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A Dynamic View of Active Integrity Constraints

Guillaume Feuillade and Andreas Herzig

Université de Toulouse, IRIT-LILaC and CNRS, France

Abstract. Active integrity constraints have been introduced in the database

community as a way to restore integrity. We view active integrity constraints as

programs of Dynamic Logic of Propositional Assignments DL-PA and show how

several semantics of database repair that were proposed in the literature can be

characterised by DL-PA formulas. We moreover propose a new definition of re-

pair. For all these definitions we provide DL-PA counterparts of decision problems

such as the existence of a repair or the existence of a unique repair.

Keywords: Active integrity constraints, dynamic logic, propositional assignments.

1 Introduction

Updates under integrity constraints is an important and notoriously difficult issue in

databases and AI. About ten years ago, active integrity constraints were proposed in the

database literature as a ‘more informed’ way of maintaining database integrity [FGZ04,

CTZ07, CT08, CGZ09, CT11, CF14]. There, an active integrity constraint is basically

viewed as a couple r = 〈C(r),R(r)〉 where C(r) is a formula and R(r) is a set of update

actions each of which is of the form either p←⊤ or p←⊥, for some atomic formula p.

The idea is that (1) when C(r) is true then the constraint r is violated, and (2) a violated

constraint can only be repaired by performing one or more of the update actions in R(r).

In this paper we examine active integrity constraints in the framework of dynamic

logic and argue that they should be viewed as a complex program: the sequential com-

position of the test of C(r) and the nondeterministic choice of an action in R(r). Repair-

ing a database can then be done by means of a complex program that combines active

integrity constraints. We use a simple yet powerful dialect of dynamic logic: Dynamic

Logic of Propositional Assignments, abbreviated DL-PA [HLMT11, BHT13]. The latter

is a simple instantiation of Propositional Dynamic Logic PDL [Har84, HKT00]: instead

of PDL’s abstract atomic programs, its atomic programs are update actions: assignments

of propositional variables to either true or false, written p←⊤ and p←⊥. Just as in PDL,

these atomic programs can be combined by means of program operators: sequential and

nondeterministic composition, finite iteration, and test. While DL-PA programs describe

the evolution of the world, DL-PA formulas describe the state of the world. In particular,

formulas of the form
〈

π
〉

ϕ express that ϕ is true after some possible execution of π, and

[π]ϕ expresses that ϕ is true after every possible execution of π. The models of DL-PA

are considerably simpler than PDL’s Kripke models: valuations of classical proposi-

tional logic are enough. The assignment p←⊤ inserts p, while the assignment p←⊥

deletes p. It is shown in [HLMT11, BHT13] that every DL-PA formula can be reduced



to an equivalent boolean formula. This will allow us to construct repaired databases

syntactically.

Just as [CT11, CF14] we only consider ground constraints, i.e., we work with a

propositional language.

The paper is organized as follows. After some preliminaries (Section 2) we recall

DL-PA in Section 3. In Section 4 we recall static constraints and provide an embedding

of the associated repairs that have been defined in the literature into DL-PA. In Section 5

we do the same for active integrity constraints. In Section 6 we propose a new definition

in terms of while programs. Section 7 concludes.

2 Preliminaries

In this paper we consider propositional languages that are built from a countable set

of propositional variables (alias atomic formulas) P = {p, q, . . .}. Boolean formulas are

built from P by means of the boolean operators ⊤, ⊥, ¬, and ∨ and are denoted by A,

B, etc. The other boolean connectives ∧,→, and↔ are abbreviated in the usual way. A

literal is an element of P or the negation of an element of P and a clause is a disjunction

of literals. We define PA to be the set of variables from P occurring in formula A. This

extends to sets in the obvious way.

Valuations are subsets of P and are denoted by V , V1, V2, etc. The set of all valuations

is thereforeV = 2P. It will sometimes be convenient to write V(p) = ⊤ instead of p ∈ V

and V(p) = ⊥ instead of p < V . In the context of active integrity constraints a valuation

is called a database.

A valuation determines the truth value of every boolean formula. The set of valua-

tions where A is true is noted ||A||. We sometimes write V |= A when A ∈ ||V ||.

