are all trivially connected, then they have constant size (because
kernels have constant size). Thus, k = Θ(n) for yes-instances. After checking
the value of k, we may thus assume that poly(n) is polynomial in the input.
The three main steps of our algorithm (pre-processing, construction of GU and
computation of a maximum matching in GU ) require to consider (almost) all
fields of U . However, poly(n) time suffices: GU contains O(n) vertices and O(n)
edges (since a field can be adjacent to at most 4 other fields, GU is of maximum
degree 4), and computing a maximum matching in such a graph can be done in
time O(n1.5) [3]. Altogether, we end up with a poly(n) time algorithm. �

Using the same ideas as in the previous result, but in a less constrained way,
we are able to obtain a result for a new variant of Spiral Galaxies, in which
galaxies may not necessarily be connected. Let us call this variant Possibly
Disconnected Spiral Galaxies.

Proposition 2. Possibly Disconnected Spiral Galaxies can be solved in
poly(n) time.
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Proof. The proof is very similar to the one of Theorem 5 above: we first build
the graph GU = (V,E), where V is the set of fields f in U not belonging to a
galaxy kernel, and where an edge connects two vertices uf and u′f (corresponding
to fields f and f ′) whenever f and f ′ are g-twins for some galaxy center g. Notice
that here, we do not require that f and f ′ are adjacent to κ(g) anymore; this
is why the galaxies we will obtain may be disconnected. We then compute, as
in the previous proof, a maximum matching M in GU , and decide for a yes- or
a no-instance depending on whether M is a perfect matching. Correctness and
time complexity of the algorithm are straightforward from the previous proof.�

It should be noted that the above result relies on two strong hypotheses:
First, Possibly Disconnected Spiral Galaxies is a much less constrained
version of Spiral Galaxies where connectedness of the galaxies is no longer
required, which means that the game is rather different. Second, as discussed in
Section 1, the size of the input is O(k ·log n). Thus, the above result is of interest
(because it leads to a polynomial-time algorithm) only if k = Ω(n/ log n).

3.2. Exact Algorithms

In this section, we first provide two exact exponential-time algorithms [5]
for solving Spiral Galaxies in the most general case. Though the running
times of the two algorithms presented here are quite similar, we mention them
both since they rely on two different viewpoints of the problem. We then focus
on the case where any solution of Spiral Galaxies contains only rectangular
galaxies, and provide a fixed-parameter algorithm for the parameter number k
of galaxies.

Proposition 3. Spiral Galaxies can be solved in 4n · poly(n) time.

Proof. Given an instance of Spiral Galaxies, any solution can be inter-
preted as a two-dimensional map, where each galaxy g (and the fields it con-
tains) is a region, and where two distinct regions are adjacent when they contain
adjacent fields. The famous four color theorem (see e.g., [10]) tells us that such
a map can be colored with at most four colors. The exact algorithm that follows
from the above argument can be described easily as follows: generate every pos-
sible four-coloring CU of the fields of U ; for each such CU , check whether (a) each
connected set of fields of the same color contains a unique galaxy center, and if
so, whether (b) it is a valid galaxy, that is, it satisfies the symmetry condition.
If this is the case, a solution has been found. If no coloring satisfies the two
conditions (a) and (b), we have an instance without solution. The running time
of the algorithm is straightforward: there are 4 colors and n fields to color.
Hence the total number of colorings is 4n; besides, for any given coloring CU ,
checking whether conditions (a) and (b) hold can be done in poly(n) time. �

The time complexity can actually be slightly improved as shown in the fol-
lowing.

