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Abstract: In control related studies, convex liftings have been of use to solve inverse parametric
linear/quadratic programming problem. This paper presents a so-called convex liftings based method
for robust control design of constrained linear systems affected by bounded additive disturbances. It will
be shown that a geometrical construction as convex lifting can be used in optimization-based control
design to guarantee robust stability and recursive feasibility in a given controllable region of the state
space. Finally, a numerical example will be considered to illustrate this method.

1. INTRODUCTION

Robust control plays an important role in control theory. In
particular, for constrained discrete-time linear systems, robust
control design in the presence of bounded additive disturbances
and/or polytopic uncertainty, has been of interest in countless
studies. Different design techniques have been put forward as
in Kothare et al. [1996], Scokaert and Mayne [1998], Mayne
et al. [2005], Rakovic et al. [2012], Bemporad et al. [2003],
Grancharova and Johansen [2012], Gutman and Cwikel [1987],
Blanchini [1994, 1995], Nguyen [2014], etc.

Linear matrix inequality (LMI) has been early applied in model
predictive control (MPC), in Kothare et al. [1996] to design ro-
bust controller in the presence of polytopic model uncertainties.
This method requires at each sampling time solving a com-
putationally demanding LMI problem. Subsequently, based on
dynamic programming, min-max optimization based method
in Scokaert and Mayne [1998] has solved an MPC problem
for discrete-time, linear invariant systems subject to bounded,
additive disturbances. This method aims to minimize at each
sampling instant, the worst case of cost function, subject to
exponentially increasing set of constraints once the prediction
horizon increases. Later, it is shown that a robust linear MPC
problem can be alternatively solved via parametric convex pro-
gramming to design explicit robust control in the presence of
bounded additive disturbances and polytopic model uncertain-
ties, see e.g. Bemporad et al. [2003]. Also, approximation of
robust explicit control laws for nonlinear MPC in the presence
disturbances has been studied in Grancharova and Johansen
[2012]. On the other hand, tube based MPC has been originated
in Mayne et al. [2005] and developed in Rakovic et al. [2012],
providing new insight in robust control design. Another line
of robust control was originated in Gutman and Cwikel [1987]
based on positively invariant sets and has bloomed via different
studies e.g. Blanchini [1994], Nguyen [2014] showing their
simple formulations and easy implementations.

In the same line with the last studies, this paper introduces
another approach based on convex liftings which can serve as
Lyapunov functions. This method will be proved to guarantee
the recursive feasibility and closed loop stability. In terms
of implementation, it only requires solving a simple linear
programming problem at each sampling instant.

Convex liftings have been used in studies related to structural
properties of parametric convex programming based control
laws. To our best knowledge, the present approach is the first
attempt to use convex lifting as a direct design method.

Notation

Throughout this paper, N,N>0,R,R+ denote the set of non-
negative integers, the set of strictly positive integers, the set
of real numbers and the set of non-negative real numbers,
respectively. For ease of presentation, with a given N ∈ N>0,
by IN , we denote the index set: IN = {i ∈ N>0 | i ≤ N} .
A polyhedron is the intersection of finitely many halfspaces. A
polytope is a bounded polyhedron. If P is an arbitrary polytope,
then by V(P ), we denote the set of its vertices. If S is a finite
set, then conv(S) denotes the convex hull of S. Also, for a given
set S, by int(S), we denote the interior of S. Further, we use
dim(S) to denote the dimension of its affine hull.

Given a set S ⊂ Rd and a matrixA ∈ Rd×d, thenAS is defined
as follows: AS = {As | s ∈ S} .
Given two sets S1,S2 ⊂ Rd, their Minkowski sum is denoted
by S1 ⊕ S2 and is defined by:

S1 ⊕ S2 =
{
x ∈ Rd | ∃y1 ∈ S1, y2 ∈ S2 s.t. x = y1 + y2

}
.

Also, S1\S2 is defined as follows:

S1\S2 :=
{
x ∈ Rd | x ∈ S1, x /∈ S2

}
.

Further, given two different points x, y ∈ Rd, we use ρ(x, y) to
denote the Euclidean distance between x and y. If y = 0, this
distance is briefly written by |x|. Moreover, given a setA ⊂ Rd
and a point x ∈ Rd, we denote ρA(x) = infy∈A ρ(x, y). It
is clear that if x ∈ A, then ρA(x) = 0. The distance from a
point to a set is also known as the Hausdorff distance and can
be understood as a particular case of the distance between two
sets.

