
HAL Id: hal-01159841
https://hal.science/hal-01159841v1

Submitted on 9 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Privacy-Preserving Multiple Keyword Search on
Outsourced Data in the Clouds

Tarik Moataz, Benjamin Justus, Indrakshi Ray, Nora Cuppens-Bouhlahia,
Frédéric Cuppens, Indrajit Ray

To cite this version:
Tarik Moataz, Benjamin Justus, Indrakshi Ray, Nora Cuppens-Bouhlahia, Frédéric Cuppens, et al..
Privacy-Preserving Multiple Keyword Search on Outsourced Data in the Clouds. DBSec 2014 : the
28th Annual IFIP WG 11.3 Working Conference on Data and Applications Security and Privacy, Jul
2014, Vienne, Austria. pp.66-81, �10.1007/978-3-662-43936-4_5�. �hal-01159841�

https://hal.science/hal-01159841v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Privacy-Preserving Multiple Keyword Search on
Outsourced Data in the Clouds?

Tarik Moataz1,2, Benjamin Justus2, Indrakshi Ray1, Nora Cuppens-Boulahia2,
Frédéric Cuppens2, and Indrajit Ray1

1 Computer Science Department, Colorado State University, Fort Collins, USA
{tmoataz, indrajit, iray}@cs.colostate.edu

2 Institut Mines-Télécom, Télécom Bretagne, Cesson Sévigné, France
{benjamin.justus, nora.cuppens, frederic.cuppens}@telecom-bretagne.eu

Abstract. Honest but curious cloud servers can make inferences about
the stored encrypted documents and the profile of a user once it knows
the keywords queried by her and the keywords contained in the doc-
uments. We propose two progressively refined privacy-preserving con-
junctive symmetric searchable encryption (PCSSE) schemes that allow
cloud servers to perform conjunctive keyword searches on encrypted doc-
uments with different privacy assurances. Our scheme generates random-
ized search queries that prevent the server from detecting if the same set
of keywords are being searched by different queries. It is also able to hide
the number of keywords in a query as well as the number of keywords
contained in an encrypted document. Our searchable encryption scheme
is efficient and at the same time it is secure against the adaptive chosen
keywords attack.

1 Introduction

Data is often stored in an encrypted form in the clouds for security and privacy
reasons. If the volume of the stored data stored is large, it may be infeasible
for the client to download the encrypted data, decrypt them locally, and search
for the relevant documents. Consequently, researchers have proposed search-
able encryption schemes to perform searches on encrypted documents stored
in the clouds. Such schemes allow cloud servers to retrieve multiple encrypted
documents in response to a client’s queries which may be keywords search or
numerical range queries. Efficiency of such techniques, which impact the query
response time, is critical. Moreover, protecting the privacy of the client against
honest but curious servers is also important.

Researchers have proposed schemes that permit exact keyword search on
encrypted documents [10, 11] as well as conjunctive keyword search (please see
Section 2). However, existing conjunctive keyword search schemes do not provide
adequate levels of privacy. Often times, the server is aware of the number of

? This work was partially supported by the U.S. National Science Foundation under
Grant No. 0905232

keywords contained in a document and the number of keywords in a query.
Moreover, in these schemes, search on identical set of keywords result in the
same encrypted query. An honest but curious cloud server may become aware
of the client’s search information and gain knowledge about her profile. Such
information when correlated with the additional knowledge possessed by the
server may constitute a serious privacy leakage. We propose a privacy-preserving
approach that protects against such information leakage without increasing the
search and storage complexities but at the cost of two rounds of protocol.

We motivate our approach by using a simple example based on exact key-
word search. Each document stored in the server is associated with a bit vector
whose size depends on the number of keywords in the dictionary. The index i on
the vector corresponds to the ith keyword in the dictionary. A value of “1” in
index position i signifies that the ith keyword is present in the document. The
search query is associated with a similar bit vector. An and operation of the bit
vectors corresponding to the document and the query reveals the existence or
non-existence of the keyword. Such a simple scheme, however, does not provide
adequate privacy protection. The server is now aware of the number of keywords
in the document and the query. Moreover, it can detect if the user is submitting
the same query multiple times. This, together with some background knowledge
possessed by the server, can cause serious privacy leakage. We propose a more
privacy preserving approach by introducing noise that serves to hide the number
and the content of keywords and also is able to randomize the queries. We call
this augmented approach Privacy-Preserving Symmetric Searchable Encryption
(PCSSE) scheme. We introduce in this article first a rudimentary scheme that
we refer to as PCSSE-1 that introduces the concept of noise insertion. However,
this scheme is vulnerable to two types of inference attacks. We address these
attacks in our second scheme that we refer to as PCSSE-2. One major techni-
cal challenge in implementing the PCSSE scheme is how to introduce the noise
such that both privacy and correctness of the queries are preserved. The loca-
tion of noises should be random or else an adaptive adversary can observe the
search history and infer the keyword information. The PCSSE-2 scheme is secure
against such an adaptive adversary based on the security of the pseudo-random
permutation primitives as well as the randomness of the noise generation.