Theorem 6. Spiral Galaxies can be solved in 4n

2N+M · poly(n) time.
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Proof. Recall that N is the number of rows and M is the number of columns in
U , and thus n = N ·M . Take any solution to Spiral Galaxies, and consider
two adjacent fields f and f ′. They can be adjacent either horizontally or verti-
cally. If f and f ′ belong to distinct galaxies, say g and g′, we will say there exists
a border between them; otherwise, the border does not exist. The algorithm is
thus the following: generate all possibilities for borders between adjacent fields
(i.e., existence or nonexistence) in U . For each such possibility, compute the
maximal connected areas and check whether conditions (a) and (b) from proof
of Proposition 3 hold. If this is the case, a solution has been found. If none
of the tested possibilities yields a solution, we are in presence of a no-instance.
The running time for this algorithm is thus 2n·f · poly(n), where n · f is the
number of neighboring fields in U . The neighboring fields amount to (N − 1)M
horizontal ones, and (M − 1)N vertical ones; thus n · f = n − N −M , which
yields the claimed time complexity. �

Let Rectangular Spiral Galaxies denote the constrained version of
Spiral Galaxies where a solution may contain only rectangular galaxies. We
have the following result.

Theorem 7. Rectangular Spiral Galaxies can be solved in k!·poly(k log n)
time.

Proof. The idea here is very similar to the one used in proof of Theorem 2: at
each iteration, we determine a free field f , determine the galaxy center g it will
belong to, construct R(f, g). The two main differences from the initial algorithm
are the following: first, we look for rectangles instead of squares; however, once
f and g are known, the galaxy R(f, g) is completely determined, just as it was
the case for S(f, g). Second, for any iteration i of the algorithm, 1 ≤ i ≤ k, there
maybe up to k − i + 1 galaxy centers (thus this many rectangles) to consider;
this is why we need to branch on all possible solutions. By the above discussion
and proof of Theorem 2, it is easy to see that each iteration of the algorithm
is achieved in poly(k · log n). Due to the branching, up to k! iterations may be
performed. Altogether, we end up with the claimed complexity. �

4. Space is Big but May Have Few Corners

In this section, we present a fixed-parameter algorithm for the special case
that the galaxies are hole-free and for the parameter overall number of galaxy
corners `. A galaxy is called hole-free if no other galaxy is completely contained
in this galaxy. The hole-freeness property is not demanded by the original
problem definition. Many real-world instances, however, fulfill this hole-freeness
property.

Recall that L(g) denotes the location of the center of galaxy g. By the fol-
lowing lemma, hole-freeness implies that each galaxy contains its center. Hence,
our algorithm which constructs hole-free galaxies does not need to check this
property explicitly.
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Lemma 1. A nonempty area that is connected, hole-free and symmetric with
respect to a location L(g) contains all fields that are adjacent to L(g).

Proof. If the area is a rectangle or shaped like a cross, then the claim holds
trivially. Otherwise, assume without loss of generality, that the area contains a
field f1 which is at least as high as L(g) and to the left of L(g). By the symmetry
property, the area also contains a field f2 that is at most as high as L(g) and
to the right of L(g). Since the area is connected, the two fields are connected
by a path of other fields of the area. For each field of this path, its g-twin,
however, also belongs to g. Consequently, there are two paths from f1 to f2
that enclose L(g). Since the area is hole-free, this implies that all fields that are
adjacent to L(g) belong to the area. �

It is relatively straightforward to decide in nf(`) time whether there is a
solution with ` corners: Guess the exact position and orientation of each corner,
then connect the corners accordingly and finally check whether this gives a
solution. The running time follows from the fact that for each corner we have
to consider poly(n) choices and that all steps after the guessing can be easily
performed in polynomial time.

We now describe an algorithm that can find solutions with at most ` corners
in f(`) · poly(log n) time. The outline of the algorithm is as follows. First, we
show how to represent each spiral galaxy as a tiling of O(`) rectangles. Then,
we present an integer linear program (ILP) with f(`) many variables which,
using a known result on the running time of bounded variable ILPs [8] implies
the claimed running time.

Consider any galaxy. Our aim is to represent the galaxy as a tiling of few
rectangles. The first step is to divide the galaxy into three parts which will allow
us to naturally capture the symmetry condition when defining the rectangle
tiling. While doing so, we aim to keep the number of corners low.