This paper is organized in five sections. The problem statement
is presented in Section 2. Our main results will be introduced in
Section 3. An illustrative example will be considered in Section
4. The final section summarizes the contribution of the present
paper.



2. PROBLEM SETTING

In this paper, we concentrate on the class of discrete-time linear
invariant systems, affected by bounded additive disturbances:

xk+1 = Axk +Buk + wk, (1)
where xk, uk denote the state, control variables at time k, wk
stands for the disturbance at time k. The state, control variables
and the disturbances are subject to constraints:

xk ∈ X ⊂ Rdx , uk ∈ U ⊂ Rdu , wk ∈W ⊂ Rdx , (2)
where dx, du ∈ N>0, X,U,W are polytopes. It is assumed that
X,U,W contain the origin in their interior.

The aim is to find a state feedback control law which exhibits
robustness with respect to additive disturbances such that the
closed loop is robustly stable. It is clear that if disturbancewk is
unknown for the computation of control action at instant k, one
cannot expect to be able to guarantee the asymptotic stability of
the origin. The asymptotic stability is replaced with an ultimate
boundedness notion Khalil [2002], Kofman et al. [2007]. The
following classical assumption is necessary for the existence of
stabilizing control laws.
Assumption 2.1. The pair (A,B) is stabilizable and full-state
measurement is available for control.

3. CONVEX LIFTINGS BASED CONTROL DESIGN

3.1 Disturbance invariant sets with respect to a stabilizing
control law

Positively invariant sets have been studied over three decades.
Due to their relevance in control theory, they turn out to be
of help in many control related studies e.g. Bitsoris [1988],
Blanchini and Miani [2007], Rakovic et al. [2012], Nguyen
[2014],

In particular, disturbance invariant sets are meaningful in robust
control design for system (1). Some remarkable results on the
structure, properties and algorithms for positively invariant sets
can be found in Kolmanovsky and Gilbert [1998], Rakovic et al.
[2005, 2004].

The definition of a positively invariant set for linear system (1)
is recalled below.
Definition 3.1. Given the dynamic system (1) subject to con-
straints (2), with respect to Assumption 2.1, a set Ω is called
positively invariant with a linear control law uk = Kxk ∈ U if
and only if (A+BK)Ω⊕W ⊆ Ω.

Such an Ω defined in Definition 3.1 is alternatively called
disturbance invariant set. Algorithms for approximating max-
imal and minimal disturbance invariant sets can be found in
Kolmanovsky and Gilbert [1995, 1998], Rakovic et al. [2005],
Gilbert and Tan [1991]. It will be considered in the develop-
ments, presented next, that such approximations are available
for control design.

Also, for the linear system (1) satisfying Assumption 2.1, it
is easy to find a linear stabilizing state feedback uk = Kxk
via the solution of the Riccati equation with a pre-chosen,
positive semidefinite weighting matrices, Q,R. The influence
of disturbances can be taken into account in the design of
unconstrained stabilizing linear feedback Boyd et al. [1994].

Note that in the presence of persistent disturbances, Ω is con-
sidered as a full-dimensional set. Otherwise, if system (1) is not

affected by additive disturbances and/or is subject to polytopic
model uncertainties, Ω = {0} can also be chosen. However,
these cases are beyond the scope of this paper.

3.2 Domain of attraction

A domain of attraction is known to be a subset of all points
which can be driven to a target set. To guarantee the conver-
gence to a disturbance invariant set Ω, a domain of attraction
denoted by X , should ensure that for any point belonging to X ,
there always exists control law satisfying constraint (2), which
steers the state to Ω. The following definition of a contractive
set, inherited from Definition 2.5 in Blanchini [1994], is of help
for our development.
Definition 3.2. Given λ, 0 ≤ λ ≤ 1, a set S is called
λ−contractive if for any x ∈ S ⊆ X, there exists u(x) ∈ U
such that (Ax+Bu(x))⊕W ⊆ λS. If λ = 1, S is said control
invariant.

According to Blanchini [1994], the maximal λ−contractive
set, denoted by Pλ, is defined as the set containing all
λ−contractive sets for system (1) subject to constraint (2). A
computation of this set is recalled as follows.
S1 = X,
Si+1 = {x ∈ X | ∃u(x) ∈ U, s.t.

(Ax+Bu(x))⊕W ⊆ λSi} , for i ∈ N>0,

Pλ = S∞.

Details about algorithms for computation of Pλ can be found
in Blanchini [1994], Kerrigan [2001]. For our development, we
will use the maximal λ−contractive set Pλ for 0 ≤ λ < 1, as a
domain of attraction; i.e. X = Pλ.