Our approach preserves the privacy of the client. First, the server does not
have any information about the number of keywords contained in a document.
Second, the scheme hides the number of keywords contained in a query. Last but
not the least, PCSSE-2 provides query randomization that generates different
encrypted queries even when the client is searching for the same set of keywords.
This protects the client against revealing his search pattern to the server. Note
that, there are some techniques that have better search complexity and search
expressiveness, but they leak the search pattern information.

We have implemented a proof-of-concept for the PCSSE-2 scheme to evaluate
its performance. Our approach is efficient with respect to storage and network
communication costs. Specifically, the PCSSE-2 scheme has a storage complexity
linear in the size of documents and the size of the indexes on the server side. The

query phase of the scheme requires two rounds of client-server communication
and has a communication complexity linear in the dictionary size. Moreover, the
server-client communication during the query verification stage can be carried
out efficiently as well since the size of the query, represented in the form of a
binary vector, is at most 4 KB.

The rest of the paper is organized as follows. Section 2 discusses the state-of-
the-art on searchable encryption. Section 3 presents an overview of our approach
and contains the PCSSE algorithm and security definitions. PCSSE-1 construc-
tion is carried out in Section 4 while PCSSE-2 is detailed in Section 5. Section
6 evaluates the security and the performance of our scheme. Section 7 concludes
the paper.

2 Related Work

Song et al. [20] presented the first symmetric searchable encryption scheme.
Subsequently, many works have focused on enhancing the search and storage
complexities of the scheme, as well on the strength of the security models [11, 8,
10, 16, 15]. The study of asymmetric searchable encryption started with the work
of Boneh et al. [4]. Some of the later works focused on providing techniques
that improve on the search complexity of Boneh’s scheme [1, 3, 9]. All these
constructions deal with exact keyword search, and do not have the capability of
performing conjunctive keyword search.

The existing exact keyword searchable encryption schemes are not suitable
for a conjunctive search. They disclose sensitive meta-information, and at the
same time induce an exponential computation overhead on the server side. Golle
et al. [13] introduced the first conjunctive scheme in a symmetric setting. Golle’s
scheme associates a searchable index with each document. The server performs
a matching test on the document index with the client submitted query. Golle
presented two constructions: the security of the first construction is based on
the hardness of the Decisional Diffie-Hellman (DDH) problem. The first con-
struction has a search complexity linear in the number of stored documents.
The second construction has a search complexity linear in the number of dic-
tionary keywords. Both constructions use exponentiations and pairings in the
search phase and test phase. Parker et al. [18] presented a similar scheme which
handles the asymmetric setting. Ballard et al. [2] later enhanced the scheme’s
communication and search complexities on the server side. Ryu et al. [19] pre-
sented another symmetric solution which additionally reduces the complexity
of the encryption phase by diminishing the number of pairing operations. On
the other hand, some works deals with multiple keyword search in the cloud by
enabling some enhanced privacy preserving techniques [6, 21]. Moreover, some
works introducing boolean search over encrypted data [17, 7] still disclose too
many information to the outsourced servers. Specifically, these works fail to hide
the search pattern.

Boneh’s work [5] extended the search options in a public setting that allow
conjunctive subsets, ranges and exact keywords searches. Hwang et al. [14] pre-

sented an enhancement for the cipher-text size with a comparable computation
complexity. All the above conjunctive searchable encryption schemes leak the
following information: the number of keywords contained in each document, and
the number of keywords that are in the client’s query. These meta-information
leakage causes a breach of the client’s privacy. Recent work by Wang et al. [22]
allows clients to hide this information. Wang’s scheme however is not determin-
istic in the sense that there are false positives associated with each of the client’s
query. Furthermore in order to minimize the query’s false positive rate, the client
can store at most 16 keywords in each document, and cannot have more than 4
keywords in a given query.

3 Overview of the Approach

3.1 Problem Statement

Let D = {D1, ..., Dn} be a collection of documents, and W = {w1, ..., wl} be a
dictionary of keywords. The collection D is encrypted using a private-key CPA-
secure encryption scheme E . The encrypted collection E(D) is outsourced and
stored on external cloud servers. The dictionary W is a finite set whose size
depends on the underlying language.