Lemma 2. The fields of every hole-free galaxy g with ` corners can be colored
with at most three colors black, red, and blue such that

• if L(g) has integer coordinates, then the field containing L(g) is black,
otherwise no fields are black,

• the red area has at most `+ 2 corners,

• the g-twin of every red field is blue.

Proof. Let L(g) = (y, x) be the location of the galaxy center. We discuss
only the case in which y is noninteger (the case in which x is noninteger is
symmetrical), or the case in which both x and y are integers (see Figure 8).

If y is noninteger, then color (dye, dxe) red. Then check whether there is an
uncolored field that belongs to the galaxy and is to the left or to the right of a
red field. If this is the case, color it also red. When there is no such field, then
note that the row of red fields is a separator of the galaxy. Color the g-twins
of this line of red fields (which is the line below) blue. Now color all uncolored
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Figure 8: Examples of some galaxies and the coloring as provided by the algorithm in the proof
of Lemma 2 (herein, the red fields are hatched diagonally and the blue fields horizontally).
Left: L(g) has noninteger coordinates, middle: L(g) is a separator, right: L(g) has 8 neighbors.

fields that can reach blue fields only via red fields with red and all other fields
blue. The resulting coloring clearly fulfills the first and the last condition of
the lemma. It remains to show the number of corners. At most `/2 corners of
the red area are also corners in g. In addition, there are at most two corners
between red and blue fields (recall that the separator is a straight line of fields).
Since g has at least four corners, the number of corners in the red fields is at
most `/2 + 2 ≤ `.

If y is integer, then color the field that contains y black. If the galaxy
contains no further fields, then the lemma holds. Otherwise, distinguish two
further cases.

Case 1: Removing the center from the galaxy cuts the area in at least two
connected components. In this case, pick one of these components, color it
red and color the fields of its g-twins blue. Then pick, if it exists, another
uncolored connected component and color it red and its g-twins blue. No further
uncolored connected components exist. The red connected components has
again at most `/2 corners that are corners in g. Furthermore, there are at most
four corners between red fields and the black field. Hence, the number of corners
in the areas defined by the red fields is at most `/2 + 4 ≤ `+ 2.

Case 2: Otherwise. In this case, the galaxy center has eight neighbors.
Color the field to the left of the center red and call it the current field. While
the current field has a left neighbor that is part of g, color this field red and
make it the current field. Next, make the field to the top-left of the galaxy the
current field and color it red. Now, while the current field has a right neighbor
that belongs to g, color it red and make it the current field. Now, the red fields
are a separator. Color all fields that can reach the center only via red fields also
with red. After this, color all g-twins of the red fields blue.

Again, the area defined by the red fields has at most `/2 corners that are
corners in g plus four corners on the border to the blue or black fields. The
overall number of corners is thus at most `/2 + 4 ≤ `+ 2. �

Note that this is the only part of the algorithm where we assume hole-freeness
of the galaxy. In order to drop this demand, one approach could be to find a
different way of separating the red area from the blue area while still maintaining
the bound on the number of corners of the red area.

In order to formulate the ILP we will now model each galaxy as a union of
rectangles. The following lemma is a straightforward corollary of [4, Theorem
1].
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Lemma 3. An orthogonal polygon with ` corners can be partitioned into at
most ` nonoverlapping rectangles.

Definition 1. A rectangle representation of a galaxy g is a set of rectan-
gles Rg = {R1, R2, . . . , Rq} such that:

• the union of all Ri is exactly g,

• Ri and Rj do not overlap if i 6= j,

• for each Ri, there is exactly one rectangle Rj ∈ Rg such that the four
corners of Rj are exactly the g-twins of the four corners of Ri.

For a galaxy representation, we use s(Ri) to denote the rectangle that is
symmetric to Ri.

Lemma 4. A galaxy g with at most ` corners has a rectangle representation
with O(`) rectangles.