3.3 Convex lifting construction

Convex lifting is in principle a purely geometrical notion. In
control theory, the optimal cost function to a parametric linear
programming problem, known as a convex lifting, is used to
facilitate the implementation of explicit control laws, see e.g.
Baotic et al. [2008], Jones et al. [2006]. Subsequently, it has
been of use to solve inverse parametric linear/quadratic pro-
gramming problem in Nguyen et al. [2014b,a, 2015]. It is worth
stressing that the term ”convex function” deployed in Hempel
et al. [2013, 2015] completely differs from a convex lifting
defined here. Before recalling its definition, some additional
notation will be introduced.
Definition 3.3. A collection of N ∈ N>0 full-dimensional
polyhedra denoted as {Xi}i∈IN , is called a polyhedral partition
of a polyhedron X ⊆ Rdx if:

•
⋃
i∈IN Xi = X .

• int(Xi)
⋂

int(Xj) = ∅ with i 6= j, (i, j) ∈ I2
N ,

Also, (Xi,Xj) are called neighbours if (i, j) ∈ I2
N , i 6= j and

dim(Xi∩Xj) = dx−1. Also, ifX is a polytope, then {Xi}i∈IN
is called a polytopic partition.
Definition 3.4. For a given polyhedral partition {Xi}i∈IN of a
polyhedron X ⊆ Rdx , a piecewise affine lifting is described by
the function z : X → R with:

z(x) = aTi x+ bi for any x ∈ Xi, (3)
and ai ∈ Rdx , bi ∈ R, ∀i ∈ IN .



Definition 3.5. Given a polyhedral partition {Xi}i∈IN of a
polyhedron X ⊆ Rdx , a piecewise affine lifting z(x) =
aTi x + bi for x ∈ Xi, is called convex lifting if the following
conditions hold true:

• z(x) is continuous over X ,
• for each i ∈ IN , z(x) > aTj x+ bj for all x ∈ Xi\Xj and

all j 6= i, j ∈ IN .

It is clear that a given polyhedral partition has to satisfy some
conditions for the existence of a convex lifting. Interested
readers can find a summary of existence conditions in Rybnikov
[2000], Nguyen et al. [2014b].

We present now an algorithm for the construction of a convex
lifting which will be of use later in the proposed control law
design as a Lyapunov function. This convex lifting denoted as
`(x), is defined over a domain of attraction X . Recall that in
this paper, as discussed in Section 3.2, we choose the maximal
λ−contractive region Pλ, for a given 0 ≤ λ < 1 as a domain
of attraction.

Algorithm 1 Construct a convex lifting
Input: A given positively invariant set Ω ⊂ Rdx , the domain
of attraction X = Pλ ⊂ Rdx with a given 0 ≤ λ < 1 and a
scalar a > 0.
Output: A convex lifting `(x) such that `(x) = 0 for every
x ∈ Ω.

1: V1 = V(Ω), V̂1 =

{[
x
0

]
| x ∈ V1

}
⊂ Rdx+1.

2: V2 = V(X ), V̂2 =

{[
x
a

]
| x ∈ V2

}
⊂ Rdx+1.

3: Π = conv(V̂1

⋃
V̂2).

4: Solve the parametric linear programming problem:

z∗(x) = min
z
z s.t.

[
xT z

]T ∈ Π. (4)

5: `(x) = z∗(x) = aTi x+ bi for x ∈ Xi.

Steps 1-2 in Algorithm 1 aim to lift the vertices of Ω,X to
Rdx+1 with appropriate heights. Namely, the vertices of Ω
are lifted with heights equal to 0, whereas the vertices of X
are lifted with heights equal to the given a > 0. Also the
convex lifting `(x) is generated from the parametric linear
programming problem (4). The following observation describes
the properties of such an `(x), generated from Algorithm 1.
Lemma 3.6. The function `(x) over X , generated from Algo-
rithm 1, is continuous, non-negative and convex. Also, `(x) = 0
for every x ∈ Ω and `(x) > 0 for any x ∈ X\Ω.

Proof. The continuity and convexity of `(x) can be easily
derived from Theorem IV.3 in Gal [1995].

The second statement is deduced from the construction in step
1. Indeed, consider x ∈ Ω, then x can be written as a convex
combination of the vertices of Ω as: x =

∑
v∈V1

α(v)v with
α(v) ≥ 0 and

∑
v∈V1

α(v) = 1. It is known that `(x) over Ω is
an affine function, then `(x) = aTi x + bi leads to `(x) = 0 for
every x ∈ Ω.

