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Abstract

Monte Carlo (MC) simulation is a technique that provides approximate solu-
tions to a broad range of mathematical problems. A drawback of the method
is its high computational cost, especially in a high-dimensional setting. Es-
timating the Tail Value-at-Risk for large portfolios or pricing basket options
and Asian options for instance can be quite time-consuming. For these types
of problems, one can construct an upper bound in the convex order by replac-
ing the copula by the comonotonic copula. This comonotonic upper bound
can be computed very quickly, but it gives only a rough approximation. In
this paper we introduce the Comonotonic Monte Carlo (CoMC) simulation,
which uses the best features of both approaches. By using the comonotonic
approximation as a control variate we get more accurate estimates and hence
the simulation is less time-consuming. The CoMC is of broad applicability
and numerical results show a remarkable speed improvement. We illustrate
the method for estimating Tail Value-at-Risk and pricing basket options and
Asian options.

Keywords: Control Variate Monte Carlo, Comonotonicity, Option pricing

1. Introduction

The concept of comonotonicity has received a lot of interest in the recent
actuarial and financial literature due to its interesting properties that can
be used to facilitate various complicated problems, see Dhaene et al. (2014);
Deelstra et al. (2010, 2011); Liu et al. (2013); Tsuzuki (2013). Using the
properties of comonotonicity, which are described in the following sections,
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it can be employed as a powerful tool for reducing the variance in Monte
Carlo simulation.

The crude Monte Carlo method is based on the estimation of the expec-
tation of a real-valued random variable X by generating many independent
and identically distributed of X, denoted X1, ..., Xn. The natural unbiased

estimator for E(X) is then the sample mean X̄n = 1
n

n∑
i=1

Xi.

A typical application of the Monte Carlo method in finance is the esti-
mation of the no-arbitrage price of a specific derivative security (e.g. a call
option), which can be expressed as the expected value of its discounted payoff
under the risk neutral measure. For instance the price at time t of a Euro-
pean call option with strike price K and maturity date T on an underlying
with price process St can be obtained as the expectation of its discounted
payoff e−r(T−t)(ST −K)+ under the risk-neutral probability Q,

EC(K,T, t) = EQ[e−r(T−t)(ST −K)+].

For the computation of this price by Monte Carlo simulation, a large
number of price paths ST should be generated. Then the discounted payoffs
and the sample mean are computed. The obtained result is an unbiased
estimate of the option price.

Similarly, for the computation of the Value-at-Risk of a portfolio, a huge
number of portfolio values should be generated for which the exceedance
probabilities Pr[X ≥ x] = E[I(X ≥ x)] are computed, where I(.) denotes
the indicator function. The estimation of Tail Value-at-Risk can be done
similarly, since the Tail Value-at-Risk of a portfolio at the probability level
p is the arithmetic average of its quantiles from the threshold p to 1.

The main shortcoming of the Monte Carlo method is its high computa-
tional cost. Considering the central Limit Theorem, if X1, ..., Xn have finite
variance σ2, then X̄n is approximately Gaussian and Var(X̄n)=σ2

n
. Con-

sequently, the standard error of the crude Monte Carlo estimate is of order
O( 1√

n
) and thus, to double the precision, one must run four times the number

of simulations. Alternatively, strategies for reducing σ should be considered.
Several variance reduction techniques are utilized in companion with

the Monte Carlo method. The most well-known are the antithetic variate
method, the control variate approach and the importance sampling approach.
A detailed survey of these techniques is given in Ripley (1987).

In this paper we focus on the application of the control variate method
for variance reduction. The applications considered in this paper are simu-
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lation problems based on multivariate random variables, e.g. basket options
where the price depends on several underlying securities. In these problems
the closed form expressions are often available for the univariate cases. For
instance, the price of a European call option (which only depends on ST ) can
be calculated with the Black-Scholes pricing formula.

As comonotonicity essentially reduces a multivariate problem to a univari-
ate one and the marginal distributions remain intact, we propose to use the
comonotonic approximation as a control variate in a so-called Comonotonic
Monte Carlo (CoMC) framework. One further step which can be consid-
ered is utilizing the CoMC method in addition to the other existing control
variates in the framework of a multi-variable control variate method.