Proof. By Lemma 2 we can partition g into three areas that have O(`) corners
altogether. Now, for the red part we choose some partition into O(`) rectangles
which exists by Lemma 3. For the blue part choose the symmetric (with respect
to L(g)) partition into rectangles. The black part, if it exists, is a rectangle so
add the corresponding rectangle in this case. Clearly, the union of the rectangles
is g, the rectangles do not overlap and, by the choice of the partition of the blue
part, there is for each red rectangle Ri a symmetric blue counterpart Rj . The
black rectangle R, if it exists, consists just of one field whose center is L(g), so
the corners of R are symmetric to themselves. �

We now use the rectangle representation to fix the main structure of a putative
solution. A layout of a solution is a structure consisting of the following parts:

• For each galaxy g, we fix a set of rectangle identifiers Rg
1, . . . , R

g
q , q = O(`).

• For each rectangle Rg
i , we fix s(Rg

i ) (note that if L(g) has integer coordi-
nates, Rg

i = s(Rg
i ) is possible).

• For each pair of rectangles Rg
i and Rg′

j , we fix whether Rg
i is above, below,

to the left, or to the right of Rg′

j (at least one of the four must be the
case).

• For each pair of rectangles Rg
i and Rg′

j , we fix whether they are adjacent
or not, and if this is the case, we fix the “extent” of the adjacency. For

example, if Rg
i is above Rg′

j , then we fix whether the left side of Rg′

j is at
least as far to the left as the left side of Rg

i or not, and similarly, whether

the right side of Rg′

j is at least as far to the right as Rg
i or not.

• For each rectangle, we fix whether it is adjacent to the left, right, top, or
bottom limit of the universe.

17



Clearly, the number of layouts is bounded by a function of ` since the number
of rectangles to consider in any solution is O(`). The main structure of the
algorithm is now as follows. Try all possible layouts. For each layout, first filter
“bad” layouts that do not guarantee that the galaxies are connected, that the
galaxies are hole-free, or that they cover the whole universe. Then, create an
ILP with O(`) variables and solve it. If it has a feasible solution, then use this
solution to construct a solution of Spiral Galaxies.

We now describe how to filter bad layouts. For each galaxy g, create a graph
whose vertices are the rectangles Rg

i . Make two vertices adjacent in this graph
if the corresponding rectangles are fixed to be adjacent by the layout. Reject
the layout if the resulting graph is not connected for some galaxy.

Now create a graph whose vertices are the galaxies. In this graph, make two

galaxies g and g′ adjacent if there is a pair of rectangles Rg
i and Rg′

j that are
fixed to be adjacent by the layout. Furthermore, add one vertex that represents
the limits of U and make it adjacent to each galaxy g that has a rectangle Rg

i

that is fixed to be adjacent to the respective limit. Now, reject the layout if
there is a galaxy g that is a cut-vertex in this graph, that is, there is a pair of
galaxies g′ 6= g and g′′ 6= g such that all paths between g′ and g′′ contain g.
Finally, consider each rectangle Ri of the layout that is adjacent to at least one
other rectangle. Assume without loss of generality, that the bottom fields of Ri

are adjacent to the rectangles Q1
i , . . . , Q

q
i , which are ordered such that

• the left border of Q1
i is fixed to be at least as far to the left as the left

border of Ri and there is no other rectangle Qj
i for which this holds,

• the right border of Qq
i is fixed to be at least as far to the right as the right

border of Ri and there is no other rectangle Qj
i for which this holds, and

• for i′ > 1, Qi′

i is fixed to be adjacent and to be to the right of Qi′−1
i .

If such an order does not exist, then reject the layout. Otherwise, build the
ILP formulation. We only need to check for feasibility, hence there will be no
objective function that we need to maximize.