To complete the proof, we need to show that `(x) is a non-
negative function. Indeed, as shown above, `(x) = aTi x +
bi = 0 for every x ∈ Ω, then due to the full dimension of
Ω, ai = 0, bi = 0. By the definition of a convex lifting, `(x)

is a piecewise affine function, thus over a region Xj , one has
`(x) = aTj x+ bj for every x ∈ Xj . This satisfies the convexity
condition for Xj 6= Ω (Xi = Ω):

aTj x+ bj > aTi x+ bi = 0, for every x ∈ Xj\Xi,
aTj x+ bj = aTi x+ bi = 0, for every x ∈ Xj ∩ Xi.

The same inclusion for the other affine functions of `(x), leads
to the non-negativity of `(x). Moreover, `(x) > 0 for every
x ∈ X\Ω. The proof is complete. 2

A simple consequence of the above lemma can be deduced as
follows.
Lemma 3.7. For any x ∈ X and 0 ≤ β ≤ 1, `(βx) ≤ β`(x).

Proof. Due to the convexity of `(x) over X as proved in
Lemma 3.6, we obtain

`(βx+ (1− β)0) ≤ β`(x) + (1− β)`(0).

Due to the assumption that 0 ∈ int(W), then 0 ∈ int(Ω),
meaning that `(0) = 0. This inclusion and the above one imply
that `(βx) ≤ β`(x). 2

3.4 Robust control law design procedure

The present subsection introduces the procedure for designing
robust control laws based on convex liftings. Accordingly, some
definitions of stability are recalled. They will be of use in the
context of stability guaranteed by the proposed procedure. First,
the fundamental definition of stability for nominal dynamics
plays an important role for the extension of stability in the
presence of disturbances.
Definition 3.8. For a discrete-time autonomous system xk+1 =
f(xk), xk ∈ Rdx , dx ∈ N>0,where f : Rdx → Rdx is a locally
Lipschitz function and f(0) = 0, the origin is called stable in
the sense of Lyapunov if for any ε > 0 there exists a δ > 0 such
that:

|x0| ≤ δ ⇒ |xk| ≤ ε ∀k ≥ 0

Also, the origin is called asymptotically stable if it is stable and
limk→∞ |xk| = 0.

Based on the above definition, a definition of robust stability
for a discrete time-invariant system in the presence of bounded
disturbances

xk+1 = f(xk, wk), f : X ×W→ X , (5)
is presented below with respect to a positively invariant set
denoted by Ω.

Definition 3.9. System (5) is called robustly stable with respect
to a positively invariant set Ω and a domain of attraction X if
for any ε > 0 and x0 ∈ X\Ω, there exists a T ∈ N>0 satisfying
ρΩ(xk) ≤ ε for every k ≥ T, wt ∈W, t ≥ 0.

Many design methods rely on suitable Lyapunov functions to
guarantee closed loop stability. Robust stability in the sense
of Lyapunov, is recalled below for the particular case of linear
systems.
Definition 3.10. Given a positively invariant set Ω, let us con-
sider the linear system (1) subject to constraints (2) and a
control law u = κ(x) ∈ U. The closed loop is called robust
stable if there exists a Lyapunov function V (x) : X → R+ and
an α ∈ [0, 1) such that:

V (Ax+Bκ(x) + w)− αV (x) ≤ 0, (6)
for all w ∈W and x ∈ X\Ω.



We now present a procedure based on convex lifting, con-
structed in Algorithm 1, for robust control design. This pro-
cedure is summarized via Algorithm 2.

Algorithm 2 Robust control design procedure based on convex
liftings
Input: A convex lifting `(x) = aTi x + bi for x ∈ Xi, i ∈ IN
as in Algorithm 1. A positively invariant set Ω associated with
a stabilizing control law u = Kx over Ω.
Output: Control law u∗(xk) at each sampling time.

1: Compute `(xk).
2: If xk ∈ Ω then u∗(xk) = Kxk, jump to Step 6.
3: Else Solve the following linear programming problem:[

α∗ (u∗k)T
]T

= arg min
[α uT

k ]
T
α

s.t. aTi (Axk +Buk + wk) + bi ≤ α`(xk)

α ≥ 0, uk ∈ U, ∀i ∈ IN ,∀wk ∈ V(W).

(7)

4: Apply u∗(xk) = u∗k
5: End
6: k ← k + 1, return to Step 1.

