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Abstract

Monte Carlo (MC) simulation is a technique that provides approximate solu-
tions to a broad range of mathematical problems. A drawback of the method
is its high computational cost, especially in a high-dimensional setting, such
as estimating the Tail Value-at-Risk for large portfolios or pricing basket
options and Asian options. For these types of problems, one can construct
an upper bound in the convex order by replacing the copula by the comono-
tonic copula. This comonotonic upper bound can be computed very quickly,
but it gives only a rough approximation. In this paper we introduce the
Comonotonic Monte Carlo (CoMC) simulation, by using the comonotonic
approximation as a control variate. The CoMC is of broad applicability
and numerical results show a remarkable speed improvement. We illustrate
the method for estimating Tail Value-at-Risk and pricing basket options and
Asian options when the logreturns follow a Black-Scholes model or a variance
gamma model.

Keywords: Control Variate Monte Carlo, Comonotonicity, Option pricing

1. Introduction

Monte Carlo (MC) simulation is a well known technique in different domains
of mathematics such mathematical finance, see Glasserman (2003); Benninga
(2014). The method is based on the estimation of the expectation of a real-
valued random variable X by generating many independent and identically
distributed samples of X, denoted X7, ..., X,,. The natural unbiased estima-

S X,
=1

3=

tor for £(X) is then the sample mean X,, =
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A typical application of the Monte Carlo method in finance is the estimation
of the no-arbitrage price of a specific derivative security (e.g. a call option),
which can be expressed as the expected value of its discounted payoff under
the risk neutral measure. For instance the price at time t of a European
call option with strike price K and maturity date 7" on an underlying with
price process S; can be obtained as the expectation of its discounted payoff
e "TD(Sr — K), under the risk-neutral probability Q,

EC(K,T,t) = E?leT9(Sr — K),].

For the computation of this price by Monte Carlo simulation, we generate
a large number of price paths Sr and compute the discounted payoffs and
their sample mean. The obtained result is an unbiased estimate of the option
price.

Another application of the Monte Carlo method in finance is estimating risk
measures, such as Tail Value-at-Risk. The Tail Value-at-Risk of a portfo-
lio at the probability level p is the arithmetic average of its quantiles from
the threshold p to 1. The Monte Carlo method estimates these quantiles
by generating a huge number of portfolio values for which the exceedance
probabilities Pr[X > x] = E[I(X > xz)] are computed, where I(.) denotes
the indicator function. A classical interpolation and inversion then gives an
estimate for the quantile.

The main shortcoming of the Monte Carlo method is its high computational
cost. By the Central Limit Theorem, if X;,..., X,, have finite variance o2,
then X, is approximately Gaussian and Var(X ):%2 Consequently, the
standard error of the crude Monte Carlo estimate is of order O(—=) and thus,
to double the precision, one must run four times the number 01[ imulations.
Alternatively, strategies for reducing ¢ should be considered.

Several variance reduction techniques can be used in companion with the
Monte Carlo method, such as antithetic variables, control variates and im-
portance sampling. A detailed survey of these techniques is given in Ripley
(1987). In this paper we focus on the well-known control variate method for
variance reduction.

The applications considered in this paper are simulation problems based on
multivariate random variables, such as basket options where the price de-
pends on several underlying securities. In these problems the closed form
expressions are often available for the univariate cases. For instance, in a
lognormal world the price of a European call option (which only depends on
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St) can be calculated with the Black-Scholes pricing formula. As comono-
tonicity essentially reduces a multivariate problem to univariate ones, leaving
the marginal distributions intact, we propose to use the comonotonic approx-
imation as a control variate in a so-called Comonotonic Monte Carlo (CoMC)
framework. One further step that can be considered is utilizing the CoMC
method in addition to other existing control variates in the framework of a
multi-variable control variate method.

The Comonotonic Monte Carlo method is particularly useful to estimate
distortion risk measures for sums of random variables, such as Tail Value-at-
Risk (TVaR). The application domain of this method can also be extended to
the risk measures which can be written as a linear combination of distortion
risk measures, such as the Expected Shortfall (ESF). As the ESF basically
consists of a stop-loss transform, its mathematical concept is very similar to
option pricing, so the technique is useful in this domain as well.

