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C. Jourdana∗, N. Vauchelet†‡§

June 3, 2015

Abstract

This paper is devoted to numerical simulations of electronic transport in nanoscale semicon-
ductor devices for which charged carriers are extremely confined in one direction. In such devices,
like DG-MOSFETs, the subband decomposition method is used to reduce the dimensionality of
the problem. In the transversal direction electrons are confined and described by a statistical
mixture of eigenstates of the Schrödinger operator. In the longitudinal direction, the device is
decomposed into a quantum zone (where quantum effects are expected to be large) and a classical
zone (where they are negligible). In the largely doped source and drain regions of a DG-MOSFET,
the transport is expected to be highly collisional; then a classical transport equation in diffusive
regime coupled with the subband decomposition method is used for the modeling, as proposed
in N. Ben Abdallah et al. (2006, Proc. Edind. Math. Soc. [7]). In the quantum region, the
purely ballistic model presented in Polizzi et al. (2005, J. Comp. Phys. [25]) is used. This work
is devoted to the hybrid coupling between these two regions through connection conditions at the
interfaces. These conditions have been obtained in order to verify the continuity of the current.
A numerical simulation for a DG-MOSFET, with comparison with the classical and quantum
model, is provided to illustrate our approach.

Keywords: Schrödinger equation; subband decomposition; drift-diffusion system; semiconduc-
tors; interface conditions; mixed finite elements.

2010 AMS subject classifications: 65M60, 65Z05, 82D37, 82D80, 35J10, 76P05

1 Introduction

The constant downscaling at nanometer scales of electronic components allows to build devices
more functionals. In order to fit the requirements of the International Technology Roadmap for
the Semiconductor Industry [15], new technology has been developed such as the multi-gate devices.
The use of Double Gate Metal Oxide Semiconductor Field Effect Transistors (DG-MOSFETs) seems
to be mandatory in the near future since such device allows an outstanding control on the short
channel effects arising in bulk MOSFET [12]. In this task, modeling and numerical simulation

∗Université Grenoble Alpes, Laboratoire Jean Kuntzmann, F-38000 Grenoble, France. Email:

clement.jourdana@imag.fr
†Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France,

Email: nicolas.vauchelet@upmc.fr
‡CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
§INRIA-Paris-Rocquencourt, EPC MAMBA, Domaine de Voluceau, BP105, 78153 Le Chesnay Cedex, France

1



play an important role to predict the behavior of such devices whose electron transport is strongly
driven by quantum effects [2, 13, 16]. In nanoscale DG-MOSFETs electrons might be extremely
confined in one direction (denoted z and referred to as the confining direction) which implies a
partial quantization of the energy. The subband decomposition method [31, 25] allows to reduce the
dimensionality of the problem thanks to a splitting of the transport and confining direction. In the
transversal direction, denoted z, electrons are confined in a small dimension and are described by
a statistical mixture of eigenstates of the Schrödinger operator. In the transport directions x, the
particles motion can be of quantum or classical nature.

In this work we focus on the description of the transport of partially confined particles in a
Double-Gate MOSFET. The electron gas is supposed to be confined in the transversal direction
z. The confinement induces a discretization of the energy continuum and thus the creation of
energy-subbands in the transversal direction. In fact, a large potential barrier at these oxide-silicon
interfaces induces a strong confinement in the z direction. Therefore, the subband decomposition
method is relevant for this electronic component. The electron motion is allowed in the remaining
two directions. Assuming translational invariance, the simulation domain is reduced to a 2D domain
(x, z) ∈ [0, L] × [0, ℓ]. A schematic representation of the regions for such a device is given in Figure
1. The electron transport is expected to operate in a quantum ballistic regime in the active region
outside of the electron reservoirs. The source and drain zones are largely doped and collisions are
then predominant in the transport. Therefore quantum phenomena are very localized in the channel
between the source and drain regions.
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Figure 1: Schematic representation of the regions of the device. The coupling between the classical
and the quantum regions occurs for x = x1 and x = x2.

To simulate the quantum ballistic transport, the subband decomposition method allows for a
reduction of the numerical cost. In fact, the resolution of the Schrödinger equation in the whole
domain is replaced by 1D eigenvalue problems in the confined (or transversal) direction z and
a system of coupled Schrödinger equations in the transport (or longitudinal) direction x. Then
numerical simulations of the ballistic transport of confined particles in nanotransistors using the
subband decomposition method are provided in [25]. In this latter article, the Schrödinger–Poisson
system in the longitudinal direction is solved self-consistently via standard variational formulations in
the whole domain. In [8], the authors have proposed to combine the subband decomposition method
with the WKB method to reduce the cost of simulations. With their approach, the resolution of
the Schrödinger equation in the longitudinal direction x is accelerated through the use of WKB
techniques. The WKB approximation has been used in this manner for the 1D simulation of a
resonant tunneling diode in [9].