An update action is of the form p←⊤ and p←⊥, for p ∈ P. The former is the

insertion of p and the latter is the deletion of p. We denote the set of all update actions

by U. We sometimes use X as a metavariable for ⊤ and ⊥ and write p←X. For subsets

P of P it will be convenient to write P←⊤ to denote the set of update actions {p←⊤ :

p ∈ P}, and likewise for P←⊥. A set of update actions U ⊆ U is consistent if it does

not contain both p←⊤ and p←⊥, for some p.

The update of a valuation V by a set of update actions U is defined as:

V◦U =
(

V \ {p : p←⊥ ∈ U}
)

∪ {p : p←⊤ ∈ U}

So all the deletions are applied in parallel first, followed by the parallel application of

all insertions. We could as well have chosen some other order of application. When U

is consistent then all of them lead to the same result. In particular:

Proposition 1. Let {α1, . . . , αn} be a consistent set of update actions. Let 〈k1 . . . kn〉 be

some permutation of 〈1 . . .n〉. Then V◦{α1, . . . , αn} =
(

. . . (V◦{αk1
}) . . .

)

◦{αkn
}.

3 Dynamic Logic of Propositional Assignments

The first studies of assignments in the context of dynamic logic are due, among others,

to Tiomkin and Makowski and van Eijck [TM85, vE00]. Dynamic Logic of Propo-

sitional Assignments DL-PA was introduced in [HLMT11] and was further studied



in [BHT13]. Evidence for its widespread applicability was provided in several recent

publications, including belief update and belief revision, argumentation, and planning

[Her14, DHP14, HMNDBW14]. We briefly recall syntax and semantics.

3.1 Language

The language of DL-PA is defined by the following grammar:

ϕF p | ⊤ | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

π F α | π; π | π ∪ π | π∗ | π− | ϕ?

where p ranges over the set of atomic formulas P and α ranges over the set of update

actionsU. In DL-PA, update actions are called atomic assignments. The operators of se-

quential composition (“;”), nondeterministic composition (“∪”), finite iteration (“(.)∗”,

the so-called Kleene star), and test (“(.)?”) are familiar from PDL. The operator “(.)−” is

the converse operator. The formula 〈π〉ϕ is read “there is an execution of π after which

ϕ”. The star-free fragment of DL-PA is the subset of the language made up of formulas

without the Kleene star “(.)∗”.

We define Pϕ to be the set of variables from P occurring in formula ϕ, and we define

Pπ to be the set of variables from P occurring in program π. For example, Pp←q∪p←¬q =

{p, q} = P〈
p←⊥
〉

q
.

Several program abbreviations are familiar from PDL. First, skip abbreviates⊤? and

fail abbreviates ⊥?. Second, if ϕ then π1 else π2 is expressed by (ϕ?; π1) ∪ (¬ϕ?; π2).

Third, the loop while ϕ do π is expressed by (ϕ?; π)∗;¬ϕ?. Let us moreover introduce

assignments of literals to variables by means of the following two abbreviations:

p←q = if q then p←⊤ else p←⊥ p←¬q = if q then p←⊥ else p←⊤

The former assigns to p the truth value of q, while the latter assigns to p the truth

value of ¬q. In particular, the program p←¬p flips the truth value of p. Note that both

abbreviations have constant length, namely 14. Finally and as usual in modal logic,
[

π
]

ϕ

abbreviates ¬
〈

π
〉

¬ϕ.

3.2 Semantics

DL-PA programs are interpreted by means of a relation between valuations. The atomic

programs α update valuations just as singleton sets of update actions do (cf. the preced-

ing section), and complex programs are interpreted just as in PDL by mutual recursion.

Table 1 gives the interpretation of formulas and programs. where ◦ is relation composi-

tion and (.)−1 is relation inverse.

A formula ϕ is DL-PA valid iff ||ϕ|| = 2P = V. It is DL-PA satisfiable iff ||ϕ|| , ∅. For

example, the formula
〈

p←⊥
〉

⊤,
〈

p←⊤
〉

ϕ ↔ ¬
〈

p←⊤
〉

¬ϕ,
〈

p←⊤
〉

p, and
〈

p←⊥
〉

¬p

are all valid.

Observe that if p does not occur in ϕ then formulas such as ϕ →
〈

p←⊤
〉

ϕ and ϕ →

〈p←⊥〉ϕ are valid. This is due to the following semantical property that is instrumental

in the proof of several results in the rest of the paper.