The structure of this paper is as follows. First we discuss the control variate
method for reducing the variance. Next, we describe the application of the
comonotonicity concept to construct the comonotonic control variate. In the
fourth section, we illustrate the CoMC framework for Asian options, Basket
options and TVaR. In the final section we conclude the results.

2. Control Variate Monte Carlo Method

The control variate method is a classical approach for reducing the vari-
ance, and hence improving the efficiency, in Monte Carlo simulation, see
e.g. Kemna and Vorst (1990) for the pricing of arithmetic Asian options.

In the control variate Monte Carlo method, when we generate the sample
values to estimate F[X], we use the same values to estimate the expecta-
tion of a different random variable Y which resembles X and for which the
analytical calculation of its expectation, E[Y], is straightforward. Assuming
that E[Y] is known, we can then determine the error of estimating E[Y] and
use it to correct the estimate of E[X]. As an example, in the case of Asian
option pricing, we can calculate the value of a geometric Asian call option
using both the (analytical) Black-Scholes formula and Monte Carlo simula-
tion. If the simulation turns out to underestimate the real option price, one
could argue that the corresponding estimate for the arithmetic Asian option
will also be too low and adjust the Monte Carlo estimate accordingly.

In general, the control variate method can be formulated as follows. Suppose
that there exists a random variable Y, related to X, for which E[Y] is known.
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Considering that the sample means X,, and Y,, are unbiased estimators for
E(X) and E[Y] respectively, the adjusted estimator

X.(\) =X, — Y, — E[Y]), AeR

is also an unbiased estimator of E[X], i.e. E[X,()\)] = E[X,] = E[X]. The
control parameter A is an arbitrary scalar, but in order to minimize the
variance of X,,(\) we should set it to

., Co(X)Y)  |[Var[X]
M= V] =\ Vary)

with p denoting the correlation between X and Y. This choice yields a
minimum variance (1 — p?)Var[X,], which is obviously smaller than Var[X,,]
as —1 < p < 1. Therefore the control variate unbiased estimator X,,(\) leads
to a smaller variance compared to the obtained variance from the crude
Monte Carlo unbiased estimator X,,.

Note that the optimal A\* involves moments of X and Y that are generally
unknown. Hence A is often chosen to be 1. This choice makes sense if the
control variate Y is very similar to X, and thus if p is close to 1 and Var[X] ~
VarlY]. The optimal A* could also be estimated from the simulated data,
but one should take into account that this introduces bias of order O(1/n)
to the estimator X,,()\). A straightforward way to overcome this problem is
to use different samples for the estimation of A\ and E[X].

3. Comonotonic Control Variate

The concept of comonotonicity has received a lot of interest in the recent
actuarial and financial literature, mainly due to its interesting properties that
can be used to facilitate various complicated problems, see Dhaene et al.
(2014); Deelstra et al. (2011); Liu et al. (2013); Tsuzuki (2013). In the
following sections we describe the properties of comonotonicity that can be
used to construct a comonotonic control variate for a multivariate Monte
Carlo simulation.

3.1. Comonotonic Upper Bound

Consider a random vector X = (Xy,..., X,,) for which the marginal distri-
butions of X;’s are known. In order to determine the distribution function
of the sum of random variables, S = Y_" | X, it is often assumed that the

4
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individual random variables X;’s are mutually independent. However, the
assumption of mutual independence might be violated and may result in un-
derestimating the sum S. To avoid this underestimating, we need to consider
the dependence structure of the random vector X. If the joint distribution
of X is unspecified or less tractable, we can derive an upper bound for the
sum S in convex order!.

Dhaene et al. (2002) proved that the convex-largest sum of the components of
a random vector X with given marginal distributions will be obtained in the
case that the random vector X has a comonotonic distribution, which means
that each two possible outcomes (x1, ..., x,,) and (y1, ..., y,) of (X1, ..., X,,) are
ordered component-wise.