Let {wk}k∈IC be a list of keywords contained in the dictionary W where
IC contains the keyword indexes. The search query contains a conjunction of
keywords, denoted by,

∧
k∈IC wk. The objective of the conjunctive searchable

encryption is to retrieve the set of encrypted documents that contain the set
of keywords from the encrypted collection E(D) in an efficient manner, so as to
preserve the privacy of the client to the extent possible. In response to the query,
the server sends the set of encrypted documents to the client.

3.2 Notations

The notation x
R←− S means uniform sampling the string x from the set S.

In this paper, the strings x is a binary string (i.e. x
R←− {0, 1}∗). The size of

string x is denoted by |x|. Let x and y be two binary strings, then x ‖ y is the
concatenation of x and y. Let A be an array, A[i] is the value of the array at
ith index. The transpose of array A is represented by AT . If AL is an algorithm
then x← AL(...) represents the result of applying the algorithm AL with given
arguments. The parameter k is used to denote a security parameter.

Let D = {D1, ..., Dn} be a set of documents, and W = {w1, ..., wl} a dictio-
nary of keywords. Each document Di is associated a set of keywords. The set of
keywords in Di is represented by the set Mi = {ri,1, ri,2, . . . , ri,|Mi|}, where |Mi|
is the number of keywords in Di and each ri,j , where 1 ≤ j ≤ |Mi|, gives the po-
sition of the keyword in the dictionary, that is, 1 ≤ ri,j ≤ l. Moreover, the set of
all keywords in all the n documents are given by M, where M = {M1, ...,Mn}.
The set of keywords that a client searches for is given by IC , and the conjunction
of these keywords is denoted by C(W) =

∧
k∈IC wk.

Definition 1 Hamming Weight: The Hamming weight H(x) of a binary vec-
tor x is defined to be the number of “1”s in the vector x.

Consider the inner scalar product φ on an inner product space: φ : {0, 1}n ×
{0, 1}n → [[0, n]]. The value φ(x, x) is a non-negative integer, and it coincides

with the Hamming weight of x. Note that, φ(x, y) =
n∑

k=1

xkyk, where x and y

are vectors of size n.
Our construction is based on several well known cryptographic primitives.

These include private-key CPA-secure encryption scheme (e.g. AES), pseudo-
random permutation. We refer the reader to [12] for details.

3.3 PCSSE Protocol

Our PCSSE protocol over a set of documents D and a dictionary space W con-
sists of applying five polynomial-time algorithms, namely, KeyGen, Enc, Query,
Response, Dec, each of which is briefly enumerated below.
Key Generation (K1,K2)← KeyGen(k): KeyGen takes the security param-

eter k as input and outputs two secret keys K1 and K2.
Encryption (L, C) ← Enc(K1,K2,D,M,W): Enc takes as inputs the secret

keys K1, K2, the collection of documents D, the set of keyword index M,
and the dictionary W. It outputs the encrypted collection of documents
C = {C1, ..., Cn} and the associated set of labels L = {L1, ..., Ln}.

Randomized Query Generation Q← Query(K2, C(W)): Query is a proba-
bilistic algorithm that takes as inputs the secret key K2 and the conjunction
of keywords C(W). It outputs a randomized query Q .

Query Response X ← Response(Q,L): Response is a deterministic algo-
rithm that takes as inputs the query Q and the set of labels L associated
with the encrypted documents. The output consists of a set of encrypted
documents X that match the query Q.

Decryption Di ← Dec(K1, Ci): Dec is a deterministic algorithm that takes
as inputs the key K1 and a ciphertext Ci and outputs the unencrypted
document Di.

Definition 2 Correctness: Let C(W) be a conjunctive keywords query, and C
the set of encrypted documents that match the conjunctive query C(W). Let Q
be the result of applying the probabilistic algorithm Query on C(W). We say that
PCSSE is correct if:

Response(Q,L) = C.

3.4 PCSSE Security Definition

In our PCSSE scheme, we are interested in the adaptive security model such as
the one introduced in [10], namely, secure against chosen keywords attack CKA-
2. In this security model, no pseudorandom polynomial-time adversary, who
is given encrypted labels, encrypted documents and encrypted search queries,

can learn any information about the content of the documents and the content
of search queries other than the search pattern and access pattern. The access
pattern contains information about the identifiers of encrypted documents that
match a search query. The search pattern contains the history of all the search
queries. We refer the reader to [10] for the formal definitions of search and access
patterns. The search pattern, access pattern, the number of documents and the
size of documents returned in a query response, are the possible information
leakages in an adaptive security model. Note that, the number of keywords in a
document is also a possible source of information leakage in existing symmetric
searchable encryption schemes; our PCSSE scheme keeps the number of keywords
secret (see section 5).