Such fully quantum model is convenient to simulate the ballistic transport. However, we may
expect that in some region of the device of interest the transport is strongly affected by collisions.
In fact, it is well-known that transport of charged carriers in semiconductors is highly collisional
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(see e.g. [19]). Then fluid-quantum coupled models where the coupling occurs in the momentum
variable through the subband decomposition method have been investigated by several authors. In
[7, 28], a model for the diffusive transport of partially quantized particles is proposed and analyzed.
The transport in the x direction is modeled by the drift-diffusion system for semi-conductors [21]
coupled to the stationary Schrödinger-Poisson system in the z direction. Using this model, numerical
simulations of the diffusive transport of electrons confined in a DG-MOSFET have been obtained
in [23]. It has been stated in [29] that this drift-diffusion-Schrödinger-Poisson system is obtained by
a diffusive limit of a Boltzmann-Schrödinger-Poisson system, where the transport in the x direction
is modeled by the Boltzmann transport equation in diffusive scaling. Numerical simulations of this
kinetic-quantum model are provided in [30, 5]. At an intermediate level of description, an Energy-
Transport model coupled with the subband decomposition method has been proposed and simulated
in [6, 24].

The aim of this paper is to propose a hybrid coupling between quantum ballistic model in the
channel and diffusive-quantum model in the highly collisional regions of the source and the drain.
The coupling between the models is obtained through boundary conditions at the interface x1 and
x2 between these regions (see Figure 1). In his seminal work [3], N. Ben Abdallah proposes a coupled
kinetic-quantum model for one-dimensional resonant tunneling diode. In his work, the Schrödinger
equation is used in the quantum zone whereas, in the classical regions, a Boltzmann equation is used
to describe the collisional transport of electrons in the rest of the domain. At the classical-quantum
interface, boundary conditions for the Boltzmann equation depending on the quantum reflection and
transmission coefficients have been defined. A numerical discretization of this approach has been
later proposed in [10]. Aiming at diminishing computational cost, the diffusive limit of the Boltz-
mann equation leading to the drift-diffusion (DD) model has been considered in [14]. In their paper,
the authors have derived the interface boundary conditions by passing to the limit in the reflection-
transmission conditions obtained in [3] and by considering boundary layer corrections leading to the
resolution to a Milne problem. The resolution of the Milne problem is quite involved and its nu-
merical cost can be important. Then, another approach has been proposed in [1], where the authors
derived boundary conditions by imposing the continuity of the current at the interfaces. It has been
shown in particular that this strategy is a good approximation of the previous one. Moreover, since
this approach does not involve the resolution of a Milne problem, its formulation is simpler and its
numerical cost is reduced. Similar observation has been done for the Energy-Transport model in
[18]. We propose in this paper to follow the latter strategy and to extend the hybrid coupling to
the subband decomposition method. Then by imposing continuity of the current at the interfaces,
boundary conditions are derived. It allows for the numerical simulation of the transport of partially
confined electron gas in a nanotransistor DG-MOSFET.

The outline of the paper is as follows. In Section 2, we describe the modeling and the description
of the open boundary conditions at the interface. We first recall the subband decomposition approach
in §2.1 which describes the confinement in the transversal direction. Then we describe the models
used in each region separately. In §2.2, the quantum model describing the ballistic transport in
the channel is recalled. Subsection 2.3 is devoted to the description of the fluid model used in the
classical region. The interface conditions allowing to connect these two regions are obtained in §2.4
using the continuity of the current. Finally, Section 3 is devoted to numerical results of the resulting
model.
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2 Modeling and boundary conditions

2.1 Subband decomposition method

In the subband decomposition method, the system is viewed as a statistical mixture of eigenstates
of the Schrödinger equation (see [25]). The strong confinement in the transversal direction z ∈ (0, ℓ)
implies a quantization of the energy in level denoted ǫk. From a mathematical viewpoint, these
energy levels, called subbands, are eigenvalues of the 1D stationary Schrödinger operator whose
eigenvectors denoted (χk)k≥1 form an orthonormal basis of L2(0, ℓ) :





−
~
2

2m∗

d2

dz2
χk + (U + Uc)χk = ǫkχk,

χk(x, 0) = χk(x, ℓ) = 0, 〈χk(x, .) |χk′(x, .)〉 = δkk′ .

(2.1)

In this equation and in the sequel, we will always use the following notations: δkk′ is the Kronecker
delta (i.e. δkk′ = 1 if k = k′, δkk′ = 0 if k 6= k′),

〈χk(x, .)|χk′(x, .)〉 =

∫ ℓ

0
χk(x, z)χk′(x, z)dz.

In equation (2.1) ~ denotes the reduced Planck constant, m∗ the effective mass and Uc is a given
potential barrier at the interface between the oxide and the silicon.

The electrostatic potential energy U is defined by U = −eV , where e is the elementary charge
and V denotes the self-consistent electrostatic potential solution of the Poisson equation

− div x,z(εr(x, z)∇x,zV ) =
e

ε0
(ND −N). (2.2)

Here εr(x, z) is the relative dielectric permittivity, ε0 the constant permittivity of vacuum and
ND(x, z) is the given doping density. The density of electrons is denoted N(x, z). Its expression
depends on the transport direction and is detailed in the following. This Poisson equation should
be complemented with boundary conditions at the frontier of the simulation domain [0, L] × [0, ℓ].
We will divide the boundary into ΓD where ohmic contacts impose a fixed potential (such as the
drain, source and gates contacts) and ΓN where there insulating conditions are considered. Then
we impose Dirichlet boundary conditions on ΓD and homogeneous Neumann boundary conditions
on ΓN :

V (x, z) = Vb, for (x, z) ∈ ΓD; ∂nV (x, z) = 0, for (x, z) ∈ ΓN ; (2.3)

where we denote by Vb a given applied bias at the Gate or Drain or Source contacts.