Another application field of CoMC is estimating distorted risk measures.
This is due to the fact that the comonotonicity concept is particularly useful
for estimating the ”distorted” expectation of a sum S of random variables.
The distorted expectation of a random variable X is defined as:

ρg[X] =

∫ 0

−∞

(
g(F̄X(x))− 1

)
dx+

∫ ∞
0

g(F̄X(x))dx (1)

where F̄X(x) = 1 − FX(x) denotes the tail function of FX(x) and the func-
tion g(.) is a so-called distortion function, i.e. a non-decreasing function
g : [0, 1] −→ [0, 1] such that g(0) = 0 and g(1) = 1. According to Wang
(1996), ρg is known as the distortion risk measure associated with distortion
function g. Note that the distortion function g is assumed to be indepen-
dent of the distribution function of X. For g(x) = x, we have the ordi-
nary expectation ρg[X] = E[X], while g(x) = I(x > 1 − p) corresponds to
ρg[X] = F−1

X (p).
Tail Value-at-Risk (TVaR) is also a distortion risk measure with g(x) =

min

(
x

1− p
, 1

)
0 ≤ x ≤ 1. The application domain of this method can be

extended to the risk measures which can be written as a linear combination
of distortion risk measures, such as the Expected Shortfall (ESF). As the
ESF basically consists of a stop-loss transform, its mathematical concept is
very similar to option pricing.

The structure of this paper is as follows. First the control variate method
for reducing the variance is discussed in section two. Next, the application
of the comonotonicity concept for defining the control variate is described.
In the fourth section, the framework of using CoMC for computing Asian
options, Basket options and TVaR is described.
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Section five is devoted to the numerical examples. Illustrative numerical
examples are given for Asian options, Basket options and TVaR. Also the
efficiency improvement of the CoMC method is evaluated by comparing the
estimated errors with the ones obtained for the crude Monte Carlo method.
Finally, the obtained results and the relevant interpretations are concluded
in the last section.

2. Control Variate Monte Carlo Method

A classical method for reducing the variance, and hence improving the
efficiency, is the antithetic variate method. Basically for every draw Xi we
also generate the opposite and equally likely realization X

′
i and use both in

our calculations. Due to the negative covariance between Xi and X
′
i and

the basic fact that V ar[Xi + X
′
i ] = V ar[Xi] + V ar[X

′
i ] + 2Cov[Xi, X

′
i ], the

estimate (X̄n + X̄
′
n)/2 will have a smaller variance than if we would simply

take twice as many samples. The antithetic variate method however is not
very powerful. In the case of option pricing for instance, Boyle (1977) reports
a very moderate efficiency improvement.

A different approach is the so-called control variate method, e.g. used by
Kemna and Vorst (1990) for the pricing of arithmetic Asian options. When
we generate the sample values to estimate E[X], we could use the same
values to estimate the expectation of a different but related random variable
Y. Assuming that E[Y ] is known in advance, we can then determine the error
of this last estimate and use it to correct the first estimate. For example,
we could calculate the value of a geometric Asian call option using both the
(analytical) Black-Scholes formula and Monte Carlo simulation.

If the simulation turns out to underestimate the real option price, one
could argue that the corresponding estimate for the arithmetic Asian option
will also be too low and adjust the Monte Carlo estimate accordingly.

In general, suppose that there exists a random variable Y , related to X
and for which E[Y ] is known. With Ȳn being an unbiased estimator for E[Y ],
the adjusted estimator,

X̄n(λ) = X̄n − λ(Ȳn − E[Y ]), λ ∈ R

will also be unbiased, i.e. E[X̄n(λ)] = E[X̄n] = E[X]. The control parameter
λ is an arbitrary scalar, but in order to minimize the variance of X̄n(λ) we

4

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2015.15



should set it to

λ∗ =
Cov(X, Y )

V ar[Y ]
= ρ

√
V ar[X]

V ar[Y ]
(2)

with ρ denoting the correlation between X and Y . This choice yields a
minimum variance (1−ρ2)V ar[X̄n], which is obviously smaller than V ar[X̄n]
as −1 ≤ ρ ≤ 1. Note that the optimal λ∗ involves moments of X and Y that
are generally unknown. Hence λ is often chosen to be −1. This choice makes
sense if the control variate Y is very similar to X, and thus ρ is close to 1
and V ar[X] ≈ V ar[Y ]. The optimal λ∗ could also be estimated from the
simulated data,

λ∗ =

n∑
i=1

(Xi − X̄n)(Yi − Ȳn)

n∑
i=1

(Yi − Ȳn)2

but one should take into account that this introduces bias of order O(1/n)
to the estimator X̄n(λ). A straightforward way to overcome this problem is
to use different samples for the estimation of λ and E[X].