The important characteristic of randomized queries is that no polynomial
time adversary is able to discern whether a search query is repeated or not. This
is because the query submitted by a client is different each time, even when
searching for the same conjunction of keywords. We formally define the notion
of randomized query as follows:

Definition 3 Randomized query: Let {Qi}1≤i≤t be the t queries generated
with the Query(.) algorithm with the same key K2 and the conjunctive keyword
expression {C(Wi)}1≤i≤t. Let Qi and Qj two queries for the same conjunction of
keywords. We say that the scheme satisfies randomized query if no pseudorandom
polynomial time adversary can, with high probability, associate these queries to
the same conjunction.

As a consequence of using randomized queries, the information leakage is now
limited to the access pattern, the number and the size of encrypted documents.
However, we want to point out that as we will see later on in the security analysis
section, the access pattern is inherently related to the search pattern. In other
words, knowing the access pattern can infer as well some information about the
user search behavior.

Moreover, with randomized queries the number of keywords sent in each
query is completely hidden from the server. Following upon the definition 3, we
classify the information leakage into two categories. The leakage ρ1(L, C) repre-
sents a statistical leakage known by the server before receiving any search queries.
The second leakage ρ2(Qi∈{1,··· ,t},L, C) deals with access patterns disclosed by
the search queries results. These are defined below.

Definition 4 Leakage ρ1(L, C): The leakage consists of the following informa-
tion: the number of encrypted documents, the size of each encrypted document,
and the identifier of each encrypted document stored on the server.

Definition 5 Leakage ρ2(Qi∈{1,··· ,t},L, C) (Access pattern): If each Qi is a
randomized query, the leakage caused after submitting Qi consists of the identi-
fiers of encrypted documents that match the queries Qi∈{1,··· ,t}.

In the following, we define security of our PCSSE scheme using a simulation
based definition.

Definition 6 Adaptive security against chosen keyword attack CKA2:
Let us consider the five algorithms that defines our PCSSE scheme, namely,
KeyGen, Enc, Query, Response, Dec as described in Section 3.3. We present
the following game based on two experiences RealA and IdealA,S where we
consider a stateful adversary A, a stateful simulator S, the leakages ρ1, ρ2, and
the security parameter k:

RealA(k): The challenger (user) runs the KeyGen(k) algorithm and
outputs the key (K1,K2). A sends the tuple (D,M,W) and receives
(L, C)← Enc(K1,K2,D,M,W) from the challenger. A makes a poly-
nomial number of adaptive queries {C(Wi)}1≤i≤t and sends them to
the challenger. The adversary receives the search queries generated by
the challenger such that Qi ← Query(K2, C(Wi)). A returns one if his
queries return the expected result, otherwise zero is returned.

IdealA,S(k): The adversary outputs the tuple (D,M,W) and sends it
to the simulator. Given the leakage ρ1, S will generate the labels as well
as the encrypted documents (L, C) and sends them to the adversary.
A makes a polynomial number of adaptive queries {C(Wi)}1≤i≤t and
sends them to the simulator. Given the leakage ρ2 (containing the access
pattern or previous queries), the simulator sends the appropriate search
queries to the adversary. Finally, A returns a zero or one depending
on whether or not the responses are accurate.

We say that PCSSE is adaptively secure against chosen keyword attack if
for all polynomial time adversary A, there exists a non-uniform polynomial-size
simulator S such that:

|Pr[RealA(k) = 1]− Pr[IdealA,S(k) = 1]| ≤ ε(k)

4 PCSSE-1 Construction

In this section, we present the construction of the first scheme PCSSE-1. This
scheme represents a fundamental basis for the second scheme where we intro-
duce globally all our techniques. PCSSE-1 suffers as will be described in the
subsequent section 5 from some notable attacks that will lead us to present the
enhancement version of it.

The scheme consists of two phases, namely, the setup phase and the search
phase. The setup phase is done once by the client when the encrypted documents
and the labels are uploaded on the server. In this phase, the client uses the
algorithms KeyGen and Enc to construct the labels and create the encrypted
documents. The search phase is performed every time a query is submitted. In
this phase, the client generates the randomized query using the algorithm Query
and the the server generates the response using the algorithm Response. Since
the PCSSE algorithm is a two-rounds protocol, the Response algorithm includes
one additional interaction with the user before outputting the results.

4.1 Setup Phase

The client uses the KeyGen(k) algorithm with the security parameter k to gen-
erate the keys K1,K2 such that Ki ∈ {0, 1}k.