2.2 The quantum region

This Section is devoted to the modeling of the transport in the quantum region. We recall, see
Figure 1 that the quantum region is sandwiched between two classical regions and corresponds to
x ∈ Σ = (x1, x2). The subband decomposition method for the ballistic transport has been introduced
in [25]. We recall here the resulting system of equations, which consists in two stationary Schrödinger
equations in the transport direction with open transmitting boundary conditions, for each energy
level computed thanks to (2.1) in the transversal direction.

To simplify the presentation, we first assume that the electrostatic potential V is known in the
whole device. Then thanks to a diagonalization of the stationary Schrödinger operator (2.1), the set
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(ǫk, χk)k≥1 of eigenstates is known. We define the potential Ṽ by

Ṽ (x) =





V1 := V (x1) x ≤ x1,
V (x) x1 ≤ x ≤ x2,
V2 := V (x2) x ≥ x2.

This is a continuous extension of V by a constant on Ω = (0, L) \Σ. We define the energy Ek,1 and
respectively Ek,2 at the interfaces x = x1 and respectively x = x2 by

Ek,1(p) :=
p2

2m∗
+ ǫk(x1) ; Ek,2(p) :=

p2

2m∗
+ ǫk(x2), (2.4)

where p denotes the moment variable and ǫk the potential energy of the kth subband, defined in
(2.1). The wave vector is given by

pℓj(Ek,i(p)) :=
√
2m∗|Ek,i(p)− ǫℓ(xj)| =

√
|p2 + 2m∗(ǫk(xi)− ǫℓ(xj)|,

where i and j take the values 1 or 2.
The stationary Schrödinger operator is defined by

H = −
~
2

2m∗

(
∂2

∂x2
+

∂2

∂z2

)
.

Let ψ+
k be the wave function entering the quantum zone in x1 on the kth subband and having the

energy Ek,1(p) (2.4), and respectively ψ−
k is the wave function entering in x2 on the kth subband with

energy Ek,2(p). For each momentum p, the wave functions ψ±
k are then solutions of the Schrödinger

equation with open boundary conditions. This system reads (see [20, 4, 25]) :





Hψ+
k + Ṽ ψ+

k = Ek,1(p)ψ
+
k , for (x, z) ∈ [x1, x2]× (0, ℓ).

ψ+
k (x, 0) = ψ+

k (x, ℓ) = 0,

~
∂ψ+

k

∂x
(x1, z) = 2ipχk(x1, z)−

M1(Ek,1(p))∑

j=1

ipj1(Ek,1(p)) 〈ψ
+
k (x1, ·)|χj(x1, ·)〉χj(x1, z)

+
∞∑

j=M1(Ek,1(p))+1

pj1(Ek,1(p)) 〈ψ
+
k (x1, ·)|χj(x1, ·)〉χj(x1, z),

~
∂ψ+

k

∂x
(x2, z) =

M2(Ek,1(p))∑

j=1

ipj2(Ek,1(p)) 〈ψ
+
k (x2, ·)|χj(x2, ·)〉χj(x2, z)

−

∞∑

j=M2(Ek,1(p))+1

pj2(Ek,1(p)) 〈ψ
+
k (x2, ·)|χj(x2, ·)〉χj(x2, z),

(2.5)

where
M j(Ek,i(p)) = sup{ℓ ∈ N

∗ such that ǫℓ(xj) ≤ Ek,i(p)}.
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And




Hψ−
k + Ṽ ψ−

k = Ek,2(p)ψ
−
k , for (x, z) ∈ [x1, x2]× (0, ℓ).

ψ−
k (x, 0) = ψ−

k (x, ℓ) = 0,

~
∂ψ−

k

∂x
(x1, z) = −

M1(Ek,2(p))∑

j=1

ipj1(Ek,2(p)) 〈ψ
−
k (x1, ·)|χj(x1, ·)〉χj(x1, z)

+

∞∑

j=M1(Ek,2(p))+1

pj1(Ek,2(p)) 〈ψ
−
k (x1, ·)|χj(x1, ·)〉χj(x1, z),

~
∂ψ−

k

∂x
(x2, z) = −2ipχk(x2, z) −

M2(Ek,2(p))∑

j=1

ipj2(Ek,2(p)) 〈ψ
−
k (x2, ·)|χj(x2, ·)〉χj(x2, z)

+
∞∑

j=M2(Ek,2(p))+1

pj2(Ek,2(p)) 〈ψ
−
k (x2, ·)|χj(x2, ·)〉χj(x2, z).