Definition 1
A random vector X = (Xj,...,X,) is comonotonic if and only if it has a
comonotonic copula i.e. for all z = (1, ..., x,), we have

F&(@) :mzn{Fxl(xl),FX2(x2),,FXn(xn)} (1)

Proposition 1
If X has a comonotonic copula then for U ~ Uniform(0,1), we have

X L (FU), (FgH U)o (B (). (2)

Proof. See Dhaene et al. (2002). O

According to Proposition 1, for any random vector X = (X,..., X,,), not
necessarily comonotonic, we can construct its comonotonic counterpart which

will be denoted by X¢ = (X¥, ..., X¢) as follows
X = (Fy, (U), (Fy, (U)o, (Fi (U).

Clearly X and X have the same marginal distributions Fl,, but they have
a different copula. Also the sum of its components, S¢ = Y | X¢, gives an

LA random variables X is said to precede a random variable Y in the convex order
sense, written X <., Y , if and only if

{ E(X)=E(Y)
E(X—-d)+ <E(Y —d)+ forallreal d
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upper bound for the sum S. In fact, replacing the copula by a comonotonic
copula yields the largest sum in the convex order, see Dhaene et al. (2002).

3.2. Additivity property

Here we discuss the additivity property of the quantile function and any
distortion risk measure for a sum of comonotonic random variables. The
additivity property will be used to compute the comonotonic upper bound.

Proposition 2
The quantile function Fg.' of a sum S¢ of comonotonic random variables with
distribution functions F,, ..., Fx, is additive

n

Fl(p) = ZF)?f(p% 0<p<l (3)

Proof. See Dhaene et al. (2002). O
By the additivity property exhibited in Proposition 2, calculating the dis-
tribution function of S¢ is straightforward. The distribution of S¢ simply
follows from inverting its quantile function. This makes the comonotonic up-
per bound S° a natural control variate, namely comonotonic control variate,
in a Monte Carlo simulation.

In the following propositions it will be shown that any distortion risk mea-
sure has the additivity property for comonotonic variables. This property
facilitates deriving the comonotonic control variate for estimating the Tail
Value-at-Risk (TVaR) and option pricing in a so-called comonotonic Monte
Carlo (CoMC) framework.

Definition 2
The distorted expectation of a random variable X is defined by

plX) = [ (o(F(a) = 1) de+ / " g(Fy(@))de. (4)

—0o0

where Fx(r) = 1 — Fx(x) denotes the tail function of Fx () and the func-
tion g¢(.) is a so-called distortion function, i.e. a non-decreasing function
g :[0,1] — [0, 1] such that g(0) =0 and g(1) = 1.

According to Wang (1996), p, is known as the distortion risk measure as-
sociated with distortion function g. Note that the distortion function ¢ is
assumed to be independent of the distribution function of X.

6
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Proposition 3
The distortion risk measure for a sum of comonotonic variables is additive
i.e. for any distortion function g and all random variables X; we have

=D palXil. (5)

Proof. This result is proved in Wang (1996) for non-negative random vari-
ables, but it can be easily extended to all real-valued variables. Substituting

g(Fx(x)) by [, Fx(@ g dg(q) in (4) and changing the order of the integrations,
we find that

pg[X]Z/O Fil(q)dg(Q)z/o Fi'(1 = q)dg(q) (6)

for any distortion function g and any random variable X. Combining equa-
tions (3) and (6) yields

pg[Sc] = folF (1 —q)dg(q fo Zz 1F ( )dg(q) = Z?:l Pg[Xi]a
which completes the proof. O

Corollary 1
The Tail Value-at-Risk, TVaRx(p), at level p € (0,1) given by
1 1
TVaRx(p) = — [ Fx'(a)dq (7)
lL—pJ,

is a distortion risk measure with distortion function
. T
g(,ﬁlj) = nun (—71) 70 S x S 17
I-p

hence it is additive for comonotonic random variables.