For each rectangle Ri in the layout, we introduce four variables: x1i , y1i , x2i ,
and y2i , where (y1i , x

1
i ) shall be the top-left field of Ri and (y2i , x

2
i ) shall be the

bottom-right field of Ri. No further variables are introduced and the number of
variables thus is O(`). We now introduce inequality constraints that guarantee
that the ILP solution gives a solution to Spiral Galaxies. First, we constrain
all coordinates to be in the universe:

∀xji : 1 ≤ xji ≤M, (1)

∀yji : 1 ≤ yji ≤ N. (2)

The second set of constraints forces all rectangles to be nonempty and guarantees
that the coordinate pair (y1i , x

1
i ) is indeed the top-left field:

∀x1i :x1i − x2i > 0, (3)

∀y1i :y1i − y2i > 0. (4)
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Now we introduce constraints for rectangle pairs to force that the rectangles do
not overlap, that adjacencies are preserved as fixed in the layout, and that each
galaxy is symmetric. Herein, we describe only the case in which the rectangle Ri

is above Rj , all other cases can be obtained by rotating the universe. First, we
guarantee that the rectangles do not overlap:

y2i − y1j > 0. (5)

If Ri and Rj are fixed to be the corresponding rectangles in the two symmetric
parts of a galaxy g, that is, Ri = s(Rj), then assume without loss of generality,
that the right border of Ri is not to the left of the right border of Rj . Then,
we add the constraints

2 · Lc(g)− x1i − x2j = 0, (6)

2 · Lr(g)− y1i − y2j = 0, (7)

2 · Lc(g)− x2i − x1j = 0, (8)

2 · Lr(g)− y2i − y1j = 0. (9)

Now, we add the constraints concerning adjacent rectangles. If Ri and Rj are
fixed to be adjacent, then, since Ri is above Rj , we add the constraint

y2i − y1j = 1. (10)

If we fix the left border of Rj to be at least as far to the left as the left border
of Ri, then we add the constraint

x1i − x1j ≤ 0. (11)

We add similar constraints for the right borders of Ri and Rj (according to
whether or not we have fixed Ri to extend further to the right than Rj).

Finally, we add the following constraints for the rectangles that are adjacent
to the limit of the universe:

y1i = 1 if Ri is adjacent to the top limit of U , (12)

y2i = N if Ri is adjacent to the bottom limit of U , (13)

x1i = 1 if Ri is adjacent to the left limit of U , (14)

x2i = M if Ri is adjacent to the right limit of U . (15)

Lemma 5. If the ILP as constructed above has a feasible solution, then the
Spiral Galaxies instance is a yes-instance.

Proof. First, we show that the rectangles that are fixed to make up a galaxy g
create an area that fulfills the properties of a galaxy. By the filtering step and
by Constraint 10, the area created by the rectangles is connected. Furthermore,
every field in this area is contained in a rectangle. By Constraints 6–9 there
is a rectangle whose corners are g-twins of the rectangle containing this point.
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Hence, the g-twin of the each field is also contained in g. Now, by the filtering
step before the ILP construction, the galaxy is also hole-free and therefore it
fulfills all properties of a galaxy.

It remains to show the global property that the rectangles form a partition
of the universe. By Constraint 5, the rectangles do not overlap, so it remains
to show that the rectangles cover the universe. Assume that this is not the
case. Then there is some field not covered by any rectangle but adjacent to
some rectangle Ri. Assume without loss of generality that this field is below Ri.
Clearly, Ri is not fixed to be adjacent to the bottom border by the layout. By the
filtering step, the field Ri thus has at least one neighboring rectangle that is fixed
to be below Ri and extend further at least as far to the left than Ri. Similarly,
such a rectangle exists for the right border of Ri. Furthermore, between these
two rectangles the filtering step guarantees that there is a chain of horizontally
adjacent rectangles that are below Ri and adjacent to Ri. Hence, every field
below Ri is covered by some rectangle. �

The converse of the above statement is also true in the sense, that if there is a
solution to Spiral Galaxies, then there is one layout which passes the filtering
and whose constructed ILP has a feasible solution. The existence of this layout
is guaranteed by Lemma 3 plus the fact that the filtering step does not remove
this layout. The feasible ILP solution is then obtained by simply plugging in
the coordinates of the rectangles. Altogether we thus obtain the following.

