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Abstract. Modern day biometric systems, such as those used by gov-
ernments to issue biometric-based identity cards, maintain a determinis-
tic link between the identity of the user and her biometric information.
However, such a link brings in serious privacy concerns for the individ-
ual. Sensitive information about the individual can be retrieved from
the database by using her biometric information. Individuals, for rea-
sons of privacy therefore, may not want such a link to be maintained.
Deleting the link, on the other hand, is not feasible because the infor-
mation is used for purposes of identification or issuing of identity cards.
In this work, we address this dilemma by hiding the biometrics infor-
mation, and keeping the association between biometric information and
identity probabilistic. We extend traditional Bloom filters to store the
actual information and propose the SOBER data structure for this pur-
pose. Simultaneously, we address the challenge of verifying an individual
under the multitude of traits assumption, so as to guarantee that im-
personation is always detected. We discuss real-world impersonation use
cases, analyze the privacy limits, and compare our scheme to existing
solutions.

1 Introduction

Many nations are increasingly using biometric based systems for national iden-
tity cards for their citizens. Examples of these are the proposed project of Carte
Nationale d’Identité Biométrique of the French government (see http://www.

service-public.fr/actualites/002101.html) and the AADHAAR project
undertaken by the Unique Identification Authority of India (see http://uidai.

gov.in). These governments are building large biometric database systems to
issue social security cards, health insurance cards etc. The main objective is to
efficiently provide citizen services via accurate identity verification. For this pur-
pose, these systems maintain a database of sensitive personal information, called
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the identity database, a biometric database containing individual’s biometric in-
formation, and a deterministic link between the identity of the individual in the
identity database and her biometric information in the biometric database. This
link, which is a primary-key/foreign-key relationship between the two databases,
allows querying the identity database using the biometric information from the
biometric database. The link helps to ensure that any improper access to the
identity database via impersonation is detected and potentially prevented.

Impersonation can happen at many stages of the biometric system operation.
We are interested in two specific situations, the so called “First application for
biometric card” scenario where the user is applying for the issue of a biometric
based identity card, and the “Renewal without a document or ID card loss”
scenario, where a user is applying for a replacement card.

First application for biometric card: During the first application, the applicant
goes through an eligibility determination step. If the user is eligible and her
biometric information does not exist in the biometric database, then the
application is accepted. If the individual provides an identity that already
exists in the identity database then it is a case of impersonation.

Renewal without a document: During the renewal phase, the applicant has to
go through the verification step in order to determine if he already exists
in the system. Renewal can take place if and only if the relevant biometric
information already exists in the biometric database. If the individual gives
a different identity that is not associated with his biometric information it
is a case of impersonation.

The deterministic link between biometric information and identity help de-
tect such impersonations. In almost all existing biometric information manage-
ment systems that we have studied however, this link is public and not protected.
Consequently, it brings forth serious privacy concerns for the individuals. Bio-
metric information is, surprisingly, easily available without consent. For example,
fingerprints can be easily picked up from different surfaces. An attacker who is
targeting a specific individual and has acquired by subterfuge that individual’s
biometric information and also has access to the identity database can then
easily cause a privacy breach for the targeted individual. (Note that, by sim-
ply accessing the identify database, the attacker cannot launch such a targeted
attack.) Consequently, individuals who are concerned about their privacy, may
want these deterministic links between the identity database and the biomet-
ric database removed. Unfortunately, since removing the link is not an option,
we investigate in this work if a probabilistic link between biometric information
and identity can maintain user privacy and at the same time preserve all the
functionalities of the system.

One possible solution to this problem is to keep the information in the bio-
metric database encrypted, so that the identity is linked to encrypted biometric
data. If the attacker cannot correlate the illegally obtained biometric informa-
tion with the encrypted information stored in the database, the attacker will not
be able to breach privacy of the individual. Several works aim to provide bio-
metric privacy employing variants of this theme [11,14,17], although they do not



address the same problem as ours. In fact, these techniques cannot be used as
native constructions to solve our problem. Under these setups, proper identifica-
tion would work only if an individual could be associated with one and only one
stored biometric information. Unfortunately, owing to the vagaries of biometric
capture devices, a physical biometric pattern can have several captured versions
– the so called multitude of traits issue. These versions are not totally different
and have considerable similarities. However, they are rarely exactly the same. An
identification based on two similar pieces of biometric information is always pos-
sible with different levels of accuracy and efficiency. However, these similarities
quickly vanish when the biometric information is encrypted. This is one of the
reasons why biometric information is traditionally stored as plaintext, although
the work of Bringer et al. [5] proposes an error-tolerant searchable encryption
scheme that can be used to solve this problem [1] albeit at the expense of very
high computational overhead making it impractical for large scale deployment.