(2.6)

The boundary conditions in z = 0 and z = ℓ are due to the confinement in the transversal direction.
Open boundary conditions in x = x1 and x = x2 comes from the fact that a wave entering the
domain is partially reflected and partially transmitted between the different subbands (see [4, 25]).
We define the reflection and transmission coefficients of the kth subband to the k′th subband by:





R1
k→k′ =

pk
′

1 (Ek,1(p))

p
|δkk′ − 〈χk′(x1, ·)|ψ

+
k (x1, ·)〉|

2 if k′ ≤M1(Ek,1(p)),

R1
k→k′ = 0 if k′ > M1(Ek,1(p)),





T 1
k→k′ =

pk
′

2 (Ek,1(p))

p
|〈χk′(x2, ·)|ψ

+
k (x2, ·)〉|

2 if k′ ≤M2(Ek,1(p)),

T 1
k→k′ = 0 if k′ > M2(Ek,1(p)),

and respectively





R2
k→k′ =

pk
′

2 (Ek,2(p))

p
|δkk′ − 〈χk′(x2, ·)|ψ

−
k (x2, ·)〉|

2 if k′ ≤M2(Ek,2(p)),

R2
k→k′ = 0 if k′ > M2(Ek,2(p)),





T 2
k→k′ =

pk
′

1 (Ek,2(p))

p
|〈χk′(x1, ·)|ψ

−
k (x1, ·)〉|

2 if k′ ≤M1(Ek,2(p)),

T 2
k→k′ = 0 if k′ > M1(Ek,2(p)).

We verify easily the following reciprocity relations :

R1
k→k′ = R1

k′→k, R2
k→k′ = R2

k′→k, (2.7)

T 2
k′→k(−p

k′
2 (Ek,1(p))) = T 1

k→k′(p), T 1
k′→k(p

k′
1 (Ek,2(p))) = T 2

k→k′(−p). (2.8)

Denoting

R1
k =

∑

k′

R1
k→k′ ; R2

k =
∑

k′

R2
k→k′,

T 1
k =

∑

k′

T 1
k→k′ ; T 2

k =
∑

k′

T 2
k→k′,

6



we obtain moreover with (2.7)–(2.8) (see [22])

R1
k + T 1

k = 1 for 1 ≤ k ≤M1(Ek,1(p)), (2.9)

R2
k + T 2

k = 1 for 1 ≤ k ≤M2(Ek,2(p)). (2.10)

A schematic representation in the phase space of the transmission and reflexion coefficients is pro-
vided in Figure 2.2. A wave entering in the quantum region Σ = (x1, x2) from x = x1 with energy
Ek,1(p) is partially reflected with coefficient R1

k and partially transmitted with coefficient T 1
k .

T 1

R2

R1

T 2

L0
x

p

x1 x2

Figure 2: Schematic representation of the transmission of reflexion coefficients in phase space (x, p).

We define now the two important macroscopic quantities in the quantum region: the density of
electrons N which enters in the right hand side of the Poisson equation (2.2) and the current. We
assume temporarily that the distribution function of the electrons entering in the quantum region
(fk(x, p))k≥1 is known : these values being (fk(x1, p))k≥1 for p > 0 and (fk(x2, p))k≥1 for p < 0. The
density of electrons in the quantum region is given by the sum of the contribution on each subband,
from [3] (see also [22, 25]), its expression reads:

N(x, z) =
1

~

+∞∑

k=1

∫

p>0
fk(x1, p)|ψ

+
k (x, z)|

2 dp +
1

~

+∞∑

k=1

∫

p<0
fk(x2, p)|ψ

−
k (x, z)|

2 dp. (2.11)

The particle current is given by:

JQ(x) =
e

m∗

+∞∑

k=1

∫ 1

0

∫

p>0
fk(x1, p)Im (ψ

+
k (x, z)∂xψ

+
k (x, z)) dpdz

+
e

m∗

+∞∑

k=1

∫ 1

0

∫

p<0
fk(x2, p)Im (ψ

−

k (x, z)∂xψ
−
k (x, z)) dpdz.

(2.12)

Application of the subband decomposition method.

Using the subband decomposition method allows to reduce the dimensionality (and consequently
the cost of the numerical resolution) of the problems (2.5)-(2.6). In fact, this method consists in
expanding the waves functions ψ±

k in the L2(0, 1) orthonormal basis defined by the eigenfunctions
(χi)i≥1:

ψ±
k (x, z) =

+∞∑

i=1

φ±ki(x)χi(x, z).

7



Plugging this expression into the systems of equations (2.5)-(2.6), the two dimensional stationary
Schrödinger equation reduces to a one dimensional problem for the longitudinal waves φ±ki. The
system reads

−
d2

dx2
φ+ki(x)− 2

∞∑

j=1

aij(x)
d

dx
φ+ki(x)−

∞∑

j=1

(
bij +

2

~2
cij(Ek,1(p)− ǫj)

)
φ+ki(x) = 0,

−
d2

dx2
φ−ki(x)− 2

∞∑

j=1

aij(x)
d

dx
φ−ki(x)−

∞∑

j=1

(
bij +

2

~2
cij(Ek,2(p)− ǫj)

)
φ−ki(x) = 0.

In this system the coupling terms between different subbands are given by

aij =

∫ ℓ

0
χi(x, z)

∂

∂x
χj(x, z) dz, bij =

∫ ℓ

0
χi(x, z)

∂2

∂x2
χj(x, z) dz,

cij =

∫ ℓ

0
m∗χi(x, z)χj(x, z) dz.