Theorem 8. In f(`)·poly(n) time one can determine whether Spiral Galax-
ies has a solution which has at most ` corners and in which every galaxy is
hole-free.

Proof. The correctness follows from Lemma 5 and the discussion above. It
remains to show the running time. The number of layouts to consider is bounded
by a function in ` since the number of galaxies is O(`) and the number of
rectangles that we need to consider for each galaxy is also O(`). Hence, the
number of objects for which all different possibilities of “applying some fix”
only depends on `. Therefore, the number of ILPs to solve is also bounded by a
function of `. Since each ILP has O(`) variables and poly(`) many constraints
it can be solved in f(`) · poly(log n) time [8]. All other steps can be performed
in polynomial time. �

It would be nice to obtain a fixed-parameter algorithm for the smaller param-
eter k. A natural approach would be to show that the solution has only f(k)
corners. Indeed, we tried to show that this is the case. However, even for four
galaxies only, this is not true.

Proposition 4. For every ` ∈ N, there are yes-instances of Spiral Galaxies
with four galaxies such that every solution has more than ` corners.

Proof. Let x > `+2 and consider the following instance with N = M = 2x+1
and four galaxies α, β, γ, δ. In the instance, α will be very large, γ and δ will
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Figure 9: An instance of Spiral Galaxies with four galaxies and many corners.

be small, and β will be tiny. To denote the positioning of the centers of the
small galaxies, we introduce another variable y which is some even integer such
that ` ≤ y < x. The four galaxy centers are as follows.

• L(α) = (x+ 1, x+ 1),

• L(β) = (1, 2),

• L(γ) = ((y + 3)/2, y/2 + 5/2), and

• L(δ) = (2x+ 1− y/2, 2x− y/2).

A sketch of the instance and of a solution for one set of values of x and y is
given in Figure 9.

First, observe that by the choice of y, the galaxies β and γ live in the upper-
left quadrant, that is, the set of fields (i, j) with i, j ≤ x+ 1, and galaxy δ lives
in the lower-right quadrant. Therefore, all α-twins of fields of β and γ must
belong to δ. Hence, the shape of δ is a union of the shapes of β and γ. Further,
galaxy β has its center on the last row of U , so it must be flat (have height
one) and, since its center is on the second column, it can be either a galaxy
containing just the center or a flat galaxy of width three.

We now show that the solution must essentially look like the one shown in
Figure 9. The center of β does not belong to α, so its α-twin which is (2x+1, 2x),
belongs to δ. But then the δ-twin of (2x+ 1, 2x) belongs to δ as well. This field
is (2x−y+1, 2x−y). Now, the α-twin of this field is (y+1, y+2) and it is again
not in galaxy α, so it must be in galaxy γ (recall that β is flat). Now the main
difference between γ and δ that creates the many corners is the following. The
height difference for γ-twins is odd since its center sits at noninteger coordinates.
The height difference for δ-twins, however, is even since δ’s center sits at integer
coordinates. Moreover, the height of γ is exactly y since it cannot reach fields
above (y + 1, y + 2) (their α-twins are unreachable for δ). Therefore, galaxy γ
has at least one field in each row from row y+ 1 until row 2. Similarly, galaxy δ
has at least one field in each row from row 1 until row y + 1. Note that for
galaxy δ the formula (i+ 1, i) defines a straight diagonal line between the three
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fields that are already assumed to be in δ. We now show a statement which
implies that the fields of δ must be close to this main diagonal.

Claim. For 1 < i ≤ y+1 and 1 ≤ j < 2x− i, if (2x+1− i, 2x− i− j)
belongs to δ, then (2x+ 2− i, 2x+ 1− i− j) belongs to δ.

If (2x+ 1− i, 2x− i− j) belongs to δ, then its α-twin (i+ 2, i+ 3 + j) belongs
to γ (since i > 1 it cannot belong to β). Therefore, the γ-twin of this field also
belongs to γ. This field is (y + 1 − i, y + 2 − i − j). Again, the α-twin of this
field belongs to δ. This field is (2x−y+ i, 2x−1−y+ i+ j). Finally, the δ-twin
of this field belongs to δ. This field is (2x+ 2− i, 2x+ 1− i+ j) which proves
the claim.