We remark that risk measures which can be written as a linear combination of
distortion risk measures satisfy the additivity property as well. For instance
the Expected Shortfall (ESF) defined as

ESFx(p) = E[(X — Fx'(p))+]

is not a distortion risk measure, but it is also additive for comonotonic ran-
dom variables.
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Corollary 2
The ESF can be written as a linear combination of distortion risk measures
given by

TVaRx(p) = Fx'(p) + 15 ESFx(p),
see Dhaene et al. (2006), thus it follows

ESFse(p) = (1 - p)(TVaRs(p) — Fs.'(p))

It is worth noting that the Expected Shortfall basically consists of a stop-
loss premium, so it is very closely related to the pricing of options. More
generally, for the stop-loss transform of a sum of comonotonic variables we
have the following result.

Corollary 3

By choosing p = Fsc(K) in Corollary 2, it follows that the stop-loss premium
E[(S° — K),] of a sum S° of comonotonic random variables with strictly
increasing distribution functions Fx,, ..., Fix, can be written as

E[(S° = K)4] = ) [(Xi = Fx(Fse(K)))4], VK € R. (8)

=1

The additivity property of distortion risk measures for comonotonic variables
reduces the multivariate problem to univariate ones.

Furthermore, replacing the copula by a comonotonic copula leaves the margin-
al distributions intact. Therefore the simulated samples in the univariate
cases are readily available from the main simulation routine. Considering
the mentioned properties, the comonotonic upper bound is an obvious con-
trol variate choice. In the next section we apply the CoMC method to Asian
and Basket option pricing and to estimating the TVaR of a portfolio.
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4. Comonotonic Control Variate for Asian Options, Basket Options
and Tail Value-at-Risk

4.1. Asian Option

An Asian option is a path dependent option, for which the payoff depends on
the average price of the underlying risky asset in the considered time interval.
We consider a discrete set of n time points along the time interval [0, 7] such
that the asset price, S, is observed at time points 0 =ty < t; < ... <t, =1T.
In a complete market, the no-arbitrage price of the Asian option at time 0 is
its expected discounted pay-off under a martingale measure ) given by

1 n
(— 35— K> ] ,
n “
=1 +
where 7 is the risk-free rate.

Since in general the distribution of the average + >°" | S, of dependent ran-
dom variables is not available, it is not possible to derive a closed-form ex-
pression for the Asian option price. Therefore the comonotonic Monte Carlo
simulation is a useful method for estimating the price of Asian option. In
the following, we derive the comonotonic control variate for this estimation
in the CoMC framework.

The comonotonic upper bound of AC(n, K, T), which is obtained by replac-

ing the price vector (S;,, ..., Sy, ) by its comonotonic counterpart (Sy , ..., Sf. ),
—rT

reads
1 n
n <
=1 +
e

= —E°[(s° —nK).].

AC(n,K,T) = e "TE?

ACoom(n, K, T) = e ™ E9

where S¢ = > | Sy, Note that from Proposition 1 we have, "  Sf =

S Fl(U).

Using Corollary 3, we have

—rT

ACom(n, K, T) = < Z: fo {(sti - Fs—tj(FSc(nK)))J .

n
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Hence, AC.om(n, K,T) can be rewritten in terms of prices of European call
options EC(k;,t;) at time 0 with exercising times ¢; and strike prices k;

1 n
ACoom(n, K, T) = — > e TTIEC (ki t), (9)
=1

where k; = FS_tiI(FSC(nK)).

For the practical determination of the strike prices k;, the distribution func-
tion of the comonotonic sum Fge has to be calculated and evaluated at nK by
Proposition 2. Under the the risk-neutral probability, this can be done nu-
merically in a straightforward way. The k;’s are then obtained by evaluating
the inverse distribution function of the marginals at Fse(nk).

Considering the Lévy market model for asset prices we derive the comono-

tonic upper bound (9). We assume that the price S; of the risky asset follows
a variance gamma process {Xt(VG), t> 0}, which is a popular class of Lévy
process. The risk-neutral model for the asset price is then given by

St:SO

M exp(X;).

E exp(Xy)

The factor exp ((r — q) t) /E [exp(X;)] guarantees that the risk-neutral set-
ting holds by considering a mean correcting argument, see Albrecher et al.
(2005).