Table 1. Interpretation of formulas and programs

||p|| = {V : p ∈ V} ||α|| =
{

〈V1,V2〉 : V2 = V1◦{α}
}

||⊤|| = V = 2P ||π; π′ || = ||π|| ◦ ||π′ ||

||⊥|| = ∅ ||π ∪ π′ || = ||π|| ∪ ||π′ ||

||¬ϕ|| = 2P \ ||ϕ|| ||π∗ || =
(

||π||
)∗

||ϕ ∨ ψ|| = ||ϕ|| ∪ ||ψ|| ||π−|| =
(

||π||
)−1

||
〈

π
〉

ϕ|| =
{

V : ∃V1 s.t. 〈V ,V1〉 ∈ ||π|| and V1 ∈ ||ϕ||
}

||ϕ?|| =
{

〈V ,V〉 : V ∈ ||ϕ||
}

Proposition 2. Suppose Pϕ ∩ P = ∅, i.e., none of the variables in P occurs in ϕ. Then

V ∪ P ∈ ||ϕ|| iff V \ P ∈ ||ϕ||.

A distinguishing feature of DL-PA is that its dynamic operators can be eliminated

(which is impossible in PDL). Just as for QBF, the resulting formula may be exponen-

tially longer than the original formula.

Theorem 1 ([BHT13]). For every DL-PA formula there is an equivalent boolean for-

mula.

Every assignment sequence α1; · · · ;αn is a deterministic program that is always ex-

ecutable: for a given V , there is exactly one V ′ such that 〈V ,V ′〉 ∈ ||α1; · · · ;αn||. More-

over, when a set of update actions {α1, . . . , αn} is consistent then the order of the αi in

a sequential composition is irrelevant. The following can be viewed as a reformulation

of Proposition 1 in terms of the DL-PA operator of sequential composition.

Proposition 3. Let {α1, . . . , αn} be a consistent set of update actions. Let 〈k1 . . . kn〉

be some permutation of 〈1 . . .n〉. Then V◦{αk1
, . . . , αkn

} equals the single V ′ such that

〈V ,V ′〉 ∈ ||αk1
; · · · ;αkn

||.

This entitles us to use sets of consistent update actions as programs: one may suppose

that this stands for a sequential composition in some predefined order (based e.g. on the

enumeration of the set of propositional variables).

4 Static Constraints and the Associated Repairs

In this section we consider the classical notion of database integrity that is defined in

terms of static integrity constraints (or static constraints for short). In our propositional

language they are nothing but boolean formulas. Two ways of repairing databases can

be found in the literature on active integrity constraints [CT11]. Both consist in first

finding an appropriate set of update actions U and then building the update V ◦ U of V

by U as defined in Section 2. We relate them to well-known operations in belief revision

and update [KM92], which allows us to reuse their embeddings into DL-PA [Her14].



4.1 Weak Repairs and Drastic Updates

Let V be a database and let C be a set of static constraints. A weak repair of V achieving

C is a consistent set of update actions U ⊆ U such that V◦U |=
∧

C and such that U is

relevant w.r.t. V . The latter means that p←⊤ ∈ U implies p < V and p←⊥ ∈ U implies

p ∈ V .

Example 1. Let V = ∅ and let C = {p∨q}. The weak repairs of V achieving C are all

those subsets of the set of positive update actions {r←⊤ : r ∈ P} that contain either

p←⊤, or q←⊤, or both.

The example illustrates that weak repairs are indeed very weak. As the following

result shows, if we consider what is true in all possible weak repairs then we obtain

what is called a drastic update in the literature on belief revision and update.1

Proposition 4. Let V be a database and let C be a set of static constraints. Then

{

V ◦ U : U is a weak repair of V achieving C
}

=
∣

∣

∣

∣

∣

∣

∧

C
∣

∣

∣

∣

∣

∣.

Note that a weak repair may contain assignments of variables that do not occur in

C. To remedy this we define a relevant weak repair to be a weak repair U such that if

p←⊤ or p←⊥ occurs in U then p ∈ PC .

This corresponds to a very basic update semantics that is sometimes called Winslett’s

standard semantics [Win90].

4.2 Repairs Tout Court and Their Relation to Winslett’s PMA

A repair of V achieving C is a weak repair of V achieving C that is minimal w.r.t. set

inclusion: there is no weak repair of V achieving C that is strictly contained in it.