The Setbase approach proposed by Adi Shamir [18] was the first scheme to
address the problem of converting a deterministic association between biometric
information and identity into a probabilistic one. This scheme stores the biomet-
ric information as plaintext. The relation one to one is replaced by a relation n
to n where n is the size of a subset of identities set. The idea centers around fix-
ing a number m of subsets without fixing their size. This results in m subsets of
identities, and their associated subsets of biometrics. Consequently, each identity
is associated to many (the size of the subset) biometrics and, vice versa, each
biometric information is associated with many identities. This concept makes the
biometric-identity association private. The approach allows one to detect imper-
sonation with a certain probability but not as accurately as a deterministic one
to one mapping. There have quite a few works that explored the underlying prin-
ciples of the Setbase approach and quantify various parameters [12,13]. However,
the Setbase approach has several issues that prevent it from being adopted in
practice. First of all, the association between a given subset of identities and the
corresponding subset of biometric information represents a valuable information
and should be kept secret. If there is an attacker (including insiders) who knows
that a given person is in a subset Si, it will enable the attacker to usurp this
identity if the attacker and the individual share the same subset. For this rea-
son, the association is encrypted using a probabilistic asymmetric semantically
secure scheme that hides the association. Moreover, keys should be kept secret
in order to protect the system while biometric information is stored as plaintext
without any transformation, encryption or obfuscation. Finally, any deletion is
impossible in the Setbase approach which makes the scheme not deployable.

In this paper, we present a novel scheme called ELITE (acronym for zEro
Links Identity managemenT systEm) that allows a probabilistic link between
biometric information and identity. We describe an initial construction called
ELITE-1 that introduces the fundamental principles of the scheme. We then
refine this to propose ELITE-2 – the second and main construction. ELITE-1
assumes that the biometric information stored in the database and the biometric
information retrieved from the biometric capture device during the verification



are the same. We propose a novel probabilistic data structure called “Stored
Object Bloom Filter” (SOBER, for short) for storing identities, which is based
on the traditional Bloom Filters. We then adapt the Greedy algorithm proposed
by Azar et al. [2] in the context of the balls in bins problem, to insert identities in
the SOBER structure. We show how to determine if an individual is in the system
during one of the two phases discussed earlier. For the second construction, we
take into account the issue of multitude of traits. In ELITE-2, the storage and
the creation of biometric templates is based on the scheme of R. Capelli et al. [7].
ELITE-2 ensures that even if the captured biometric information is considered
different, we are able to store them in a secret way and at the same time preserve
the ELITE-1 functionalities. Our proposed scheme has many advantages over
the Setbase approach [18] namely, (i) creating a probabilistic link between the
biometrics and the identities while maintaining a high impersonation detection
rate, (ii) better control over the privacy and impersonation detection dilemma,
(iii) biometric information not stored in a plaintext, yet the multitude of traits
issue addressed, (iv) more efficient scheme with a constant search complexity
and reduced storage space while deletion can still be performed.

2 ELITE: zEro Links Identity managemenT systEm

In real world biometric system, there is always a phase during which the sys-
tem enrolls new individuals and issues their biometric ID cards or passports.
During this phase, a deterministic link between the identity and the biometric
information needs to be maintained. We assume that the enrollment phase is
not compromised and that this link is deleted directly after the issuance. The
ELITE scheme deals with issues related to storing the biometric information in
the database after the biometric ID card has been issued – the storage phase –
and verifying whether an individual is in the system or not – the search phase.

We extend the classical Bloom filter data structure [3] to develop the ELITE
solution. We call this data structure “Stored Object Bloom filtER (SOBER)”. It
enables the separation of the identity from the biometric information by making
the link between biometric information and identity probabilistic. The scheme
also hides the biometric information so that it is impossible to recover stored
information. ELITE-1 employs a multiple choice identity allocation algorithm,
Greedy [2] that has been proposed in the context of the balls in bins problem.
It allows the insertion of a number of identities in the SOBER data structure. In
the following, we first introduce the Stored Object Bloom Filter data structure,
present the Greedy algorithm, and then discuss the construction of the ELITE-
1 scheme. We present an example to discuss how our system works and then
analyze the privacy features of the scheme.