3. Control Variate based on the Comonotonic Upper-Bound

3.1. Concept of Comonotonicity

In finance and actuarial science, one often encounters the problem of
determining the distribution function of the sum of random variables S =∑n

i=1Xi, like the aggregate claim of a portfolio, over a certain period. For
evaluation convenience it is mostly assumed that the individual claims Xi

of a portfolio are mutually independent, even though it has been recognized
that the assumption of mutual independence is often violated and may result
in an underestimate of the total claims.

To avoid this underestimating we need to deal with a sum of dependent
random variables, S =

∑n
i=1Xi, for which the marginal distributions of Xi

are known but with an unspecified or less tractable joint distribution.
In such a case, it may be helpful to find the dependence structure of ran-

dom vector (X1, ..., Xn) producing the least favorable aggregate claim S with
the given marginal distribution. Therefore, given the marginal distributions
of the random variables Xi’s in S =

∑n
i=1 Xi, we will look for the joint dis-

tribution with the largest sum in the convex order sense, see Dhaene et al.
(2002).
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It was proved in Dhaene et al. (2002) that the convex-largest sum of
the components of a random vector with given marginal distribution will be
obtained in the case that the random vector X = (X1, ..., Xn) has a comono-
tonic distribution, which means that each two possible outcomes (x1, ..., xn)
and (y1, ..., yn) of (X1, ..., Xn) are ordered component-wise. In other words, a
set A ⊆ Rn is comonotonic if for any (x1, ..., xn) and (y1, ..., yn) in A, xi ≤ yi
for some i implies that xj ≤ yj for all j. A random vector (X1, ..., Xn) is
called comonotonic if it has a comonotonic support. The following theo-
rem summarizes some characterizations of the comonotonicity concept, see
Vyncke (2004):

Proposition 1 (Equivalent conditions for comonotonicity)

A random vector X = (X1, ..., Xn) is comonotonic if and only if one of
the following equivalent conditions holds:

(a) X has a comonotonic support;

(b) X has a comonotonic copula, i.e. for all x = (x1, ..., xn), we have

FX(x) = min {FX1(x1), FX2(x2), ..., FXn(xn)} (3)

(c) For U ∼ Uniform(0, 1), we have

X
d
= (F−1

X1
(U), (F−1

X2
(U), ..., (F−1

Xn
(U)) (4)

(d) A random variable Z and non-decreasing functions fi(i = 1, ..., n) exist
such that

X
d
= (f1(Z), f2(Z), ..., fm(Z)) (5)

For any random vector (X1, ..., Xn), not necessarily comonotonic, we can
construct its comonotonic counterpart Xc = (Xc

1, ..., X
c
n) by using 4:

Xc := (F−1
X1

(U), (F−1
X2

(U), ..., (F−1
Xn

(U))

Clearly X and Xc have the same marginal distributions FXi
, but they have

a different copula. From 3 we see that the class of all n-dimensional random
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vectors with given marginal distributions FXi
is bounded from above by the

comonotonic random vector Xc.
Also the sum of its components gives an upper bound. In fact, replacing

the copula by a comonotonic copula yields the largest sum in the convex
order, see Dhaene et al. (2002).

Definition 1(Stop-loss order)

Consider two random variables X and Y . Then X precedes in the stop-
loss order sense, written X ≤sl Y , if and only if has lower stop-loss premium
than Y (see Dhaene et al. (2002)):

E(X − d)+ ≤ E(Y − d)+

for all real d. Notice that E(X − d)+ is the stop-loss premium of X with
retention d.
As we have already explained the goal is to replace the random variable X by
less favorable one Y , for which the distribution function is easier to obtain.
We can see that if X ≤sl Y , then also E[X] ≤ E[Y ] and it is clear that the
best approximations arise in the borderline case where E[X] = E[Y ], see
Dhaene et al. (2002). This leads to the so-called convex order.

Definition 2 (Convex order)

Consider two random variables X and Y . Then X precedes Y in the
convex order sense, written X ≤cx Y , if and only if{

E(X) = E(Y )
E(X − d)+ ≤ E(Y − d)+

for all real d.
It can be proven that X ≤cx Y if and only if E(ν(X)) ≤ E(ν(Y )) for
all convex functions ν, provided the expectations exist, see e.g. Kaas et al.
(2001).
As it is shown in Dhaene et al. (2002), the sum of the components of a
random vector precedes the sum of comonotonic counterpart in the convex
order sense, written S ≤cx Sc.