In the following we will detail the Enc(.) algorithm. In order to encrypt
document Di and generate the label Li associated with Di, the client performs
the following steps.
[Step 1:] Create an array Li of size 3l where l is the size of the dictionary and

initialize it with all zeros.
[Step 2:] Choose randomly a subset P in [[1, 3l]] such that |P | = l. Apply the

permutation function π : {0, 1}k × {0, 1}l → P to the keyword index Mi =
{ri,1, ..., ri,|Mi|} associated with the document Di to obtain a permuted index
set πK2(Mi) = {πK2(ri,1), ..., πK2(ri,|Mi|)}. For each πK2(ri,j) ∈ πK2(Mi),
where 1 ≤ j ≤ |Mi|, set Li[πK2

(ri,j)] = 1.
[Step 3:] Choose randomly a subset R in [[1, 3l]]\P such that |R| = l. Sample

randomly two binary vectors ai and bi such that ai ‖ bi
R←− {0, 1}|R|. Fill

Li in such a way that Li restricted to the positions R is ai ‖ bi, and Li

restricted to the positions Z = [[1, 3l]]\{P
⋃
R} is ai ‖ bi.

[Step 4:] Client encrypts each document Di using a private-key CPA-secure
encryption scheme EK1

to produce the encrypted document EK1
(Di). Client

sends the server the encrypted document along with the label, denoted by
(EK1

(Di), Li). The user stores in his side h(ai), the hamming value of the
vector ai.

4.2 Search Phase

The search step includes both the Query(.) and the Response(.) algorithm.
Let C(W) =

∧
k∈IC wk be the conjunction of keywords that the client searches

for, where IC is the set of keywords positions in the dictionary such IC =
{r1, ..., r|IC |}. The client performs the three steps of the Query(.) and sends
the randomized query to the server such that:
[Step 1:] Create an array Q of size 3l where l is the size of the dictionary and

initialize it with all zeros.
[Step 2:] Fill the array Q such that Q[πK2(rj)] = 1 for 1 ≤ j ≤ |IC |.
[Step 3:] Randomly sample two binary vectors c and d such that c ‖ d R←−
{0, 1}|R|. Fill Q in such a way that Q restricted to the positions R is c ‖ d,
and Q restricted to the positions Z is c ‖ d. The user sends the query Q to
the server and retains the value h(d) + |IC |.
Once the server receives the query Q, it performs the following steps for the

Response algorithm:
[Step 1:] The server does the following computation: for each label Li such

that Tokeni = Q.LT
i , the server sends the Tokeni to the user.

[Step 2:] The user performs the following verification: if Tokeni = h(ai) +
h(d) + |IC |, the user sends a bit bi equal to 1, otherwise the bit will be equal
to 0.

[Step 3:] If the server receives a bit bi equal to 1, the server sends the encrypted
document EK1

(Di) to the user.
Finally the user invokes the algorithm Dec(·) in order to decrypt the received
documents.

Theorem 1. The PCSSE-1 construction is correct as per Definition 2.

5 PCSSE-2 construction

PCSSE-1 as constructed in the previous section is vulnerable to two critical
attacks, referred to as Attack 1 and Attack 2, that can leak the position of the
noise and therefore the position of the keywords. We describe first the attacks
and then present PCSSE-2 that is going to address these deficiencies.

Attack 1 description The positions of the noise defined by the set R and Z
represent a vital information that must be kept secret. Thus, in the PCSSE-1
construction, the hamming values of both binary vectors ai and d are not shared
with the server. Note that if the verification was done in the server side, it can
infer directly the value |Ic| (by knowing the values of h(ai), h(d) and Tokeni).
However, even if the critical part of the verification is done on the client side, the
server will finally know all the matching documents (by receiving a bit equal to 1
or 0 for each label). The server then has the knowledge of all labels matching the
corresponding query. Let us denote by (L1, · · · , Lq) the set of labels matching a
query Q. The server knows that all these labels have all the positions of searched
for keywords equal to 1. The idea is to reduce the number of ones caused by noise
insertions. In fact since the noise is randomly inserted in these fixed positions,
some labels will contains ‘0’ and other will contain ‘1’ in the same position. The
server then performs a binary ‘AND’ operation between all these labels such
that:

L = L1 ∧ L2 ∧ · · · ∧ Lq

The resulting L is a binary vector containing fewer 1 values. The most important
consequence is that the server now has the certainty that all positions that turn
from 1 to 0 are actually a noise position while some of the positions keeping a ’1’
value correspond to keywords’ positions. After executing a number of queries,
the server will build an exact knowledge of the noise and keywords’ positions.