This system is complemented with open boundary conditions. We refer interested readers to the
articles [25, 22] for more details.

2.3 Classical region

In the classical region, the transport is mainly driven by collisions. Then we use a fluid approxima-
tion. The transport is described by the stationary drift-diffusion equation for the subband on the
domain Ω = [0, x1] ∪ [x2, L]. It is a conservation law in which the current is the sum of a drift and
a diffusion current. It reads [21]:

−
d

dx
J(x) = 0, for x ∈ Ω, (2.13)

J(x) = D(
d

dx
Ns(x) + βNs(x)

d

dx
Us(x)), (2.14)

where Ns is the surface density, D is the diffusion coefficient. This coefficient is given by the
generalized Einstein rule D = µkBT where µ is the electron mobility. The effective energy Us takes
into account the confinement in the transversal direction; its expression has been derived in [7, 29]
and reads

Us = −kBT log

(
+∞∑

k=1

e−βǫk

)
. (2.15)

In this expression the physical constants are kB the Boltzmann constant, T the lattice temperature
and β = 1/(kBT ). The repartition function Z is defined by

Z(x) =
+∞∑

k=1

e−βǫk(x). (2.16)

It is well-known that the drift-diffusion system can be obtained by performing a diffusive limit
on the Boltzmann transport equation for semi-conductors assuming that the mean free path goes to
0 [26]. In this spirit, it has been proved in [29] that the above drift-diffusion system derives from
a Boltzmann transport equation for the subband. This latter system has been used in [5, 30] to
perform numerical simulations in nanoscale MOSFETs. We notice that by introducing the slotboom
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variable u(x) = Ns(x)/Z(x), the Fermi level is defined by ǫF (x) = kBT log(u(x)
n2d
i

) where n2di is the

two dimensional intrinsic density and the current (2.14) can be written:

J(x) = D(Z(x)
d

dx
u(x)). (2.17)

To complement this system we need to define boundary conditions. At the position x = 0 and
x = L, due to the high doping of these regions, the drain and the source contacts can be considered
as small electron reservoirs in which the surface density is constant in the vicinity of x = 0 and
x = L. Then we impose the Dirichlet boundary conditions:

Ns(0) = nD ; Ns(L) = nD, (2.18)

where nD is the given doping profile at the source and drain contact. The difficulty consists in
connecting the two open sets (0, x1) and (x2, L) thanks to interface connections. We will show
in §2.4 that imposing the continuity of the current in the device leads to the following interface
conditions:

J(x1) = J(x2) := J, (2.19)

u(x1)− u(x2) = n2di e
βǫF (x1) − n2di e

βǫF (x2) = θQJ, (2.20)

where the nonnegative number θQ depends on the reflexion and transmission coefficients; as it will
be detailed later its expression is given by

θQ =

(
e

m∗~

+∞∑

k=1

∫ +∞

0
pT 1

k (p)M(p)e−βǫk(x1) dp

)−1

, where M(p) =
1

π
e−βp2/(2m∗). (2.21)

Finally, the stationary problem defining the classical region is given by the system (2.13)-(2.14)
coupled with boundary conditions (2.18)-(2.19)-(2.20).

Knowing the surface density Ns and assuming to be at thermal equilibrium, the distribution
function in the classical region is given by the Maxwellian:

fk(x, p) = Ns(x)Mk(p) = u(x)Z(x)Mk(p) ; Mk(p) =
1

πZ
exp

(
−
βp2

2m∗
− βǫk(x)

)
. (2.22)

The Maxwellian M is normalized such that 1
~

∑
k

∫
R
Mk(p) dp = n1di where n1di = 2

√
m∗

2πβ~2
is the

one dimensional intrinsic density. The occupation number of the kth subband is given by

ρk(x) =
1

~

∫

R

fk(x, p) dp = n1di u(x)e
−βǫk(x).

Finally the total density of electrons in the classical region is given by

N(x, z) =

+∞∑

k=1

ρk(x)|χk(x, z)|
2 = n1di

Ns(x)

Z(x)

+∞∑

k=1

e−βǫk(x)|χk(x, z)|
2. (2.23)

This quantity will be injected in the right hand side of the Poisson equation (2.2) in the classical
region.
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2.4 Interface conditions

In this Section, we derive the interface conditions (2.19)–(2.20) and give an expression of the constant
θQ in these boundary conditions. In the previous work of Baro et al. [1], it has been observed that
interface conditions can be obtained by imposing the continuity of the current inside the device. In
fact, this property is important in such electronic devices [3, 1].

Proposition 2.1 Let us consider the domain (0, L) = Ω∪Σ, where the current is defined for x ∈ Σ
by (2.12) and for x ∈ Ω by (2.14). In these definitions ψ±

k solve (2.5)–(2.6) and Ns is a solution

of the drift-diffusion system (2.13). Then, if the connection conditions (2.19)–(2.20) at interfaces

x = x1 and x = x2 are satisfied with θQ given by (2.21), the current is continuous and constant in

(0, L).

Proof.