Calculating the distribution function of the sum of comonotonic random
variables is straightforward. Indeed, the inverse distribution function of the
sum turns out to be equal to the sum of the inverse marginal distribution
functions.
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3.2. Additivity property of comonotonic variables

In the following propositions we discuss the additivity property of the
quantile function for comonotonic variables and the notion of convex and
stop-loss order, which will be used to derive the upper bound for the sum of
dependent random variables with known marginal distributions. We will use
this upper bound to obtain the exact expected value of our control variate
in the numerical section.

Proposition 2 (Additivity of quantile functions for comonotonic variables)

The quantile function F−1
Sc of a sum Sc of comonotonic random variables

with distribution functions FX1 , ..., FXn is given by

F−1
Sc (p) =

n∑
i=1

F−1
Xi

(p), 0 < p < 1 (6)

Proof. See Dhaene et al. (2002).
For the stop-loss transform of a sum of comonotonic variables we have

the following result.

Proposition 3 (Additivity of stop-loss transform for comonotonic variables)

The stop-loss transform of the sum Sc of the components of the comono-
tonic random vector with strictly increasing distribution functions FX1 , ..., FXn

is given by E[(Sc − d)+] =
n∑
i=1

[(Xi − F−1
Xi

(FSc(d)))+], for all d ∈ R.

Proof. See Dhaene et al. (2002).

Next we discuss the additivity property of comonotonic variables for any
distortion risk measure.

Proposition 4 (Additivity of distortion risk measures for comonotonic vari-
ables)

For any distortion function g and all random variables Xi, we have

ρg[Sc] =
n∑
i=1

ρg[Xi] (7)

Proof. This result is proved in Wang (1996) for non-negative random vari-
ables, but it can be easily extended to all real-valued variables. Substituting
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g(F̄X(x)) by
∫ F̄X(x)

0
dg(q) in (1) and changing the order of the integrations,

we find that

ρg[X] =

∫ 1

0

F̄−1
X (q)dg(q) =

∫ 1

0

F−1
X (1− q)dg(q) (8)

for any distortion function g and any random variable X. Combining equa-
tions (5) and (8) yields

ρg[Sc] =
∫ 1

0
F−1
Sc (1− q)dg(q) =

∫ 1

0

∑n
i=1 F

−1
Xi

(q)dg(q) =
∑n

i=1 ρg[Xi]

which proves the theorem. �
Considering the fact that the Tail Value-at-Risk (TVaR),

TV aRX(p) =
1

1− p

∫ 1

p

F−1
X (q)dq (9)

can be written as a distortion risk measure with distortion function g(x) =

min

(
x

1− p
, 1

)
0 ≤ x ≤ 1, we can conclude that the TVaR is additive for

comonotonic risks.
Note that although the Expected Shortfall (ESF)

ESFX(p) = E[(X − F−1
X (p))+]

is not a distortion risk measure, it is also additive for comonotonic risks. We
can show this property as follows. Considering the following equality,

TV aRX(p) = F−1
X (p) + 1

1−pESFX(p)

and using the additivity property of Tail Value-at-Risk and quantile function
for comonotonic risks we have,

ESFSc(p) = (1− p)(TV aRSc(p)− F−1
Sc (p))

= (1− p)

(
n∑
i=1

TV aRXi
(p)−

n∑
i=1

F−1
Xi

(p)

)

=
n∑
i=1

ESFXi
(p), 0 < p < 1

which proves the additivity property of ESFX .
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4. Comonotonic Monte Carlo Method for Basket Options, Asian
Options and Tail Value-at-Risk

4.1. Basket Option

In this section we illustrate the method for pricing a basket option. A
basket option is an option on a portfolio (or basket) of assets which allows to
hedge the risk of a portfolio consisting of several assets. Consider a portfolio
of n risky assets with price process {Si(t), t ≥ 0}, i = 1, ..., n and weights ai.
The weights ai are assumed to be positive and to sum up to 1.

In a complete market, the no-arbitrage value of a basket call option with
maturity date T and strike price K is given by

BC(n,K, T ) = e−rTEQ
[
(
∑n

i=1 aiSi(T )−K)+

]
that is, the expected payoff of the call option under a martingale measure Q,
discounted at the risk-free rate r.
In the classical Black-Scholes model, the stock prices are assumed to follow
the risk-neutral stochastic differential equations

dSi(t) = (r − qi)Si(t)dt+ σiSi(t)dBi(t) (10)

where the Bi(t) are Brownian motions, qi and σi denote respectively the divi-
dend rate and the volatility of the underlying asset i. So, the random variable
Si(T )/Si(0) is log-normally distributed with parameters (r−qi−σ2

i /2)T and
σ2
i T . We assume that the Brownian motions Bi and Bj are correlated with

a constant correlation ρij.
Since the distribution of a sum of log-normally distributed random variables
is not log-normal, the distribution of the weighted sum