2.1 Preliminaries

Stored Object Bloom Filter - SOBER Bloom filters [3] are probabilistic data
structures that permit testing membership of an element in a group. Bloom filter



as a structure does not allow the storage of the element, but only the membership
verification of an element. The most important feature of a Bloom filter is that
the time complexity for membership verification is constant i.e. O(1). SOBER is
a 〈key− value〉 data structure that has similar construction as a normal Bloom
filter with the additional feature that the cells can contain extra information. In
the following, we first discuss the construction steps of SOBER, then describe
how to search for an element using this probabilistic data structure.

SOBER construction Briefly, a classical Bloom Filter works as follows. Let us
consider a set of n elements S = {a1, ..., an} and r independent hash functions
hkj : {0, 1}∗ → [[0,m]] where m is the size of an array A. We initialize all cells
of A to zero. For each ai in S and j ∈ [[1, r]], we compute the value hkj (ai). The
output of each hash function represents the index to a cell in array A whose value
will be set to 1. This is shown on the left side in Figure 1. To test whether an

0 1 0 0 1 1 0 0

m = 8

hk1(a) hk2(a) hk3(a)

r = 3

0 1 - {id1, id2} 0 0 1 - {id1} 1 - {id2} 0 0

Bloom Filter construction with m = 8
and r = 3 

Corresponding Stored Object Bloom Filter with
id1, id2, and id3

Fig. 1: Relation between traditional Bloom Filter and SOBER

element a′ is a member of the set S, we have to only calculate hk1(a′), ..., hkr (a′).
If for each j ∈ [[1, r]],A(hkj (a′)) = 1 then we can conclude that a′ ∈ S (with a
high probability), otherwise a′ 6∈ S. Note that, in some membership verification
cases, we can have a false positive for elements whose identities were not stored
in the Bloom filter. However, the false positive rate can be arbitrarily reduced.

The proposed Stored Object Bloom Filter data structure can be seen as a
combination of the Bloom filter with Storage (BFS) [4] and the classical Bloom
filter. In BFS data structure, each cell contains a set of values depending on the
output of the hash functions while in the basic bloom filter a zero or one value is
stored (for fast membership detection). Each cell in the SOBER data structure
can be considered as a 〈key, value〉 cell, where key ∈ {0, 1} and the value is a
set of elements. This is illustrated on the right side in Figure 1.

Greedy algorithm for inserting identities into SOBER The insertion of identities
in the SOBER data structures can be mapped to the classical balls in bins prob-



lem. In literature, there are many techniques that enable this kind of insertion,
such as, the uniform insertion with a single choice insertion and multiple choice
insertion. These schemes were constructed for different purposes but their main
objective is to decrease the maximum load for every bin, that is the number
of balls in any given bin. We are particularly interested in this article to the
second type of insertion, namely, the multiple choice insertion. Moreover, we are
interested in the special setting where the number of balls is larger than the
number of bins but with a constant ratio. The selection of a multiple choice
rather than the single choice scheme is mainly based on certain privacy issues
that we are going to explain later on. We use the “Greedy” algorithm proposed
in [2] for our purpose. Let l denote the number of balls and m the number of
bins. Greedy(U , d) is the balls in bins insertion algorithm that places the next
ball into the less loaded bin among d bins sampled uniformly at random from U .

2.2 ELITE-1 scheme construction

Storage phase Let us consider the set of n biometric information b = {b1, . . . , bn}
and the corresponding identity set id = {id1, . . . , idn}.

1. Create an empty SOBER data structure (all cells initialized with value 0)
with size equal to m and r independent hash functions hi : {0, 1}∗ → [[0,m]].

2. For 1 ≤ i ≤ n, hash the biometric information bi in the set by applying the
r hash functions and store a 1 in each location of SOBER corresponding to
the output of the hash function. If the cell location is already a 1, leave it
as 1.

3. Insert one identity value idi corresponding to bi uniformly at random in
one of the r cell locations identified by outputs of the hash functions when
applied to bi.

4. For 1 ≤ i ≤ n, insert l times the same identity idi associated with bi in l
positions in SOBER following the Greedy(U , d), regardless of whether the
cell position is 0 or 1. If idi is already in a cell of SOBER by virtue of step
3, do not duplicate idi in that cell but consider it one of the l insertions.