Remark 3.11. Note that the task of verifying whether or not xk
belongs to Ω in Step 2, can be easily carried out by check-
ing whether or not `(xk) = 0. This property is due to the
construction of a convex lifting in Algorithm 1. Therefore, it
is not necessary to store the constraints describing Ω in the
implementation.

Natural questions arise here whether or not the linear program-
ming problem (7) is feasible and whether closed loop stability
is guaranteed by the proposed procedure. These questions are
answered via the following theorem. Accordingly, we show
that convex lifting constructed in Algorithm 1 can serve as
a Lyapunov function. Thus the proposed control design can
guarantee the robust stability as per Definition 3.10.
Theorem 3.12. Given a positively invariant set Ω associated
with a robust stabilizing control law gain K, and a domain
of attraction X = Pλ for a given 0 ≤ λ < 1, if xk ∈ X ,
then the linear programming problem (7) is recursively feasible.
Furthermore, the closed loop is robustly stable in the sense of
Lyapunov.

Proof. As for the feasibility of (7), one can easily see that
0 ≤ `(x) ≤ a by the construction in Algorithm 1. Therefore,
due to the contractivity of X , for any xk ∈ X there always
exists u∗(xk) ∈ U such that:Axk+Bu∗(xk)+wk ∈ λX ⊂ X
for all wk ∈W, therefore

`(Axk +Bu∗(xk) + wk) ≤ a, for every wk ∈W.

Due to this boundedness, the recursive feasibility of the linear
programming problem (7) is ensured for a large enough gain α
at each sampling time.

As for robust stability, we will prove that
`(Axk +Bu∗(xk) + wk) < `(xk) for every wk ∈W.

Indeed, due to the contractivity of X , for any v ∈ V(X ), there
exists a control law, denoted by u(v) ∈ U such that Av +
Bu(v) + wk ∈ λX despite the disturbances wk ∈ W. For
each wk ∈W, there exists y(wk) ∈ X such thatAv+Bu(v)+
wk = λy(wk). Due to Lemma 3.7, this inclusion leads to

`(Av +Bu(v) + wk) = `(λy(wk)) ≤ λ`(y(wk)) (8)

Due to the construction of `(x) in Algorithm 1, we obtain
`(y(wk)) ≤ a. (9)

Also, according to Algorithm 1,
`(v) = a. (10)

From (8), (9), (10), we can deduce that
`(Av +Bu(v) + wk) ≤ λ`(v). (11)

Note that (11) holds for every wk ∈ W. Moreover, it can be
observed that:
`(Av+Bu∗(v)+wk) ≤ `(Av+Bu(v)+wk),∀wk ∈W. (12)

(11), (12) lead to the following fact:
`(Av +Bu∗(v) + wk) ≤ λ`(v), ∀wk ∈W. (13)

Note that (13) holds true for any vertex of X . Now, consider
a point xk ∈ Xi in the polytopic partition {Xi}i∈IN of X
over which `(x) is defined. Without loss of generality, suppose
Xi 6= Ω, then xk can be described via a convex combination of
the vertices of Xi, meaning:

xk =
∑

v∈V(Xi)

α(v)v, where α(v) ∈ R+,
∑

v∈V(Xi)

α(v) = 1.

Recall that due to the definition of convex lifting, `(x) over Xi
is an affine function, then `(xk) can be written in the following
form:

`(xk) =
∑

v∈V(Xi)

α(v)`(v). (14)

If v ∈ V(Xi) is a vertex of Ω, then due to the positive invariance
of Ω with respect to a linear feedback u∗(x) = Kx, it satisfies
`(v) = 0 = `((A+BK)v + wk) for every wk ∈W. (15)

Otherwise, if v ∈ V(Xi) is a vertex of X , then it satisfies (13).
Therefore, due to the convexity of `(x) proved in Lemma 3.6
and (13), (14), (15), the following is obtained:

λ`(xk) =
∑

v∈V(Xi)

α(v)(λ`(v))

≥
∑

v∈V(Xi)

α(v)`(Av +Bu∗(v) + wk)

≥ `(A
∑

v∈V(Xi)

α(v)v +B
∑

v∈V(Xi)

α(v)u∗(v) + wk)

= `(Axk +B
∑

v∈V(Xi)

α(v)u∗(v) + wk).