∑n
i=1 aiSi(T ) is not

known analytically and hence determining the price of the Basket option is
not straightforward.
By using Proposition 3 we can easily construct a comonotonic control vari-
ate. Starting with Sc =

∑n
i=1 aiS

c
i (T ) =

∑n
i=1 aiF

−1
Si(T )(U) where

∑n
i=1 ai = 1

and ai > 0, results in
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BCcom(n,K, T ) = e−rTEQ

[(
n∑
i=1

aiS
c
i (T )−K

)
+

]

= e−rT
n∑
i=1

aiE
Q

[(
Si(T )− F−1

Si(T )(FSc(K))
)

+

]
=

n∑
i=1

aiECi(Ki, T ) (11)

with Ki = F−1
Si(T )(FSc(K)). Note that BC(n,K, T ) ≤ BCcom(n,K, T ), so (11)

gives a static super-hedging strategy consisting of European call options.

4.2. Asian Option

An Asian option is a path dependent option, for which the payoff depends
on the average price of the asset in the considered time interval. We consider
a discrete set of n time points along the time interval [0, T ] such that asset
prices are observed at time points 0 = t0 < t1 < ... < tn = T .

A European-style arithmetic Asian call option with maturity date T , n
averaging dates and exercise price K has a pay-off[

1

n

n∑
i=1

S(ti)−K

]
+

In this type of option, if the average of the prices of the underlying risky
asset at n dates in the time interval exceeds K, the pay-off equals the differ-
ence, otherwise the pay-off is zero.

In a complete market, the no-arbitrage price of the Asian is given by

AC(n,K, T ) = e−rTEQ

[(
1

n

n∑
i=1

S(ti)−K

)
+

]
. (12)

For illustrating the formulation of the CoMC method we consider a Black-
Scholes setting with constant drift r and constant volatility σ. This implies
that under the equivalent martingale measure, the random variable S(t)/S(0)
is log-normally distributed with parameters (r − σ2)t and σ2t.

11
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The corresponding comonotonic control variate can be obtained based on
proposition 2 and using Sc =

∑n
i=1 S

c(ti) =
∑n

i=1 F
−1
S(ti)

(U) we obtain,

ACcom(n,K, T ) =
e−rT

n
EQ

[((
n∑
i=1

Sc(ti)

)
− nK

)
+

]

=
e−rT

n

n∑
i=1

EQ

[(
S(ti)− F−1

S(ti)
(FSc(nK))

)
+

]
=

1

n

n∑
i=1

e−r(T−ti)EC(Ki, ti) (13)

withKi = F−1
S(ti)

(FSc(nK)). Considering thatAC(n,K, T ) ≤ ACcom(n,K, T ),

it can be concluded that (13) gives a static super hedging strategy.

4.3. Tail Value-at-Risk

We start this section with recalling the well-known risk measure Value-
at-Risk(VaR), which is the p-quantile risk measure and denoted by Qp[X].
For any p ∈ (0, 1), it is defined for the random variable X as follows,

Qp[X] = inf {x ∈ R|FX(x) ≥ p} (14)

where FX(x) = P (X ≤ x) is the cumulative distribution function of X. Note
that Qp[X] is equal to F−1

X (p) and Qp[−X] is equal to −F−1
X (1− p).

From a financial point of view, the Value-at-Risk measures the potential
loss in value of a risky asset or portfolio for a given probability.

TV aRX(p) in equation (9) is actually the arithmetic average of the quan-
tiles of X from the threshold p up to 1. It is obvious that TV aRX(p) is
always larger than corresponding quantile.

Let’s consider a portfolio of n risky assets with price process {Si(t), t ≥ 0},
i = 1, ..., n and the corresponding weights ai satisfying

∑n
i=1 ai = 1. The

value of the portfolio at time T is
∑n

i=1 aiSi(T ) where each asset price fol-
lows the same risk-neutral stochastic differential equation in (10). Since the
distribution of

∑n
i=1 aiSi(T ) is not known analytically, determining the Tail

Value-at-Risk for the value of the portfolio or loss of portfolio at time T is
not straightforward.

As we already mentioned in proposition 4, the Tail Value-at-Risk is addi-
tive for comonotonic risks. Using this property we can construct the comono-
tonic control variate.