5. Create a look-up table L of n rows. Each row contains the identity idi and the
indexes of corresponding cells in SOBER where idi has been inserted and the
application of the hash functions on the corresponding biometric information
bi resulted in a 1 in the cell. (Note that at the end of the previous step there
can be some cells with a 0 but still containing idi. Those cells will not be
included in a row of L.)

The search phase begins by taking a biometric information bj of some individual
and hashing it r number of times. If each of those r cells in SOBER indexed by
the outputs of the hash functions contains a 1, then there is a match and we
proceed with the verification of the identity.

Search phase Given the biometric information bj and the identity idj :

1. Create an empty set I.



2. Apply the r hash functions hi(bj) for 1 ≤ i ≤ r, if hi(bj) = 1 insert the
associated identities in I.

3. If idj ∈ I, then the individual is in the system.

2.3 Discussion

Let us consider a set of biometrics {b1, b2, b3, b4, b5} with corresponding identi-
ties {id1, id2, id3, id4, id5}, a SOBER with size equal to 12, and 3 independent
hash functions. Assume that l is equal to 2. A possible construction is shown in
Tables 1(a) and 1(b). We take the case of the identity id5 and the corresponding
biometric b5 to discuss the construction of the lookup-table and SOBER. Let the
cells in SOBER identified by the application of the hash functions on b5 (step
2 of storage phase) be 6, 7 and 12. Thus those positions contain a 1. Step 3 of
the algorithm then inserts id5 in position 12 (say). Let us now assume that step
4 identifies positions 6 and 12 to be the ones where id5 should be inserted. (It
is just a coincidence that the hash functions on b5 also identified 6 and 12 as
among the positions that should contain 1.) We insert id5 in position 6. Since
id5 is already in position 12 by virtue of step 3, we do not duplicate but count
it as the second insertion. Note, that in this step we could have had an insertion
of id5 in a cell which contains a 0. The lookup table now contains the values 6,
12 as addresses in SOBER for id5.

Identity Address in SOBER

id1 9

id2 2

id3 2

id4 12

id5 6,12

(a) Look-up table of identities

0-{id3} 1 - {id3, id2} 0-{id3} 1-{id1}
0 1-{id5, id2} 1 - {id4} 0-{id2}

1 - {id1} 0-{id4} 0-{id1} 1 - {id5, id4}

(b) SOBER with r = 3 and m = 12. The cells
are numbered 1 through 12 left to right from
top to bottom.

Table 1: Possible construction of ELITE-1 system

Observations: In our approach, the system does not store the plain text of the
biometric information of registered users. The information stored in SOBER will
be used to verify the existence of the user’s biometric information. Further, the
look-up table of identities acts as a proof of whether the user is registered in
the system without leaking any information about his biometric information.
This look-up table also allows easy deletion of an identity from the information
base. Since ELITE-1 knows the positions of the cells in SOBER that contain the
identity, we can delete it without altering the other identities or any information
in the data structure. Finally, even if the system has knowledge of the type of
hash functions, it is very difficult to restore the real biometric information. This
is because even using brute force many biometrics can give the same result (the



result of a hash function is equal to 1 in the same identity position). We will see
in the privacy and computational analysis that the search is constant in time
owing to the Bloom feature of SOBER, and storage complexity is far below the
Setbase approach. This makes real world deployment practical.

Fraud determination: Based on the example, we now discuss the fraud use cases
presented earlier in Section 1. We address the first application use case first. Sup-
pose that there is an applicant who comes to an agency for the first application.
The first phase to perform is the verification of his biometric information. This
verification consists of a search step on the SOBER biometric base. Referring to
the SOBER base given in Tables 1a and 1b, let b be the new biometric infor-
mation of this applicant id. We calculate the output of the three hash functions
hi(b). We can have the following results:

– If ∃i ∈ [[1, r]] such that hi(b) = 0 and id /∈ L then neither the biometric
information nor the identity exist in the system. In this case, the individual
is truly a new user.

– If h1(b) = 4, h2(b) = 2, h3(b) = 6 then the biometric information exists
in SOBER. If id ∈ I = {id1, id2, id3, id5} such that the given identity of
the applicant was on the identity base, the system then assumes that the
applicant has made an error to be addressed for a first application service.

– The biometric information exists in SOBER but the identity does not exist
in the look-up table L. This is an attempt of identity theft or impersonation.