Attack 2 description The first attack is adaptive in the sense that the ad-
versary needs the result of the search to build an extra-knowledge of the labels’
construction. The second attack is more destructive in the sense that the ad-
versary can infer noise positions defined by the sets R and Z passively. In fact,
the determinism of noise position is the key of this adversary’s attack. Even if
the noise is randomly inserted independently for each label it does not change
anything to its fixed position which is similar to all labels. The noise vector ai is
inserted twice in the label Li. This redundancy is the origin of the problem (the

same for the vector bi and its complementary). As an instance, if the first bit of
ai is inserted in R[1], then the same bit will be inserted in Z[1], this applies to all
labels. Consequently, an attacker can follow this strategy: first select a random
bit in the first label and search for a position containing the same bit value.
Secondly, check the second label in both positions whether they have the same
bits. If so, go to the third label and continue the same test, if not, go back to the
first label and choose a different position and go through the process recursively.
The attack outputs the noise positions with high probability, which, in turn, re-
veals the keywords’ positions passively. Note that, this attack is computationally
expensive.

In the following we present PCSSE-2. We detail the noise insertion in the
setup phase and the search phase. We generate the keys with the KeyGen(k).

Setup phase Steps 1, 2 and 4 are similar to the PCSSE-1 construction. We will
detail here the new strategy of noise insertions. Subsequently, we use the term
translation by a nonnegative integer q applied to a set P . Here we give an example
showing this concept. Let us take the ordered set S = {2, 5, 10, 20, 35}. The trans-
lation by a scalar value 2 applied on S will output the new set {20, 35, 2, 5, 10}.
The translation will shift all elements by q modulus the size of the set.
1. Choose randomly a subset R in [[1, 3l]]\P such that |R| = l. The positions in
R are ordered. The same applies for Z.

2. Sample randomly two binary vectors ai and bi such that ai, bi
R←− {0, 1}l.

3. Choose randomly two nonnegative integers l1i and l2i smaller than l.
4. Apply respectively a translation to the positions in R and Z by l1i and l2i

and output the new ordered set of positions Ri and Zi.
5. Fill Li in such a way that Li restricted to the positions Ri is ai ‖ ai, and Li

restricted to the positions Zi is bi ‖ bi.
Figure 1 describes the process of translation applied to the first label.

Search phase For the Query(.) algorithm, Steps 1 and 2 are similar to those of
the PCSSE-1 construction. Here we detail the new strategy for the noise insertion
in the query:

1. Sample randomly two binary vectors c and d such that c, d
R←− {0, 1}l.

2. Choose randomly two nonnegative integers3 l1 and l2 smaller than l.
3. Apply respectively a translation to the positions in R and Z by l1 and l2

and output the new ordered set of positions R′ and Z ′.
4. Fill Q in such a way that Q restricted to the positions R′ is c ‖ c, and Q

restricted to the positions Z ′ is d ‖ d.
Once the server receives the query Q, it performs the following steps for the

Response algorithm:
[Step 1:] The server performs the following computation: for each label Li

such that: Tokeni = Q.LT
i , the server sends the (Token1, · · · , T okenn) to

the user.

3 These integers are different for each newly generated query.

Fig. 1. Translation process applied to a label where ai = (1, 0) and bi = (1, 1) and the
size of the dictionary l equal to 4

[Step 2:] The user performs the following verification: if Tokeni = h(ai) +
h(d) + |IC |, the user outputs a bit bi equal to 1, otherwise the bit will be
equal to 0. Finally the user outputs b = (b1, · · · , bn).

[Step 3:] The user randomly selects r (if available) bits equal to 0 from b and

turns them to 1. The user will then output the new version b̃.
[Step 4:] If the server receives a bit b̃i equal to 1, the server sends the encrypted

document EK1(Di) to the user.

Finally, the user invokes the algorithm Dec(·) in order to decrypt the received
documents. The choice of the value r can be limited such that the exact number
of matching labels plus r will not exceed a given value. This will give the user a
control on the communication complexity.

Theorem 2. The PCSSE-2 construction is correct as per Definition 2.

Discussion The ideas introduced in PCSSE-2 solve both attacks described ear-
lier. Including false bits in the user answer, will prevent the server from com-
puting the exact value of L = L1 ∧ L2 ∧ · · · ∧ Lq after each query. In fact, this
idea will mislead the server by including some noisy labels that do not contain
the query. This solution will not create any false positive but will increase the
communication complexity (not the number of interactions).

The second countermeasure taken into account in the PCSSE-2 construction
phase keeps the position of noise fixed, but introduces a translation to change
the position of the noise vector and its redundant value or its complimentary
value for each label. This translation is done randomly for each label and is
independent from that done to another label. The position of a noise bit and its
complement in one label has no relation with the corresponding positions in the

second label. The same reasoning applies also to the query since we are changing
the scalars of the translations from a query to another.

6 Security Analysis and Evaluation

6.1 Security Analysis

The privacy guarantees of our PCSSE-2 scheme can be expressed in terms of the
following lemma and theorem. For lack of space, we omit the proofs but offer an
intuition instead.