The price EC(K,T) of a European call option with strike price K" and matu-
rity date T" under the variance gamma model can be calculated by the Carr
and Madan formula, see Madan et al. (1998); Albrecher et al. (2005), which
formulates the price of European call option in terms of the characteristic
function of the underlying Lévy process.

Let a be a positive constant such that the ath moment of the stock price
exists and let ¢ be the characteristic function of the variance gamma process.
Then we have

EC(K,T) = exp(—o;iog(K)) /+<>o exp(—ivlog(K))o(v)dv, (10)
where
ofv) = exp(—rT)E [exp(i(v — (o + 1)i) log(St))]

a?+a—v+i2a+1)v

10
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_exp(—rT)p(v — (o + 1)i)
S a?ta—v2+i(2a+ 1)’

Hence the comonotonic upper bound can be obtained using the European
option pricing formula (10) of Carr and Madan and (9). We consider this
comonotonic upper bound as a control variate in the CoMC method for
estimating the price of Asian options in a variance gamma model.

4.1.1. Numerical example

We illustrate the performance of the CoMC method to estimate the price of
an Asian option when the underlying asset follows a variance gamma process.
We consider an arithmetic Asian option with maturity of 1 year and averaging
every month (i.e. 12 averaging dates). The initial value of the stock price is
normalized to be 100 and the yearly risk free interest rate is » = 0.02. The
parameters of the variance gamma process that were used to generate the
price paths are those from Albrecher et al. (2005). Five values (80, 90, 100,
110 and 120) are assumed for the strike price K.

In Table 1 we compare the performance of the crude Monte Carlo (MC)
method and the CoMC method based on 10,000,000 simulated paths. The
estimated price based on MC and CoMC is represented by ACy;c and ACeon¢
respectively. The performance of CoMC method is examined by comparing
its computation time and obtained variance with the crude Monte Carlo
method.

The ratio of computation times (Th¢/Tconmc) and Variances (Ve /Veoomc)
are depicted for each of strike prices in Table 1.

K  ACuc ACcomc Vuce/Veome Tuce/Tcomc

80 20.7295 20.7441 161.7179 0.5175
90 11.8211 11.7605 94.3999 0.5176
100 4.5661  4.5684 54.5796 0.5164
110 0.9405  0.9295 21.3384 0.5143
120 0.2039  0.2006 11.3167 0.5157

Table 1: Performance of the CoMC method in Asian option pricing

We observe that by increasing the strike price, the ratio of variance reduction
Viee/Voonme decreases while the ratio of computation time The/Tconc is

11
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almost constant. In other words, the CoMC method performs well when the
option is in the money.

Since S¢ is larger than S in convex order, they have the same expectation
value, F(S°) = E(S), but S¢ has heavier tails than S, see Vyncke et al. (2001).
Therefore, the difference of E[(S — K),] and E[(S® — K),] is smaller for the
in the money cases compared to the other cases where the strike price is
comparatively larger. This results in a higher correlation between (S — K)
and (S° — K), when K is small. Consequently the comonotonic control
variate method performs better for the in the money cases.

The efficiency of the method can be quantified by comparing the number
of samples required for the crude Monte Carlo method to achieve the same
degree of accuracy. For the different strike prices K = 80, 90, 100, 110, 120
the number of samples required for the crude Monte Carlo to reach the same
level of precision as the CoMC varies between 11 to 160 times the original
number of samples.

Considering that the required computation time for the comonotonic control
variate Monte Carlo method is almost twice the computation time of crude
Monte Carlo method, it can be concluded that employing the CoMC method
significantly increases the computation performance and efficiency.

4.2. Basket Option

A Basket option is an option on a portfolio (or basket) of several underlying
assets whose payoff is dependent on the value of a weighted sum of the
underlying assets. Consider a portfolio of n risky assets with price process
{Si(t),t > 0}, i =1,...,n and positive weights a;, > ., a; = 1.

In a complete market, the no-arbitrage price of a Basket call option with
maturity date 7" and strike price K at time 0 is given by

(fjaism —K) ] , (1)

i=1

BC(n,K,T) =e""E?

which is the expected payoff of the call option under a martingale measure
(), discounted at the risk-free rate r.