12
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By using the notation Sc for comonotonic value of the portfolio and con-
sidering that Qp[−X] = −F−1

X (1− p), the corresponding TVaR at level p of
the portfolio loss is equal to

TV aR−Sc(p) =
1

1− p

∫ 1

p

F−1
−Sc(q)dq =

n∑
i=1

ai

(
− 1

1− p

∫ 1

p

F−1
Si(T )(1− q)dq

)
(15)

with (see Sandström (2010))

− 1

1− p

∫ 1

p

F−1
Si(T )(1− q)dq = −E(Si(T ))

1− p

(
Φ(Φ−1(1− p)− σi

√
T )
)

(16)

where Φ denotes the standard normal distribution function.

5. Numerical Examples

In this section numerical examples are presented to evaluate the per-
formance of the CoMC method for different applications. The results are
compared against the crude Monte Carlo method based on their respective
estimation error and computation time.

In the following numerical examples, to estimate the correlation between
the CoMC and the original paths, we grouped the NTotal paths of prices into
NLoop sets of NPath paths, where NTotal = NLoop×NPath. Each group of NPath

paths gives a Monte Carlo estimate and the comonotonic price estimated by
rearranging the original paths in increasing order, which will be transferred
to the next computation stage where the control parameter is computed.

At the upper level of the Monte Carlo simulation loop, the control variate
method is applied to the set of obtained results from the Monte Carlo esti-
mate performed for each of the subgroups. At this final computation stage,
the final result of the estimation, the accompanying error and the detailed
computation time are computed which will be utilized for evaluating the
performance of the method.

5.1. Asian Option

In this example we numerically illustrate CoMC for computing the price
of an Asian option in a Black-Scholes setting, as described in the previous
sections. The parameters that were used to generate the price paths, are
similar to the parameters used in Jacques (1996).
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The initial value of stock price is normalized to be 100. The considered
risk free interest rate r equals 9% per year, three values (0.2, 0.3 and 0.4) are
considered for the yearly volatility, and five values (80, 90, 100, 110 and 120)
are assumed for the exercise price K. Denote that here we utilize the daily
risk-free interest rate and volatility which are ln

(
1.09
250

)
and σ√

250
, respectively.

In table 1 we compare the results of crude Monte Carlo (MC) and CoMC
(based on 10,000,000 paths each, NLoop = 1000 and NPath = 10, 000) in case
T = 120 days and the number of averaging dates n = 30.

σ K MC s.e.(×104) Time CoMC s.e.(×104) Time

0.2 80 21.2691 26 39.92 21.2717 0.3 61.1

90 11.8658 25 38 11.8669 1 59.3

100 4.3288 18 36.9 4.3281 1.9 60.4

110 0.8612 8 36.6 0.8612 2 59.4

120 0.0917 2.5 38.8 0.0919 0.9 60.3

0.3 80 21.3500 37 39 21.3523 1.1 59.1

90 12.5416 35 40.1859 12.5437 2 61.6

100 5.8832 27 38.5 5.8802 2.7 63.7

110 2.1530 16 39.5 2.1525 3 58.4

120 0.6257 8.9 38.8 0.6264 2.4 60.7

0.4 80 21.6600 49 39.6 21.6599 2 61.3

90 13.5362 45 40.6 13.5396 3 59.5

100 7.4459 35 38.1 7.4462 3.9 60.9

110 3.6191 26 40.1 3.6211 4.1 60

120 1.5809 18 40 1.5820 3.9 59

Table 1: Comparing the results of two methods for different volatilities and
strike prices based on the computation time (in seconds) and error.

The estimated price based on the Monte Carlo and comonotonic control
variate Monte Carlo method, their respective errors and computation time
which are depicted in table 1, show the trend of the efficiency of the CoMC
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by changing strike prices and volatilities.
It is observed that by increasing the strike prices the variance reduction

decreases while the computation time ratio is almost constant. This can be
attributed to the reduced correlation between the estimated price of the orig-
inal path and the comonotonic price obtained for the comonotonic reordered
path. In fact considering a greater strike price results in the larger number of
incidences of zero pay-off in each subgroup price estimation. Consequently
the correlation between the control variate and the original data is reduced.

Increasing the volatility obviously results in the higher error for both
Monte Carlo and the CoMC method. This is directly the effect of increasing
the variance of generated data due to higher volatility.

The efficiency of the method can be quantified by comparing the num-
ber of samples required for the crude Monte Carlo method to achieve the
same degree of accuracy. For σ = 0.2 (with different strike prices K =
80, 90, 100, 110, 120), the number of samples required for the crude Monte
Carlo to reach the same level of precision as the CoMC varies between 7
to 7500 times the original number of samples. For σ = 0.3, the number of
samples should increase between 14 to 1100 times the original number of
samples, while this ratio for σ = 0.4 varies between 20 to 390. Consider-
ing that the required computation time for the comonotonic control variate
Monte Carlo method is almost 1.5 times the crude Monte Carlo method, it
can be concluded that employing the CoMC method significantly increases
the computation performance and efficiency.