Lemma 1. Let Qi be the outputs of the algorithm Query(K2, C(Wi)) for 1 ≤
i ≤ t. The PCSSE-2 primitive has randomized queries such that:

∀i, j ∈ [[1, t]] s.t. i 6= j, Pr(Associate(Qi, Qj)) -
1(h(Qi∨Qj)
|IC |

) ,
where h(Qi) is the Hamming value of the query Qi with known number of con-
junction IC .

Theorem 3. Let E be a private-key CPA-secure encryption scheme, π a pseudo-
random permutation. Then the PCSSE-2 scheme is adaptively secure against
chosen keywords attack as defined in Definition 6 where ρ1 and ρ2 are the possible
leakages, and the queries are randomized in the sense of Definition 3.

Proof Sketch The query randomization property is the key to the privacy of our
PCSSE-2 scheme. The randomized query gives an attacker negligible chances
of discerning the keywords searched by a client or whether the same/similar
keyword searches have been performed in the past. As a direct consequence of
this property, the adversary (server) cannot find out the number of keywords in
a given query. Since the label construction is similar to the query construction,
the adversary also cannot infer the number of keywords inside each document.

However, we also need to prove that the indexes and the encrypted documents
are indistinguishable from simulated ones based on the leakages previously de-
fined in section 3.4. Note that, the keywords positions are computed using a
pseudo-random permutation (PRP) with a key that is secret to the user. The
adversary, while in simulation, has to generate randomly a key and use it for the
PRP. Consequently the adversary’s generated keyword positions and the real
positions are indistinguishable. The index is constructed as well by inserting
random noise which makes every pair of indexes different even if they contain
the same keywords. Thus, an adversary’s simulated index and the real index are
indistinguishable. The same applies for the generated query since it follows the
same index construction. Moreover, the encrypted documents are indistinguish-
able from the real ones as well since the adversary has to simulate a random key
for this purpose. Lastly, during the search phase, the adversary has an additional
knowledge about the query results. However with a position of noise different
from every two indexes, and a user’s answer containing always extra documents,
the adversary cannot define the keywords positions. Thus our scheme is secure
against adaptive chosen keyword attacks.

6.2 Evaluation

In summary, Table 1 compares our PCSSE-2 scheme with other deterministic
conjunctive symmetric schemes with respect to computation complexity, and
query privacy properties. The notations n, m and |C| denote respectively the
number of documents, the number of keywords and the number of keywords
within a given conjunction. We use exp, pr to designate the operations expo-
nentiation and pairing4. p is a 128-bit prime. Finally we use IP, MCG and
PRF to designate the inner product, the multiplication in a cyclic group, and
a pseudo-random function respectively.

Server side
computa-
tion

Server side
storage

Client side
computa-
tion

Query
computa-
tion

Query size Randomized
Query

Hide the
number of
keywords

GSW-1
[13]

n exp + n
PRF

(m+1)pn+
|E(D)|

(m + 1)n
exp + nm
PRF

n exp +
(|C| + n)
PRF

(n + 1)p +
|C|

No No

GSW-2
[13]

(2|C|+ 1)n
pr

(2m +
1)pn +
|E(D)|

(2m + 1)n
exp + nm
PRF

3 exp+ |C|
PRF

3p + |C| No No

BKM [2] 2n
pr + n|C|
PRF

(m+1)pn+
|E(D)|

nm PRF
+(m + 1)n
MCG

|C| PRF 2p + |C| No No

ET [19] 2n pr (m+2)pn+
|E(D)|

(m + 1)n
exp + n
pr + mn
PRF

2 exp+ |C|
PRF

2p + |C| No No

PCSSE
(our ap-
proach)

n IP 3ln +
|E(D)|

nm PRF |C| PRF 3m Yes Yes

Table 1. Comparison of Conjunctive Symmetric Searchable Encryption Schemes

We run experiments to evaluate the performance of the search phase of
PCSSE-2 as this directly impacts the server’s real-time response capabilities.
We ignore the time required for query construction as this step can be carried
out in constant time; instead, we focus on the query verification that is carried
out on the server. Our experiments on the server query-verification stage investi-
gates how PCSSE-2 performs asymptotically taking into account the number of
keywords and the number of documents. In the experiment, we have considered
up to 1000 file, not taking into account their types. A file can be a document,
email, without a specific file type, i.e. it can be a document, email, media etc.).
For each scenario, tests are performed on three different dictionary sizes: 1000,
5000, and 10000 keywords. The PCSSE-2 primitive is scripted and tested in-
side the open-source Scilab environment. The computations are performed on a
dell laptop with 2.40GHz processors. The results are plotted in Fig. 2. The plot

4 Computing one pairing is equal to 6 to 20 exponentiation

shows that the performance is linear with respect to the number of documents
n. Furthermore, the label size increase implies only a constant overhead added
to the search time. The search time per-document is roughly 30µs for labels
containing 1000 keywords, and 200µs for labels containing 10000 keywords. The
plot gives us a clear idea how PCSSE-2 performs asymptotically.