In the classical Black-Scholes model, the price process of assets are assumed
to follow the risk-neutral stochastic differential equations

dS;(t) = (r — ¢;)Si(t)dt 4 0,S;(t)dB(t), (12)

12
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where the B;(t) are Brownian motions, ¢; and o; denote the dividend rate
and the volatility of the underlying asset i respectively. Given the above
dynamics, the price of the i¢th asset at time T equals

Si(T) = SZ‘(O)B(T_Qi_U?/Q)T-HTiBi(T)‘

Thus, the random variable S;(7")/5;(0) is log normally distributed with pa-
rameters (r — q; — 02/2)T and 0?T. We assume that the Brownian motions
B; and B; are correlated with a constant correlation p;;.

Since the distribution of a sum of log-normally distributed random variables
is not log normal, the distribution of the weighted sum Y a;5;(T") is not
known analytically and hence determining the price of the Basket option is
not straightforward.

In order to estimate the price of a Basket option in the comonotonic Monte
Carlo framework, the corresponding comonotonic control variate can be con-
structed as follows.

By replacing the weighted average > " | @;5;(T") with the comonotonic weighted
average » . a;S¢(T) in (11), the comonotonic upper bound of BC(n, K, T)
is then given by

BCeom(n, K, T) = e " E? [(8° — K). |, (13)
where §¢ = """ a;SH(T) =>"" aiFSTi%T)(U), see Proposition 1.

Note that by using Corollary 3, the comonotonic upper bound (13) can be
written in terms of a weighted sum of European call options,

BCoom(n, K,T) = e T ialEQ |:<S7,(T) - F&zT)(FSC(K»)J

n
= aECi(k;,T), (14)
i=1
where ]{Zz = FST,(IT)(FSC<K))
We know from Proposition 2 that the quantile function of a sum of comono-
tonic random variables is simply the sum of the quantile functions of the
marginal distributions. Moreover, in case of strictly increasing and con-
tinuous marginals, the cumulative distribution function Fgs.(z) is uniquely

determined by

Fi (Fse(z)) = ZaiFS;gT)(FSC(x)) =z FN0) <z < FZ'(1), (15)

13
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see Kaas et al. (2000). Hence using the inverse distribution function of S;(7")
given by

FS:%T) (p) = Si(O)B(r—qi—a?/Q)TJrai\/T@*l(p)’ vp € (0,1), (16)

where @ is the cdf of the standard normal distribution, (15) results in
Z aiSZ.(O)e(T—Qi—J?/Q)T+Ui\/T¢71(FSC(K)) =K, (17)
i=1

from which Fs.(K') can be obtained numerically. Therefore the strike prices
k; for asset ¢ can be determined by evaluating (16) at Fse(K).
Having obtained the k;’s, the price of European call options with strike price
k; and maturity date T" at time 0 reads

ECz(k“ T) = S,L(O)@(dl 1) — kieirT@(dﬁg),

where

diy = In(S;(0)/ki) + (ri + 07 /2)T

O-iﬁ s di’g = d@l — 0'1'\/?.
Thus, the comonotonic control variate for a Basket option pricing in Black-
Scholes setting can be determined by the weighted summation of EC;(k;, T')
in (14).

It should be noted that an alternative control variate can be obtained by
replacing the weighted arithmetic average with the geometric average. Since
the geometric average of the log-normally distributed variables is also log-
normally distributed, obtaining the closed-form formulation for the geometric
control variate is trivial, see Kemna and Vorst (1990).

4.2.1. Numerical example

In this section, the performance of the CoMC method is evaluated for pricing
basket options. We consider a Basket option consisting of seven assets. The
data used for this purpose is based on the basket of seven stock indices
underlying the G-7 index-linked guaranteed investment certificates offered
by Canada Trust Co, see Milevsky and Posner (1998a,b).