For the second use case (renewal without document), the applicant wants to
renew his ID card when the biometric information already exists in the system.
Suppose that h1(b) = 4, h2(b) = 2, h3(b) = 6, id /∈ I = {id1, id2, id3, id5} and
id ∈ L. In this case, the applicant is not the person that he claims to be. So
this is an impersonation case. In fact, the system proves this by showing that
the biometric information provided by the individual exists in the SOBER, and
the identity is not in the set I. Note that for this specific example, it is easy
for the attacker to usurp the system since we deal with a small set of identities.
However this task is going to be more difficult in real world deployment since
this set will be much larger. The size of the identity set I has to be parametrized
by the administrator so that the privacy and the fraud detection can follow the
administrator’s expectation of the system.

2.4 Privacy analysis

The construction phase reveals that the size of the identity set I is crucial for
privacy and for reliable impersonation detection. In the following section, we
present an analysis that aims to determine the appropriate values that will allow
us to create a reliable system. The analysis is dependent on four variables: m the
size of the SOBER structure (the number of cells, that is), k the number of hash
functions, n the number of identities and l the number of random insertions
into SOBER for each identity. We first define the degree of privacy and the
probability of fraud detection.



Definition 1. Let I be the set of retrieved identities during the search phase.
The degree of privacy pP for any individual is a ratio equal to: pP = 1

|I| , where

|I| denotes the size of the set I.

Definition 2. Let I be the set of retrieved identities during the search phase.
The probability of fraud pF for the two use cases defined in Section 1 are as
follows:

pF =


1
|I| use case – first application for biometric card

|I|
n use case – renewal without a document

The above definitions capture the fact that the size of identity set I controls the
rate of fraud and at the same time the degree of privacy of individuals. In fact,
the probability to detect fraud in our first use case is equal to 1

|I| , where I is

the number of unique identities in the identity set I. On the other hand, for our
second use case, the probability pF that a attacker gives a different identity in

the same identity set I is equal to |I|n . Moreover, if the size of the identity set
increases the privacy level of users also increases. Thus, a small privacy degree
pP reflects a high privacy level.

It is clear that there is a trade off between the privacy level that the system
offers, the reliability of fraud detection and the difficulty to mislead the system.
Indeed, if the set of unique identities gets larger, the attacker gets a higher chance
of cheating the system; on the other hand, if the set of unique identities gets
larger, users get better privacy. The degree of privacy is based on how evenly we
distribute the identities over all positions of the SOBER data structure. The best
scenario will be a case where every position stores exactly l·n

m identities. However,
a random insertion of identities cannot guarantee this result. Thus, we have used
the Greedy algorithm to decrease the maximum load of every position in order to
be as close to the ideal situation as we can. Moreover, decreasing the maximum
load will increase the minimum load (i.e. the minimum number of identities in
any cell). One may be led to believe that a deterministic identity insertion will
be better in our scenario. However, it is not the case from a security perspective.
This is because having a deterministic insertion algorithm will leak information
about the strategy of identity insertion. Consequently, for any internal adversary
the task of identity deletion will be straightforward.

Essentially, we want to have a SOBER data structure where empty positions
are very rare, almost non-existent. Empty positions refer to those positions in
the SOBER data structure that do not contain any identity. We employ a clas-
sical problem known as the the occupancy problem [8], that gives us the exact
probability of finding an empty position. We will show that, using the Greedy
algorithm, we can control the minimum and maximum load of every cell in
SOBER data structure and consequently disperse the identities in a uniform
manner throughout the entire data structure.

Decreasing the false positive rate in SOBER: SOBER is a probabilistic data
structure that involves some false positives. Let pf denote the probability of a



false positive. We first determine the appropriate values to minimize the false
positive rate. Let us consider a SOBER with a size equal to m associated with
k hash functions. We have n entries. Each insertion in the SOBER will imply
insertion of l + 1 same identity values uniformly at random. We consider hash
functions as random functions. We can show that for k = m

n ln(2), the probability
of false positives is the minimum and is equal to pf = 2−k.

Probability of an empty cell in the SOBER data structure: Let us assume that
insertion of identities are made uniformly at random with a single choice, i.e.
every identity has one random choice to get into a given cell. We have l · n
identities and m cells. We denote by Xn.l,m the number of empty cells after all
insertions. We can show that the probability that all cells contain at least one
identity is equal to: Pr(Xn.l,m = 0) =

∑n
i=0(−1)i

(
m
i

)
(1 − i

m )n.l. This formula

can be approximated [9] to: Pr(Xn.l,m = 0) ' e−λ, where λ = m.e−
n.l
m .