Fig. 2. Performance Evaluation for the Search Phase

7 Conclusion

We have presented a new deterministic privacy-preserving conjunctive symmetric
searchable encryption scheme (PCSSE) that allows cloud servers to perform
efficient conjunctive keywords searches on encrypted documents while protecting
the privacy of clients by hiding the keywords in the query and also the keywords
contained in the document.

We plan to extend this work along two dimensions. First, we would extend
PCSSE scheme to include sub-match on keywords and also boolean expression
searches. Second, we would like to make the scheme more dynamic that will allow
efficient and privacy preserving queries even if the documents on the server side
are updated.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. Journal of Cryptol-
ogy 21(3), 350–391 (2008)

2. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: Proceedings of the 7th International Conference
Information and Communications Security. pp. 414–426. Beijing, China (December
2005)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable en-
cryption. In: Proceedings of the 27th Annual International Cryptology Conference.
pp. 535–552. Santa Barbara, California, USA (August 2007)

4. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Proceedings of the 24th International Conference on the
Theory and Applications of Cryptographic Techniques. pp. 506–522. Interlaken,
Switzerland (May 2004)

5. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Proceedings of the 4th Theory of Cryptography Conference. pp. 535–554. Am-
sterdam, The Netherlands (February 2007)

6. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. In: Proceedings of the 30th IEEE Inter-
national Conference on Computer Communications, Joint Conference of the IEEE
Computer and Communications Societies. pp. 829–837. Shanghai, China (April
2011)

7. Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Proceedings of the 33rd Annual Cryptology Conference. pp. 353–373. Santa Bar-
bara, California, USA (August 2013)

8. Chang, Y.C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Proceedings of the 3rd International Conference in Applied
Cryptography and Network Security. pp. 442–455 (June 2005)

9. Crescenzo, G.D., Saraswat, V.: Public key encryption with searchable keywords
based on jacobi symbols. In: Proceedings of the 8th International Conference on
Cryptology in India. pp. 282–296. Chennai, India (December 2007)

10. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: Proceedings of the
13th ACM Conference on Computer and Communications Security. pp. 79–88.
Alexandria, Virginia, USA (November 2006)

11. Goh, E.J.: Secure indexes. IACR Cryptology ePrint Archive 2003, 216 (2003)
12. Goldreich, O.: Foundations of Cryptography Volume 2 Basic Applications. Cam-

bridge University Press (2004)
13. Golle, P., Staddon, J., Waters, B.R.: Secure conjunctive keyword search over en-

crypted data. In: Proceedings of the 2nd International Conference in Applied Cryp-
tography and Network Security. pp. 31–45. Yellow Mountain, China (June 2004)

14. Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search
and its extension to a multi-user system. In: Proceedings of the 1st International
Conference in Pairing-Based Cryptography. pp. 2–22. Tokyo, Japan (July 2007)

15. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of the 19th ACM Conference on Computer and Communica-
tions Security. pp. 965–976. Raleigh, North Carolina, USA (October 2012)

16. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P.H., Jonker, W.: Computation-
ally efficient searchable symmetric encryption. In: Proceedings of the 7th VLDB
Workshop in Secure Data Management. pp. 87–100. Singapore (September 2010)

17. Moataz, T., Shikfa, A.: Boolean symmetric searchable encryption. In: Proceed-
ings of the 8th ACM Symposium on Information, Computer and Communications
Security. pp. 265–276. Hangzhou, China (May 2013)

18. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword
search. In: Proceedings of the 5th International Workshop in Information Security
Applications. pp. 73–86. Jeju Island, Korea (August 2004)

19. Ryu, E.K., Takagi, T.: Efficient conjunctive keyword-searchable encryption. In:
Proceedings of the 21st International Conference on Advanced Information Net-
working and Applications. pp. 409–414. Niagara Falls, Canada (May 2007)

20. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the 21st IEEE Symposium on Security and Privacy. pp.
44–55. Berkeley, California, USA (May 2000)

21. Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.: Privacy-preserving
multi-keyword text search in the cloud supporting similarity-based ranking. In:
Proceedings of the 8th ACM Symposium on Information, Computer and Commu-
nications Security. pp. 71–82. Hangzhou, China (May 2013)

22. Wang, P., Wang, H., Pieprzyk, J.: An efficient scheme of common secure indices for
conjunctive keyword-based retrieval on encrypted data. In: Proceedings of the 9th
International Workshop in Information Security Applications. pp. 145–159. Island,
Korea (September 2008)