The current is constant. First, the stationary drift-diffusion system (2.13) verifies straight-
forwardly that the current is constant in the classical regions. Then, using expression (2.12) of JQ
we can show that the current in the quantum region is also constant. In fact, using the Schrödinger
equations for the wave functions ψ+

k (2.5) and ψ−
k (2.6), we have

∂xIm (ψ
±

k (x, z)∂xψ
±
k (x, z)) = Im (ψ

±

k (x, z)∂xxψ
±
k (x, z)) = −Im (ψ

±

k (x, z)∂zzψ
±
k (x, z)).

Then, integrating for z ∈ (0, ℓ), using an integration by parts and the confining boundary conditions
ψ±
k (x, 0) = ψ±

k (x, ℓ) = 0, we deduce

∫ ℓ

0
∂xIm (ψ

±

k (x, z)∂xψ
±
k (x, z)) dz = 0, (2.24)

since the imaginary part only holds on real numbers. Consequently, the current is constant in each
region of the device. Therefore it is continuous in the whole device providing the constant in each
region is the same.

Continuity in the classical region. Equation (2.19) implies that the constant value of the
classical current is the same in each classical region.

Continuity with quantum current. Then it is enough now to impose the equality of the
constant quantum current with the constant classical current. To do so, we first observe that with
the open boundary conditions in (2.5)–(2.6), we have

∫ ℓ

0
Im (ψ

±

k (x1, z)∂xψ
±
k (x1, z)) dz =

∫ ℓ

0
Im (ψ

±

k (x2, z)∂xψ
±
k (x2, z)) dz.

This latter equality and the definition of the reflexion and transmission coefficients allow to obtain
after integrating the quantum current JQ in (2.12) on [x1, x2]:

JQ =
e

m∗~

+∞∑

k=1

∫ +∞

0
(pT 1

k (p)fk(x1, p)− pT 2
k (p)fk(x2,−p)) dp. (2.25)

We recall the expression of the distribution function (2.22) rewritten using the Slotboom variable
u = Ns/Z:

fk(x, p) = u(x)M(p)e−βǫk(x) ; where M(p) =
1

π
e−βp2/(2m∗).
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Injecting this latter expression in the expression of the quantum current given in (2.25), we get after
a change of variable and using the reciprocity relations (2.8) and (2.9),

JQ = (u(x1)− u(x2))
e

m∗~

+∞∑

k=1

∫ +∞

0
pT 1

k (p)M(p)e−βǫk(x1) dp. (2.26)

Since we want that the constant JQ coincides with the constant J , from the definition of θQ in (2.21),
condition (2.26) rewrites as condition (2.20). It concludes the proof.

3 Numerical results

3.1 Algorithm

Let us introduce a discretization of the domain in the x direction [0, L] with a cartesian grid whose
nodes are denoted xi, i = 1, . . . , Nx, and a discretization of the domain in the z direction [0, ℓ]
by a cartesian grid with nodes zj , j = 1, . . . , Nz. The classical region is discretized with 2 × Nc

nodes, for xi = 1, . . . , Nc and xi = Nx − Nc + 1, . . . , Nx. Then, we mesh the domain [0, L] × [0, ℓ]
with rectangular triangles using the nodes (xi, zj) defined above. The one-dimensional Schrödinger
equations in the transversal direction z and the Poisson equation are discretized thanks to P 1 finite
elements. In the classical region, the one-dimensional drift-diffusion system is discretized thanks to
the Scharfetter–Gummel scheme as in [27, 11, 23]. In the quantum region, Schrödinger equations in
the transport direction (2.5)–(2.6) are treated with the WKB method presented in [8].

The algorithm consists in two main steps: firstly we compute the equilibrium when there is no
applied drain-source bias, secondly we consider the resolution of the whole system by incrementing
small drain-source bias from the equilibrium quantities.

At equilibrium, with no applied drain-source bias, the Fermi-level (or equivalently the slotboom
variable) is constant and is then determined by its value at the frontier. Therefore there is no
need to solve the equations in the transport direction in this case. Thus the problem boils down
to the resolution of the diagonalization of the 1D Schrödinger operator (2.1) coupled to the 2D
Poisson equation (2.2)–(2.3) where the density N is given in the classical region by (2.23), where u
is constant, and N is given in the quantum region by (2.11), where the distribution function fk in
this expression is at equilibrium and given by (2.22).

Once the equilibrium potential is computed, we increment the drain-source voltage by steps of
0.02 V. Then the Fermi level is not constant and we need to solve the whole system. To do so, we
consider the following Gummel iterative process:

1. For a given potential Vold (which initially is taken to be the computed equilibrium potential), we
solve the eigenvalues problems (2.1) where U = −eVold by diagonalization of the Hamiltonian
on each slice of the device (x = xi, i = 1, . . . , Nx). We obtain Nx sets of eigenvalues (ǫk(xi))k≥1

and eigenfunctions (χk(xi, z))k≥1 for i = 1, . . . , Nx.

2. We solve the problem in the quantum region by resolution of the problems (2.5)–(2.6). To do
so we use the SDM/WKB method which has been described in [8]. Then we have everything
at hand to compute the reflexion and transmission coefficients in the quantum region defined
in §2.2. A value of the coupling constant θQ is obtained from (2.21).