(16)
Recall that u∗(v) ∈ U, ∀v ∈ V(Xi)∩V(X ) and u∗(v) = Kv ∈
U, ∀v ∈ V(Xi) ∩ V(Ω), then it follows that∑

v∈V(Xi)

α(v)u∗(v) ∈ U. (17)

Therefore, (17) leads to:

`(Axk+B
∑

v∈V(Xi)

α(v)u∗(v)+wk) ≥ `(Axk+Bu∗(xk)+wk).

(18)
From (16) and (18), the following inclusion can be obtained:

λ`(xk) ≥ `(Axk +Bu∗(xk) + wk), ∀wk ∈W. (19)
Recall that 0 ≤ λ < 1, therefore

`(xk) > `(Axk +Bu∗(xk) + wk), ∀wk ∈W, (20)
meaning {`(xk)}∞k=0 is a strictly decreasing series and bounded
in the interval [0, a] . Thus, this series is convergent to 0. In
other words, `(x) serves as a Lyapunov function, defined in
Definition 3.10. 2



Note that in order to reduce the impact of the disturbances, Ω
can be chosen as the minimal positively invariant set, approxi-
mated in e.g. Rakovic et al. [2005].
Remark 3.13. Note that by the construction, the partition as-
sociated with a convex lifting in Algorithm 1, may not be a
decomposition of simplexes (e.g. triangles in R2). The design
method in this paper does not rely on such a decomposition,
but relies on a continuous, convex function, defined over such
a decomposition. This approach is simple and needs only to
solve a linear programming problem at each sampling instant.
However, the associated control law is not continuous at the
moment the state switches into Ω (see step 2 of Algorithm 2).
As a future research problem, it would be interesting to relate
convex lifting with the continuity of control function.
Remark 3.14. Another open problem is to guarantee closed-
loop stability of the proposed method for a domain of attraction
as the N−step robust controllable set denoted e.g. by KN (Ω),
presented via Definition 2.9 in Kerrigan [2001]. Note that in this
case, proving the strict decrease of `(x) becomes more difficult.
Also, this strict decrease may not be successive.
Remark 3.15. Unlike the proposed method, another design
methodology, based on a triangulation of KN (Ω)\Ω into a
Delaunay decomposition, can be found in Scibilia et al. [2009]
(persistent disturbances were not taken into account in this
study). This method approximates optimal solution to an MPC
problem via a piecewise affine function defined over such a
Delaunay decomposition. Moreover, another approach based
on the interpolation of the exact control action at the vertices
of the domain of attraction and a local control law over the
unconstrained region, is presented in Nguyen et al. [2013]. This
method introduces a discontinuous Lyapunov-like function.
Whereas, this paper presents a continuous Lyapunov function.

4. NUMERICAL EXAMPLE

For illustration, the double integrator system is considered:

xk+1 =

[
1 0.5
0 1

]
xk +

[
0.125
0.5

]
uk + wk

yk = [1 0]xk,

(21)

subject to constraints:

−2 ≤ uk ≤ 2,

[
−5
−20

]
≤ xk ≤

[
5
20

]
, ‖wk‖∞ ≤ 0.4.

A control law gain K = [−0.6514 − 1.3142] is chosen to
compute the maximal disturbance invariant set Ω based on
the algorithm proposed in Gilbert and Tan [1991]. Also, the
maximal 0.9−contractive set P0.9 is computed, based on the
algorithm in Blanchini [1994]. These two sets are shown in
Fig. 1. A convex lifting `(x) is shown in Fig. 2 according
to Algorithm 1 with a = 2. Optimal controller which solves
the linear programming problem (7), is presented in Fig. 3.
Accordingly, the discontinuous change of u∗(xk) at instant
12 is due to the discontinuity of optimal control to (7) while
switching into Ω. The closed loop dynamics shown in Fig.
4 illustrate the fact that this control law ensures the robust
stability in the sense of Lyapunov. Finally, Fig. 5 visualizes the
strict decrease of convex lifting `(x) along the state over X\Ω.

Algorithm 1 is carried out in the environment of MPT 3.0
Herceg et al. [2013].

Fig. 1. The maximal disturbance invariant set Ω and domain of
attraction X = P0.9.

Fig. 2. A convex lifting `(x) constructed in Algorithm 1 with
a = 2.

Fig. 3. Optimal control law solves the linear programming
problem (7) with random behavior of disturbances.

Fig. 4. Closed loop stability.

5. CONCLUSION

This paper presents a new method to design robust control
law for constrained linear system affected by bounded additive
disturbances. This method is based on convex liftings. It is
shown to guarantee the recursive feasibility and also closed
loop stability in the sense of Lyapunov.



Fig. 5. The strict decrease of `(x) over X\Ω along the state.
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