Minimum/Maximum load of any cell: The Greedy algorithm ensures with a

high probability [20] a maximum load equal to n·l
m +

√
n·l·ln(m)

m in the case

where n · l > m · ln(m). While the maximum load defines the upper bound of
the number of identities by cell, the minimum load is very important as well,
since it controls the minimum size of the set I in the worst case. The following
theorem gives the behavior of the minimum load of the Greedy(U , 2) algorithm.
We omit the proof for lack of space.

Theorem 1. Let n · l be the number of identities, m the size of the SOBER data
structure and d = 2 the parameter of the Greedy algorithm. Let p be a positive

real number. Then, we have with a probability at least equal to 1− n·k
ln(2) ·e

− l·ln(2)·p2
2k

the minimum load of any bin to be larger or equal to: (1−p)·l·ln(2)
k

A direct consequence of Theorem 1 is that the number of identities in the
worst case with a probability equal to 1− p(l, k, n, p) is equal:

|I| = (1− p) · l · ln(2)

where p(l, k, n, p) = n·k
ln(2) · e

− l·ln(2)·p2
2k . We can control the minimum load by

choosing a proper value of l for a fixed number of hash functions as well as a
fixed population. This implies that the administrator can control the privacy
of fraud pF as well as the degree of privacy pP . We should emphasize that the
bigger the set I the more private the individual’s biometric is but with lesser
fraud detection ratio. This latter ratio should be carefully selected by authorities
for a fair use of the system.

3 ELITE-2 solution for multitude of traits issue

The ELITE-1 scheme assumes that the user is associated with only one biometric
information that has an exact match during the verification phase. This, however,



is not true in real life [10]. In fact, we should differentiate between the biometric
information as a physical characteristic of the individual, and the numerical
biometric information after being captured by an image sensor. Note that, a
physical biometric information can also have several versions. However, these
versions are not totally different and have some similarities. So an identification
of two similar biometrics can always be possible; only the accuracy and the
efficiency are the main issues. This identification is mainly based on how the
biometric information is digitized, and how robustly a biometric information can
be represented such that similar biometrics will match even if they are distorted.

In literature, there are several biometric indexing techniques that can be
variously classified depending on the features used [18]. Examples are global
features such as the average of ridge-line frequency over the whole biometric
information, local ridge-line orientations, minutiae and other features obtained
from the biometric pattern. In the following, we are interested in the minutiae
indexing technique presented in [6,7]. This technique introduces a biometric in-
formation indexing based on Minutiae Cylinder-Code, MCC. We provide in the
following the details of the MCC approach.

3.1 Minutiae Cylinder-Code overview

The MCC representation is a fixed-radius approach relying on minutiae features
of the biometric information. MCC involves three dimensional representations of
minutiae into cylinders. Each physical biometric information β can be seen as a
set of minutiae that represents a template T of β such that T = {m1, · · · ,mn}.
Each minutia mi is defined by its location (xmi , ymi) and its orientation in the
space θmi

. The MCC transformation associates each minutia with a local space
(cylinder) that encodes spacial and directional relationship with the neighboring
minutiae. Each cylinder is divided into multiple cells and each cell contains a
value depending on the neighboring minutiae. We will not go into the details of
MCC. We describe next the verification steps done using the locality-sensitive
hash functions [15].

We represent each biometric information as a set of binary vectors B. Each
binary vector bm corresponds to a MCC transformation of a given minutia m
in the template of the biometric information T such that, B = {bm | m ∈
T and MCC(m) = bm}.

For two biometrics β1 and β2 having respectively the templates T1 and T2,
we generate the binary vector sets for both templates B1 and B2. A similarity
measure between these two biometric information can be done using Hamming

distance [19] such that, hds(T1, T2) =
∑

b∈B2
maxbj∈B1

(1−(
dH (b,bj)

n )p)

|B1| where n

represents the size of each binary vector, p a parameter controlling the shape of
the similarity and dH the Hamming distance, with hds(·) near to 0 means no
similarity, and a hds(·) near to one means a maximum of similarity. We have
to point out that this similarity measure may not be the best choice for MCC
comparison, and there are many other more suited measures discussed in detail



in [6]. For the sake of simplicity we have chosen the Hamming distance similarity
measure.