Example 2. Let V = ∅ and C = {p∨q}. There are exactly two repairs of V achieving C,

viz. {p←⊤} and {q←⊤}.

We are now going to relate repairs to Winslett’s possible models approach PMA

[Win88, Win90]. Remember that the update of a database V by a boolean formula A

according to the PMA is the set of V ′ such that V ′ |= A and such that the symmetric

difference between V and V ′ is minimal w.r.t. set inclusion. Formally, symmetric dif-

ference is defined as D(V ,V ′) = {p : V(p),V ′(p)} and the PMA update of V by A

is

V⋄pmaA =
{

V ′ : V ′ |= A and there is no V ′′ ∈ ||A|| such that D(V ,V ′′) ⊂ D(V ,V ′)
}

For example, ∅ ⋄pma p∨q =
{

{p}, {q}
}

and ∅ ⋄pma(p∧q)∨r =
{

{p, q}, {r}
}

.

Proposition 5. Let V be a database and let C be a set of static constraints. Then

{

V ◦ U : U is a repair of V by C
}

= V⋄pma
(
∧

C
)

.

The above result justifies the term PMA repair that we are going to employ hence-

forth (because the mere term ‘repairs’ might lead to confusions).

1 It is actually also a drastic revision because V is a complete database and update and revision

coincide in that case [PNP+96].



4.3 Repairs and Weak Repairs in DL-PA

We now embed Winslett’s standard semantics (and thereby relevant weak repairs) and

the PMA (and thereby repairs tout court) into DL-PA. This was already done in [Her14],

but our embeddings are slightly more elegant and are presented in a more uniform and

streamlined way. We start with some auxiliary definitions.

To each propositional variable p we associate a fresh propositional variable p±. Each

proposition p± will register whether or not the proposition p has been modified along

the update. This is necessary to ensure that every proposition is modified at most once

during a repair. We extend the definition to sets of variables P ⊆ P: P± = {p± | p ∈ P}.

First, we need a program that sets all the propositions in a given set P to ⊥: P←⊥

is the sequence of assignments p←⊥ for all p ∈ P (whose order does not matter, cf.

Proposition 3). Therefore PC
±←⊥ is going to initialise the relevant p± before the pro-

gram containing toggle(p) below is executed.

Second, the following two DL-PA programs (1) modify a single proposition and store

this and (2) undo that modification:

toggle(p) = if ¬p± then p←¬p; p±←⊤ else fail = ¬p±?; p←¬p; p±←⊤

undo(p) = if p± then p←¬p; p±←⊥ else fail = p±?; p←¬p; p±←⊥

The idea is that the variable p± keeps track of the modifications of p: we are going

to ensure that it is true only once p has been modified during the current update. Then

toggle(p) will flip the truth value of p if this value has not been modified yet and records

the modification by setting p± to⊤; if p has already been made true then toggle(p) fails.

The program undo(p) undoes this.

Then a weak repair that is relevant w.r.t. C is achieved by the following DL-PA pro-

gram:

weakRepair(C) = PC
±←⊥;

















⋃

p∈PC

toggle(p)

















∗

;
(
∧

C
)

?

We note that since each variable can be updated at most once and since the order of

the updates does not matter, this can be rewritten without the Kleene star as a sequence
(

toggle(p1) ∪ skip
)

; . . . ;
(

toggle(pk) ∪ skip
)

where p1, . . . , pk are the variables in PC .

We finally define the following DL-PA formula:

Minimal(C) = ¬

〈

⋃

p∈PC

undo(p);

















⋃

p∈PC

undo(p)

















∗
〉

∧

C

The program in this formula undoes a nonempty set of toggle(p) actions (and non-

deterministically so, failing when there was no change at all). Therefore the formula

Minimal(C) says that there is no execution of that program leading to a database closer

to the actual database that satisfies the constraints. So the actual database corresponds

to a minimal change of the initial database.2

2 The difference with [Her14] is that our programs memorise that a variable has been flipped

instead of storing its previous value.



Theorem 2. Let C be a set of static constraints in the language of P and let V ⊆ P be

a database (i.e., no p± occurs in either of them). Let U be a consistent set of update

actions that is relevant w.r.t. V. Set V′ = (V◦U) ∪ {p± : p←⊤ ∈ U or p←⊥ ∈ U}.