5.2. Basket Option

In this section, the performance of the CoMC method is evaluated for
pricing basket options. First we consider a benchmark case of a basket option
with two assets. We investigate the effect of the correlation structure on the
efficiency of the CoMC method by considering the first two assets of the
basket option presented in Milevsky and Posner (1998a,b) and table 4. The
properties of these two assets are given in table 2.

Asset No. S0 σ Weight risk free interest rate dividend yield

1 100 0.1155 1
2

0.063 0.0169

2 100 0.1453 1
2

0.063 0.0136

Table 2: Details of the Basket assets for the benchmark example.
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ρ K MC s.e.(×104) CoMC s.e.(×104)

−0.5 80 23.3736 21 23.3715 1.5

90 14.0010 21 14.0032 4.9

100 5.4836 18 5.4840 8

−0.25 80 23.3723 25 23.3720 1.5

90 14.0601 25 14.0635 4.7

100 5.9218 20 5.9253 7.5

0.25 80 23.3792 33 23.3834 1

90 14.2700 31 14.2698 3

100 6.6811 25 6.6829 5

0.5 80 23.4013 35 23.3979 1

90 14.3980 32 14.3991 2.5

100 7.0139 26 7.0166 4

0.75 80 23.4188 38 23.4192 0.6

90 14.5317 35 14.5374 1.6

100 7.3295 28 7.3311 2

Table 3: Influence of the correlation on the efficiency of CoMC .

The performance of the method is compared with the crude Monte Carlo
method for different correlation coefficients and strike prices in table 3. As it
is expected that the performance of the comonotonic control variate method
is improved by increasing the correlation, it can be seen in table 3 that the
error of the method is decreasing by increasing the correlation while the error
of the crude Monte Carlo remains almost unchanged.

Next we consider a multi-asset option written on a basket of seven assets.
The data used for this purpose is based on the basket of seven stock indices
underlying the G-7 index-linked guaranteed investment certificates offered
by Canada Trust Co. More details about this set of data can be found
in Milevsky and Posner (1998a,b).

The initial value of each asset in the basket is normalized to be 100. The
considered risk free interest rate r equals 6.3%, T = 1 year and the remaining
parameters considered in the simulations are given in table 4 and table 5.

16

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2015.15



weight volatility dividend yield

country index (in%) (in%) (in%)

Canada TSE 100 10 11.55 1.69

Germany DAX 15 14.53 1.36

France CAC 40 15 10.68 2.39

U.K. FSTE 100 10 14.62 3.62

Italy MIB 30 5 17.99 1.92

Japan Nikkei 225 20 15.59 0.81

U.S. S&P 500 25 15.68 1.66

Table 4: Weightings for G-7 index linked guaranteed investment certificate.

Canada Germany France U.K. Italy Japan U.S.

Canada 1.00 0.35 0.10 0.27 0.04 0.17 0.71

Germany 0.35 1.00 0.39 0.27 0.50 -0.08 0.15

France 0.10 0.39 1.00 0.53 0.70 -0.23 0.09

U.K. 0.27 0.27 0.53 1.00 0.45 -0.22 0.32

Italy 0.04 0.50 0.70 0.45 1.00 -0.29 0.13

Japan 0.17 -0.08 -0.23 -0.22 -0.29 1.00 -0.03

U.S. 0.71 0.15 0.09 0.32 0.13 -0.03 1.00

Table 5: Correlation structure of G-7 index linked guaranteed investment
certificate.

The estimation of the basket option price, the accompanying errors and
computation times, for both crude Monte Carlo and comonotonic control
variate Monte Carlo method, are reported in table 6.
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K MC s.e.(×104) Time CoMC s.e.(×104) Time

60 41.9138 27 96.7 41.9155 0.06 100

70 32.5235 26 93.7 32.5261 0.5 97.6

80 23.1340 26 103.6 23.1382 2 104.3

90 13.8623 25 101.2 13.8649 4.4 103.8

100 5.9051 21 103.1 5.9034 6.5 99.7

110 1.5036 12 99.6 1.5047 5.9 101.8

Table 6: Comparing the results of two methods for different volatilities and
strike prices based on the computation time (in seconds) and error.