At this point, we cannot directly integrate the MCC transformation in our
ELITE solution, since we cannot apply a Hamming computation over hashed
values of biometrics templates if we store them in our SOBER. In fact, using
MCC representation, we can avoid computing Hamming distance and replace it
by locality-sensitive hash function (LSH) [7]. LSH can be viewed as projecting
a n size vector into h size vector where h < n. The idea behind the use of LSH
is that similar n size vectors still remain similar by projecting them into h size
vectors.

The LSH approach consists of selecting k hash functions fH1
defined by

randomly choosing k arrival position subsets H1, H2,...,Hk. In order to compute
the projection of a vector, we apply the k-hash functions; the output of each
hash function is a binary vector with a size equal to h. Thus, using LSH, the
Hamming distance similarity can be estimated [16] such that :

hds(T1, T2) ∼=
∑

b∈B2
maxbj∈B1

(C(b,bj))
p
h )

|B1|.k
p
h

(1)

where C(b,bj) =
∑l
i=1 δ[fHi(b) − fHi(bj)] and δ is a Dirac symbol equal to 1

in case of equality and zero in the other case. We refer the reader to [7] to the
experimental results on multiple well known biometrics databases.

Summing up, since we do not require computing Hamming distance for an
identification, the MCC representation and the multiple LSH solution can be
integrated to the ELITE scheme in order to handle identification under the
multitude of traits issue, while at the same time providing a probabilistic link
between individuals and their biometric information. In the following we describe
the solution ELITE-2.

3.2 ELITE-2 construction

Let us consider a set of n biometrics considered as n templates, where each tem-
plate is a set of minutiae, and the associated set of n identities id = {id1, · · · , idn}.
After applying the MCC transformation, the result will be a set of n binary vec-
tors such that B = {B1, · · · , Bn}. Let us consider s locality-sensitive hash func-
tions (LSH) defined by a random sampling of arrival spaces such thatH1, · · · , Hs,
the size of each arrival space being equal to h. We should underline the fact that
the size h will determine later the size of the SOBER filters. In the following,
we describe the storage phase as well as the search (i.e. verification) phase.

Storage phase First, we create s SOBERs with the same set of r independent
hash functions h1, · · · , hr, where each SOBER has a size equal to 2h. Each cell in
each SOBER will be divided into two lists. The first list will contain the identifier
couples of each minutia transformation – for example (1, 2) denotes the second
minutia of the first biometry (instead of containing one or zero value) – and the
second list contains the identities. Let us consider the MCC transformation of



the ith biometric information Bi = {bi,1, · · · , bi,t} and the associated identity
idi. For each bi,j ∈ Bi, the algorithm proceeds in these steps:

1. For each 1 ≤ k ≤ s, apply the r independent hash functions h1, · · · , hr
such that {SOBERk[h1(fHk

(bi,j))] = (i, j), · · · , SOBERk[hr(fHk
(bi,j))] =

(i, j)},
2. For each 1 ≤ k ≤ s, insert the identity idi in l cell of each SOBERk following

the Greedy algorithm,
3. Insert only one value of idi in only one SOBER uniformly at random in the

positions where the r hash functions outputted has an outputted result.
4. Create a row in the look-up table L which contains the identity idi and

the corresponding positions in the random selected SOBER where idi be-
longs to cells where hash functions outputted a 1’s result for the biometric
information Bi.

We reiterate these steps for all binary vectors Bi. At the end we will output s
filled out SOBERS which represents the new biometric database.

Search phase The input of this phase is a scanned physical biometric information
and an identity id. We want to verify whether the biometric information exists
or not in the biometric database. The first step is to transform the scanned
biometric information using the MCC representation. The output of the MCC
representation is a binary vector set B. In order to perform the verification we
follow these steps:

1. Create t empty collusion sets C1, · · · , Ct and t empty identity sets (I1, · · · , It),
2. For 1 ≤ k ≤ s, for 1 ≤ i ≤ t, compute the value h1(fHk

(bi)), · · · , hr(fHk
(bi))

and retrieve from
{SOBERk[h1(fHk

(bi,j))], · · · , SOBERk[hr(fHk
(bi,j))]} the couple (or cou-

ples) existing in all the corresponding positions as well as all the correspond-
ing identities. Store them respectively in Ci and Ii.

3. For 1 ≤ i ≤ t, rearrange the list Ci such that for each couple we give a
score that represents the number of images of the corresponding couple in
Ci, that is, the number of hash functions that collide between the new entry
and existing biometric information(s).