Now, we know that (2x + 1, 2x + 2) cannot belong to δ as it is outside of
the universe. Hence, the maximum deviation of δ from the main diagonal to
the right is one, which implies that the maximum deviation of δ from the main
diagonal to the left is also one. We also know that in row 2x − y, the field
that is on the main diagonal belongs to δ. By the above claim the complete
main diagonal thus also belongs to δ. Since the galaxy is connected, this implies
that either in row 2x− y or in row 2x− y + 1 the right or left neighbor of the
main diagonal also belongs to δ. Again by the above claim this implies that
either the left or the right neighbor of the main diagonal is part of δ for all
rows i ≥ 2x−y+1. By the symmetry of the galaxy we then obtain that the left
and right neighbor of the main diagonal have to belong to δ for all rows of δ.

Hence, each of the y+1 rows of δ, i.e., rows 2x−y to 2x+1, has two corners.
Therefore, the overall number of corners is larger than `. It is easy to verify,
that there is indeed a solution for all x and y as chosen above: the galaxy δ is
as described, the galaxy β is a flat galaxy with width 3, the galaxy γ is the set
of remaining α-twins of the fields that are in δ, and all other fields are in α. �

5. Satellite Ideas

This work is the first exploration of the algorithmic space of Spiral Galax-
ies. We have identified several polynomial-time solvable special cases such as
the problem of checking for a solution with trivially connected components. We
also provided exact algorithms for the general problem that have a running time
which is exponential either in the universe size or in the number of galaxy cor-
ners. On the negative side, we showed that it is NP-hard to check for a solution
containing only galaxies of size at most seven.

As wide areas of the algorithmic space of Spiral Galaxies remain un-
explored, we conclude with several open problems. First, is the problem of
finding a solution with galaxies of size at most three polynomial-time solvable?
Similarly, is the problem of finding a solution with galaxies of size at most six
polynomial-time solvable? An answer to these questions would bring us closer
to a complexity dichotomy with respect to the galaxy size. Further, is Rect-
angular Spiral Galaxies solvable in polynomial time? Finally, is Spiral
Galaxies fixed-parameter tractable with respect to the number k of galaxies?
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Currently, we do not have a conjecture on any of these questions. We do have
a proof that the answer is not 42 but we defer it to follow-up work.
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discussions during the conference, and Hélène Farine for her help with the section
titles.

[1] E. D. Demaine. Playing games with algorithms: Algorithmic combi-
natorial game theory. In Proceedings of the 26th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS ’01), vol-
ume 2136 of LNCS, pages 18–32. Springer, 2001. Available at http:

//arxiv.org/abs/cs.CC/0106019.

[2] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized com-
plexity. Undergraduate Texts in Computer Science. Springer, 2013.

[3] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics,
17:449–467, 1965.

[4] L. Ferrari, P. Sankar, and J. Sklansky. Minimal rectangular partitions of
digitized blobs. Computer Vision, Graphics, and Image Processing, 28(1):
58–71, 1984.

[5] F. V. Fomin and D. Kratsch. Exact exponential algorithms. Springer, 2010.

[6] E. Friedman. Spiral galaxies puzzles are NP-complete. Available at http:
//www2.stetson.edu/~efriedma/papers/spiral.pdf, 2002.

[7] R. A. Hearn and E. D. Demaine. Games, puzzles, and computation. AK
Peters, Limited, 2009.

[8] R. Kannan. Minkowski’s convex body theorem and integer programming.
Mathematics of Operations Research, 12(3):415–440, 1987.

[9] W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. Jour-
nal of the ACM, 55(2), 2008.

[10] N. Robertson, D. P. Sanders, P. D. Seymour, and R. Thomas. The four-
colour theorem. Journal of Combinatorial Theory, Series B, 70(1):2–44,
1997.

23