According to table 6, the ratio of Monte Carlo error to the comonotonic
control variate method decreases by increasing the strike price while the
ratio of the computation times remains almost constant. This is due to the
decrease of correlation between estimate of pay-off and its counterpart, which
results in reduction of the efficiency of the control variate method.

In this example it is observed that, based on the estimation error, the
number of samples required for the crude MC to reach the same level of
accuracy as the precision of the CoMC, varies between 16 to 200000 times
the original number of samples, while the computation time of CoMC is
almost the same as the crude MC.

5.3. Tail Value-at-Risk

The performance of the CoMC method is evaluated here for the calcu-
lation of the TVaR risk measure. We consider a Black-Scholes setting for
generating the price paths.

First the influence of the correlation structure on the efficiency of the
CoMC method is evaluated. To this end, a portfolio with two assets is con-
sidered with the parameters defined in table 2. The TVaR for the value of
the portfolio is computed for different correlation coefficients (ρ) and proba-
bilities (p). The results of this study are shown in table 7.

The estimated errors for CoMC are reduced by decreasing p. Moreover,
increasing the correlation coefficient improves the performance of the method.
This performance improvement is considerable for TVaR. It is due to the
fact that V aRX(p) is computed at one specific probability level p, while
TV aRX(p) is estimated based on the arithmetic average of the quantiles

18

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2015.15



of X from the threshold p up to 1. This averaging scheme, embedded in
the calculation of TVaR, increases the correlation between the estimations
obtained for the original paths and the comonotonic estimations, computed
for the comonotonic reordered paths.

ρ p MC s.e.(×104) CoMC s.e.(×104) λ

−0.50 0.90 93.1595 36 93.1583 34 −0.30

0.95 91.2874 45 91.2867 44 −0.24

0.99 87.7423 81 87.7415 81 −0.10

−0.25 0.90 90.7984 45 90.7975 40 −0.53

0.95 88.58124 54 88.5794 50 −0.41

0.99 84.4167 97 84.4120 95 −0.19

0.25 0.90 87.1016 57 87.0986 33 −0.88

0.95 84.3712 68 84.3678 45 −0.80

0.99 79.2966 111 79.2780 92 −0.71

0.50 0.90 85.5694 58 85.5608 25 −1.00

0.95 82.6334 72 82.6260 36 −1.00

0.99 77.1786 130 77.1743 80 −0.98

0.75 0.90 84.1635 61 84.1587 15 −1.05

0.95 81.0489 78 81.0468 22 −1.07

0.99 75.3137 130 75.2999 50 −1.06

0.95 0.90 83.1302 62 83.1163 4.8 −1.02

0.95 79.8813 79 79.8772 6.9 −1.03

0.99 73.9324 137 73.9126 16 −1.04

Table 7: Influence of the correlation structure on the efficiency of the CoMC
method for computing TVaR.

Next the multi asset portfolio is considered for evaluating the performance
of the method in more realistic conditions. The parameters used for these
numerical illustrations are exactly the same as the ones used for the numerical
illustration of basket option pricing in tables 4 and 5.
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risk measure MC s.e.(×104) Time CoMC s.e.(×104) Time

TVaR(0.90) 89.8474 44 17.6 89.8495 36 20

TVaR(0.95) 87.5451 55 16 87.5393 47 19.7

TVaR(0.99) 83.2276 98 18.5 83.2155 92 19.9

Table 8: Performance of the crude Monte Carlo and the CoMC Monte Carlo
for TVaR.

The results of the CoMC method are compared with the crude Monte
Carlo in table 8 for p = 0.90, p = 0.95 and p = 0.99. For this specific
correlation structure, the estimated error obtained by the CoMC method is
not reduced considerably.

6. Conclusion

In this paper a novel control variate Monte Carlo method based on the
comonotonic upper bound is presented and the relevant theories are formu-
lated. The framework of applying the CoMC method is explained for basket
options, Asian options and TVaR.

Numerical examples are given for evaluating the performance of the method
in realistic cases. The parametric study revealed the strong dependence of
the method performance on the correlation between assets for Basket option
and TVaR. Moreover, it is shown that increasing the strike price reduces the
efficiency of the method in Asian option and Basket option.

The realistic benchmark examples show that the precision of estimat-
ing the price of Asian option and Basket option is drastically increased by
employing the CoMC method while the computation time is not increased
considerably compared to the crude Monte Carlo method.

On the other hand, utilizing the realistic correlation structure for com-
puting TVaR, does not result in a considerable improvement of precision,
while decreasing the probability level or increasing the correlation, increases
the performance of the method.
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