4. Based on C1, · · · , Ct, select the maximum number of occurrences that be-
longs to the same template, then calculate the similarity based on the equa-
tion 1. If the similarity is bigger than a minimum that the administrator
defines, the biometric information exists.

5. If id ∈ I = {I1, · · · , It}, conclude that the identity belongs to the system.

We should point out that the size of I is very important since it represents the
parameter of privacy that we have explained in previous section (see Definition
1). In addition, the size of the SOBER is 2h, which is equal to all the possibilities
of hash function space Hi. On the other hand, the number of entries for each
SOBER is equal to n×t where n is the number of biometrics and t the number of
minutiae in each biometric information. (In practice t ∼= 70 [7]). In order to have



the minimum false positives and decrease the collision in the same SOBER for

different binary vectors b, we should verify the following equation: r = 2h

n.t ln(2).
In addition, tuples stored in the SOBER cells do not disclose any information

about the identity. A number of these couples exist in the construction so as to
maintain a link between minutiae and not to individuals’ identity. This link
allows one to determine the number of collusions for each stored minutiae in
relation to others in the same template, as shown in the search phase.

From privacy perspective, the analysis can be done following the same steps
as ELITE-1. The only main difference is the number of SOBERs (the number
of minutiae associated with each biometric information is considered as a single
entry).

3.3 Complexity analysis

The storage complexity of ELITE-1 is dependent on the number of instances of
identities, which is equal to l for each identity. If n represents the number of
identities, the storage complexity is equal to O(n · l). ELITE-2 represents a solu-
tion that can accommodate the multitude of traits issue, which ELITE-1 cannot,
while maintaining the advantage of the basic ELITE-1 scheme. ELITE-2 derives
its power from the constant search time of SOBER. However since the ELITE-2
construction requires the use of s bloom filters, the search time is equal to O(s).
On the other hand, the use of s Bloom filters increases the storage complexity
to O(s · n · l). (Here we do not take into account the constant factor of number
of minutiae, which is in the order of ∼ 70 minutiae per biometric information).
ELITE-2 takes into consideration the multitude of traits for deletion of biomet-
rics while keeping identities unlinked to their hidden biometrics. Table 2 presents
a functional and computational comparison between the Setbase approach and
the two ELITE solutions.

ELITE-2 has many privacy advantages compared to the Setbase approach,
specially with regards to the flexibility it offers for the choice of the rate of
impersonation detection. In the Setbase approach, the rate is equal to m/n,
where m is the size of each subset and n the size of whole population. Since
the number of subsets are fixed, the m factor increases, which decreases linearly
the detection rate. In ELITE-2, the randomization factor can be dynamically
changed depending on the authorities’ expectations. In ELITE-2, fixing the size
of the SOBER is mandatory before inserting elements. This can be a shortcoming
to overcome if the distribution of population growth is not pre-determined (which
is typically the case). However, even if we made the assumption of an unknown
population growth, a good way to proceed is to divide each SOBER into chunks
(each chunk is a different SOBER with its own hash functions) that we fill up
depending on the population growth.

4 Conclusion

One of the biggest concerns of biometric based systems such as the ones used for
issuing biometric based identity cards is that the systems include a deterministic



Scheme Search
complexity

Storage
complexity

Multitude
of traits

Hidden bio-
metric infor-
mation

Delete oper-
ation

ELITE-1 O(1) O(n.l) no yes yes

ELITE-2 O(s) O(s.n.l) yes yes yes

Setbase ap-
proach

O(n) O(n|B|) yes no no

Table 2: Comparison between ELITE-(1,2) and Setbase approach

link between the biometric information of an individual and her identity. Since
the system also contains sensitive private information, such deterministic links
can cause identity thefts for an individual when an attacker misuses a externally
obtained biometric information to impersonate a registered user. In this work,
we presented two constructions, ELITE-1 and ELITE-2, that render the associa-
tion between the biometric information and the identity probabilistic. ELITE-2
improves upon ELITE-1 to address the challenges posed by the multitude of
traits issue. We provide a theoretical analysis of the privacy guarantees of the
ELITE scheme. We discuss how real-world impersonations can be detected. Fi-
nally, we provide analytical results of the storage and search complexities of the
two schemes.

Future work involves a thorough new stateful algorithm that takes dynami-
cally into consideration the distribution of identities during the storage phase in
order to have more precise control over the probabilistic parameters. In addition,
we plan to investigate how our scheme ELITE-1 can be applied to other appli-
cations, such as, keeping the relationship between an individual and his genetic
information secret.
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