The risk free interest rate is r = 0.063 and the maturity date is set to 1 year.
The initial value of each asset in the basket is normalized to be 100. The
other considered parameters are given in Table 2 and 3.
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weight volatility dividend yield

country  index (in%)  (in%) (in%)
Canada  TSE 100 10 11.55 1.69
Germany DAX 15 14.53 1.36
France CAC 40 15 10.68 2.39
U.K. FSTE 100 10 14.62 3.62
Italy MIB 30 5 17.99 1.92
Japan Nikkei 225 20 15.59 0.81
U.S. S&P 500 25 15.68 1.66

Table 2: G-7 index linked guaranteed investment certificate weightings

Canada Germany France U.K. Italy Japan U.S.

Canada 1.00 0.35 0.10 0.27 0.04 0.17 0.71
Germany  0.35 1.00 0.39 0.27 0.50 -0.08 0.15
France 0.10 0.39 1.00 0.53 0.70 -0.23 0.09
U.K. 0.27 0.27 0.53 1.00 045 -0.22 0.32
Italy 0.04 0.50 0.70 045 1.00 -0.29 0.13
Japan 0.17 -0.08 -0.23  -0.22 -0.29 1.00 -0.03
U.S. 0.71 0.15 0.09 032 0.13 -0.03 1.00

Table 3: Correlation structure of the G-7 index

The performance of the CoMC method is examined by comparing its compu-
tation time and obtained variance with the crude Monte Carlo method. The
ratio of variances Vo /Veonce is depicted for different strike prices in Table
4. The estimated prices for the considered Basket option based on MC and
CoMC methods are represented by BCyc and BCgonc respectively. The
obtained results for both methods are based on 10, 000, 000 simulated paths.

K BCuyc BCcoomc Vme/Veomc Tuc/Tcomc

80 23.1366 23.1387 273.6565 0.5191
90 13.8112 13.8166 35.2039 0.5778
100  5.6312  5.6440 10.7839 0.5577
110 1.2320 1.2387 3.2520 0.5260
120 0.1334  0.1336 1.4792 0.5339

Table 4: Performance of the CoMC method in Basket option pricing
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According to Table 4, the variance reduction capability of CoMC decreases
by increasing the strike price, while the required computation resource for
the CoMC method is almost twice the crude Monte Carlo method. Therefore
the method is best suited for the in the money cases with the same reasoning
given in section 4.1.1.

In this example it is observed that, based on the estimation error, the number
of samples required for the crude MC to reach the same level of accuracy as
the precision of the CoMC, varies between 3 to 273 times the original number
of samples.

Considering that the comonotonicity assumption induces the strongest pos-
itive dependency, it is expected that the correlation structure has a strong
influence on the performance of the CoMC method. Therefore it is worth to
examine these effects quantitatively in Basket option pricing. To this end,
we consider a Basket option consists of the first two assets of Table 2 with
the equal weights. The performance of the CoMC method is evaluated for
different strike prices and correlations p.

p K  BCyc BCoomc Vue/Veoomc
0.75 80 23.4258 23.4196 2910.4
90 14.5317 14.5374 534.91
100 7.3315 7.3320 147.17
0.25 80 23.3801 23.3843 706.49
90 14.2747 14.2701 87.210
100 6.6607 6.6828 19.961
—0.25 80 23.3826 23.3734 313.20
90 14.0618 14.0633 30.654
100 5.9161 5.9256 6.6869
—0.75 80 23.3657 23.3714 100.95
90 13.9747 13.9855 9.4026
100  4.9893 4.9947 2.7801

Table 5: Influence of the correlation on the efficiency of CoMC
For the constant strike price K, the variance reduction ratio Vo /Veoonmc
increases for higher level of positive assets correlation p, see Table 5. On

the other hand, in case of a negative correlation, which is in contradiction

16

Documents de travail du Centre d'Economie de la Sorbonne - 2015.15R (Version révisée)



with the comonotonicity assumption, the performance of the CoMC method
is even worse than crude Monte Carlo method.