11



3. Knowing θQ, we can solve the 1D drift-diffusion system (2.13) with boundary conditions (2.18)–
(2.20) in the classical region. The Scharfettel-Gummel scheme is used for this resolution
[27, 11, 23].

4. An alimentation function fk can be computed with expression (2.22). Then, we compute the
total density of electrons thanks to (2.11) in the quantum region, and (2.23) in the classical
region.

5. The Poisson equation (2.2)–(2.3) is solved in the 2D computational domain. A new value of
the potential Vnew is obtained. In our algorithm, the Poisson equation is solved using the
preconditioned conjugate gradient method.

6. We repeat the last five steps with this new value of the potential until the error ‖Vnew−Vold‖L∞

is small enough.

3.2 Numerical simulations of a Double-Gate MOSFET

To illustrate our algorithm, we simulate the transport of charged carriers in a nanotransistor Double-
Gate MOSFET. In such a device, the active region where transport occurs is insulated from ohmic
contacts of the gates thanks to oxide layers. A strong barrier potential Uc at the oxide-silicon
interface implies a confinement in the direction z. Moreover, due to doping of the source and drain
region, collisions are important in these regions of the device, whereas in the channel between these
two regions, tunneling effects occur. Then the model presented above is relevant to simulate the
transport of charged carriers in this device.

The computational domain is (x, z) ∈ [0, L]× [0, ℓ]. The classical region is the union of the source
zone [0, x1] × [0, ℓ] and of the drain zone [x2, L] × [0, ℓ], with 0 < x1 < x2 < L. The length of the
source is then LS = x1; the length of the channel is denoted LC = x2 − x1; therefore the length of
the drain is LD = L − x2 (see Figure 3.2). We denote ℓGrid the length of the Gates. We will set
Σ = (x1, x2) and Ω = (0, L) \Σ. A Gate potential VG can be applied at the gate and a drain-source
VDS potential can be applied between the ohmic contacts of the drain and of the source. These
ohmic contacts define the part of the boundary ΓD where Dirichlet boundary conditions are used in
the Poisson equation (2.3): ΓD = ({0}∪{L})× [0, ℓ]∪ [L−ℓGrid

2 , L+ℓGrid

2 ]× ({0}∪{ℓ}). The remaining
boundary is ΓN where Neumann boundary conditions are used.

Source Drain

N
+

Si

N
+

Si

LS LC

Gate

Gate

VGS

Si

LD

VDS

ℓox

ℓox

ℓSi

SiO2

SiO2

x = Lx = 0

z = 0

z = ℓ

N
−

Figure 3: Schematic representation of a Double-Gate MOSFET.
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For the numerical simulations, we use the physical values gathered in table 1. Moreover, we take
Nx = 91 nodes, Nc = 21 nodes and Nz = 36 nodes. Finally, only a few number of eigenenergies
ǫk are used. In fact, the expression of the distribution function in (2.22) depends exponentially
of eigenenergies. The numerical results presented here have been obtained with 6 modes ǫk, k =
1, . . . , 6.

Table 1: Table of the main physical values

Parameter Value Length Value

N+ 1020cm−3 LS 4nm

N− 1015cm−3 LC 10nm

Uc 3 eV LD 4nm

εR[Si] 11.7 ℓox 1nm

εR[SiO2] 3.9 ℓSi 5nm

µ 0.12m2V −1s−1 ℓgrid 12nm

3.2.1 Results obtained with the hybrid approach

Figure 4 shows the electron density for a drain-source voltage VDS = 0V (left) and VDS = 0.4V
(right). In these simulations there is no applied Gate bias (VG = 0V ). Without applied voltage
(VDS = 0V ), the system is at equilibrium and we observe that the electron density is symmetric.
Applying a bias, the density does not remain symmetric. The electrons are drifted in the direction
of lower potential energy and accumulate in the drain region. It points out the transport of electrons
in the device. We make the same observation in Figure 5, where we display the potential energy U
when there is no applied drain-source voltage (left) and for VDS = 0.4V (right).

Figure 4: Electron density (m−3) for VG = 0 V at equilibrium (left) and for VDS = 0.4 V (right).

In Fig.6, 1D profiles of the surface electron density (left) and of the potential energy (right) are
presented for VDS = 0.4V with different gate voltages. These 1D curves are averaged quantities
resulting from an integration of the 2D quantities over the transversal section. For VG = −0.1V , the
transport is mainly controlled by the gate: the potential inside the channel has the same value than
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Figure 5: Potential energy (eV) for VG = 0 V at equilibrium (left) and for VDS = 0.4 V (right).

VG. As VG increases, the density inside the channel and consequently the electron transport also
increases. However, for large VG, the action of the gate is less pronounced and the potential inside
the channel does not reach the gate value.

Figure 6: Surface electron density (m−2) (left) and potential energy (eV) (right) for VDS = 0.4 V
and different gate voltages VG.

The current-voltage characteristics are given in Figure 7. Figure 7-left displays the current vs
drain-source applied bias. Figure 7-right displays in semilog scale the current vs VG. As it was
announced by Fig.6, the current increases with the gate voltage VG.

3.2.2 Comparison of the three approaches

Now, we shall compare three different approaches (classical, quantum and hybrid). In each case,
the subband decomposition method is used to split the transport and the confining direction. In
the transversal direction, electrons are always described by a statistical mixture of eigenstates of
the Schrödinger operator. It is the strategy used to describe the electron motion in the transport
direction that is changed. More precisely, the hybrid approach described in this paper (dashed
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Figure 7: Current-Voltage characteristics as a function of VDS (left) and of VG (right).

yellow curves in Figs. 8-10) is compared with the fully quantum model [25, 8] (dotted red curves)
and with the quantum-diffusive approach [23] consisting in using the drift-diffusion model in the
entire transport domain [0,L] (dashdotted blue curves).

Since the 2D profils of the electron density and of the potential are almost similar between
the three approaches, we prefer to present the 1D averaged quantities in order to emphasize the
differences. In Fig.8-left, the surface electron density is presented at equilibrium for VG = 0V . For a
better visualization, it is also interesting to look at its inverse (Fig.8-left). Clearly, we recover that
the hybrid approach matches with the drift-diffusion one at reservoirs (source and drain regions).
On the contrary, inside the active zone, where quantum effects are predominant, the results obtained
with the coupling approach tend to reach the fully quantum ones. The same behavior is observed
in Fig.9 where the inverse of the surface density (left) and the potential energy (right) are plotted
for VDS = 0.4V .

Figure 8: Surface electron density (m−2) (left) and its inverse (right) at equilibrium for VG = 0 V .

Finally, the current-voltage characteristics are compared in Figure 10 (current vs VDS in the
left and current vs VG in the right). With a coupling approach, the electron transport is strongly
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Figure 9: Inverse of the surface electron density (m2) and potential energy (eV ) (right) for VDS =
0.4 V and VG = 0 V .

affected not only by collisions at reservoirs but also by quantum effects inside the channel. It seems
relevant to observe an intermediate current value.

Figure 10: Comparison of the current-Voltage characteristics between the three approaches as a
function of VDS for VG = 0 V (left) and of VG for VDS = 0.4 V (right).

3.2.3 Interface positions

Finally, we study the influence of the interface positions for the coupling approach. In the previous
simulations, the interfaces x1 and x2 are located at the doping discontinuities (4 nm far from the
boundaries). It is called “no shift” case in the sequel. In Figs.11-12, the two interfaces are moved
at the same time of 0.2 or 0.4 nm, either inside or outside the channel. The inverse of the density is
reported in Fig.11 at equilibrium (left) and for VDS = 0.4V (right) for VG = 0V . We recall that the
interface conditions (2.19)-(2.20) are built preserving the current continuity. Consequently, density
discontinuity may occur at interfaces, as observed in Fig.11.
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Figure 11: Inverse of the electron density (m2) at equilibrium (left) and for VDS = 0.4 V (right) for
VG = 0 V obtained with the hybrid approach moving the interfaces.

The current-voltage characteristics are presented in Fig.12. When the quantum zone is reduced
(interfaces moved inside the channel), the current value gets closer to the one obtained with the
full drift-diffusion model, and inversely. We point out that a similar dependence on the interface
position occurs for different gate voltages.

Figure 12: Current-Voltage characteristics for VG = 0 V obtained with the hybrid approach moving
the interfaces.

4 Conclusion

A numerical model describing the confined transport of electrons in a nano DG-MOSFET has been
presented. This model couples a classical description at diffusive regime in the exterior reservoirs
with a purely quantum description in the active zone. This coupling occurs in the transport direction
whereas particles are confined in the transverse direction. More precisely, the drift-diffusion-Poisson
system is coupled to the Schrödinger-Poisson system through interface conditions in the transport
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direction. The quantum direction is modeled thanks to the subband decomposition method. Nu-
merical simulations for a DG-MOSFET are provided.

Several extensions of this work can be considered. First, concerning numerical simulations of
the DG-MOSFET considered in this work, several models describing the transport in the collisional
region in the channel have been proposed depending on the accuracy of the collision description.
Actually a hierarchy of models for confined electrons has been proposed in [6] where the classical
transport is modeled by the Boltzmann transport equation at the mesoscopic level of description.
From this kinetic model, assuming that elastic collisions are dominant, the Boltzmann transport
equation can be approximated by the spherical harmonic expansion (SHE) model. Assuming then
that electron-electron scattering is dominant, the latter system can be approximated by the energy-
transport (ET) model. Thus an extension of this work consists in adapting our coupling strategy to
this hierarchy of model. A first step consists in deriving coupling conditions for the SHE and ET
model in the fully classical case. It is the topic of the recent work [18].

Furthermore, the approach used in this paper can also be applied to other devices for which an
electron gas is confined in one or several directions and where the ballistic transport is located in a
well localized region of the device. For instance, a similar hybrid strategy has been applied in [17]
in the framework of strongly confined nanostructures (like nanowires or nanotubes) using models
that take into account the peculiarities due to the two dimensional transversal crystal structure. In
this work, numerical simulations of a gate-all-around Carbon Nanotube Field-Effect Transistor are
presented.
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