As mentioned in the theoretical background, the geometric control variate is
an alternative control variate in Basket option pricing. The second numerical
example is aimed at comparing the performance of the comonotonic control
variate with its competent alternative, the geometric control variate. For this
purpose, similar to the previous example, we consider a two asset basket and
compute the efficiency of the methods for different weights a; and initial prices
Sop while the strike price is the initial value of the portfolio and correlation
coefficient is considered to be constant, p = 0.35.

ar/ay  (Sor, S02)  Vme/Veome Vue/Va
1 (100, 100) 29.7870 539.7020
(100, 50) 34.1525 7.2490
(50, 100) 50.0775 8.1827
0.25 (100, 100) 105.2138 2251.6
(100, 50) 48.7746 17.9618
(50, 100) 377.3903 41.6317

Table 6: Comparison of CoMC and geometric control variate

Table 6 compares the variance reduction Vj,¢/Ve obtained by the geometric
control variate to the variance reduction Vy;o/Veone of the CoMC method.
The results show that for the cases where the initial prices are equal the
geometric control variate performs much better than the CoMC method. In
the other cases, the performance of the comonotonic control variate method
surpasses the variance reduction obtained by the geometric control variate
method. We conclude that for non-equal initial prices, the CoMC method
has real added value.

4.8. Tail Value-at-Risk

The Tail Value-at-Risk (TVaR) of a portfolio at a given level of probability
p € (0,1), is defined as the arithmetic average of its quantiles from the
threshold p up to 1, see Corollary 1.

Consider a portfolio consisting of n risky assets where each asset price S;(t)

follows the risk-neutral stochastic differential equation in (10). The value
of the portfolio at time T" equals S = > | a;S;(T). Since the distribution
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function of S is unknown, determining the Tail Value-at-Risk of the loss of the
portfolio, TVaR_g(p), is not straightforward. Therefore, the comonotonic
Monte Carlo method can be employed for estimating TVaR.

As already mentioned in Corollary 1, the Tail Value-at-Risk is additive for a
sum of comonotonic random variables. Hence, the comonotonic control vari-
ate for estimating the TVaR for the loss of portfolio in the CoMC framework
is given by

1 1
TV aReom = TVaR_s(p) = = / F=(q)dq
p

n 1 1 ~
= a; (_Tp/ Fsi%T)(l - Q)dCI> ’ (18)
— »

where S¢ =" a;SH(T) = >, aiFS’i%T)(U), see Proposition 1.
Considering that the price S;(T") of each asset at time 7' is log normally
distributed, we have for (18)

| E(S:(T)) 1
5 [ et =g = =28 (0@ ) - oD)) 9
where @ denotes the standard normal distribution function and o; is the
volatility of asset i, see Sandstrom (2010).

4.3.1. Numerical example

The performance of the CoMC method is evaluated here for the calculation
of the TVaR risk measure. We consider a portfolio consisting of the first two
assets, Canada and Germany, of Table 2. We generate the price paths in a
Black-Scholes setting using the parameters given in Tables 2 and 3.

risk measure TVCLRMC TVCLRCO]\/[C VMC/VCOMC TMC/TCOMC

TVaR(0.90)  86.4584 86.4631 3.5193 0.5321
TVaR(0.95)  83.6405 83.6446 2.6940 0.5227
TVaR(0.99)  78.4445 78.4150 1.8013 0.5600

Table 7: The performance of CoMC method for TVaR
The results of the CoMC method are compared with the ones obtained from
the crude Monte Carlo method for the different levels of probability p, see

Table 7. For this specific correlation structure, the variance reduction ratio,
Viee /Veonc, obtained by the CoMC method is rather limited.
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5. Conclusion

In this paper, we presented a novel control variate Monte Carlo method based
on the concept of comonotonicity. The CoMC method is explained for basket
options, Asian options and TVaR.

We evaluated the performance of the method in realistic cases by the il-
lustrative numerical examples. The parametric study revealed the strong
dependence of the method performance on the correlation between assets
for Basket option pricing. Moreover, we showed that increasing the strike
price reduces the efficiency of the method in Asian option and Basket option
pricing. Thus the CoMC method is best suited for the in the money options.
The realistic benchmark examples show that the precision of estimating the
price of Asian option and Basket option is drastically increased by employing
the CoMC method while the computation time is not increased considerably
compared to the crude Monte Carlo method.
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