– U is a relevant weak repair of V achieving C if and only if 〈V ,V ′〉 ∈ ||weakRepair(C)||.

– U is a PMA repair of V achieving C iff 〈V ,V ′〉 ∈ ||weakRepair(C); Minimal(C)?||.

Proof. For the first item, observe that 〈V ,V ′〉 ∈ ||weakRepair(C)|| if and only if V ′ ∈

||C|| and the following holds for all variables p ∈ P (i.e., excluding the p±): (a) p± ∈ V ′

iff V(p) , V ′(p) and (b) if V(p) , V ′(p) then p ∈ PC , i.e., only p’s from C and the

associated p± were modified.

For the second item, given some actual database V ′, define the initial database as

V = {p ∈ P : p ∈ V ′ and p± < V ′} ∪ {p ∈ P : p < V ′ and p± ∈ V ′}.

Then V ′ ∈ ||Minimal(C)|| iff there is no V ′′ ∈ ||
∧

C|| such that D(V ,V ′′) ⊂ D(V ,V ′).3

5 Active Constraints and the Associated Repairs

Active integrity constraints were proposed about ten years ago [FGZ04], and various

ways of repairing a database V by such constraints have been studied in the literature.

We refer to [CT11] for an overview. Just as for static constraints, all definitions are

based on the notion of repair set: an appropriate set of update actions U such that V ◦U

no longer violates the integrity constraints, where V ◦U is the result of updating V with

U as defined in Section 2 and is called the repaired database.

In the present section we recall syntax and semantics and show that they can be recast

in DL-PA.

5.1 Active Integrity Constraints

An active integrity constraint (or active constraint for short), combines a static integrity

constraint with a preferred repair action. Formally, an active constraint is a couple

r =
〈

C(r),R(r)
〉

where C(r) is a boolean formula and R(r) is a finite set of update actions that is consis-

tent. As before, C(r) is a static integrity constraint that is violated when C(r) is false. If

so then r is applicable and R(r) indicates how to get rid of the violation and achieve in-

tegrity. We view the elements of R(r) as permitted update actions: When C(r) is violated

then each of the actions in R(r) gets a ‘license to update’.4 This is a rather imprecise

description of the job the update actions in R(r) are expected to do, and in the litera-

ture various semantics are associated to a set of active constraints. For one of the most

3 Note that by definition of toggle(p), p ∈ D(V ,V ′) is equivalent to p± ∈ D(V ,V ′) thus the

inclusion D(V ,V ′′) ⊂ D(V ,V ′) is not affected by the variables in PC
±.

4 The reading that is given in the literature is slightly different from ours: there, R(r) is called

the set of preferred update actions.



prominent of them in terms of founded repairs, it turns out that the elements of R(r)

have to be viewed as exclusive choices: when some α ∈ R(r) is part of the repair set

then no other β can be part of the repair set.

We say that an active constraint r = 〈C(r),R(r)〉 is standard if C(r) is a clause and

each update action in R(r) produces one of the literals of C(r): if p←⊤ ∈ R(r) then p

has to be one of the literals of C(r) and if p←⊥ ∈ R(r) then ¬p has to be one of the

literals of C(r).

Remark 1. The definition in the literature differs in several respects from ours here.

First, C(r) is not viewed as a static integrity constraint but as the negation of a static

integrity constraint (r is violated when the first argument of r is true). Second, active

constraints are noted C(r) → R(r), which makes them look like formulas. However,

such formulas are non-standard because the right hand side of the implication is not a

formula but a set of programs. So their semantics remains to be given: in the literature

this is typically done by means of disjunctive logic programs under a non-monotonic

semantics. Third, all active constraints have to be standard.

We denote finite sets of active constraints by η, η1, etc. The set of static integrity

constraints associated to such a set is defined as C(η) = {C(r) : r ∈ η}.

It remains to associate a semantics to active constraints. In the present and the fol-

lowing section we discuss the options and their properties.

5.2 Founded Weak Repairs and Founded Repairs

In the literature, founded repairs are considered to be a natural basic semantics of active

constraints that is a good starting point for further refinements.

Given a set of active constraints η and a database V , a consistent set of update actions

U is founded if for every α ∈ U there is an r ∈ η such that (a) α ∈ R(r), (b) V◦U |= C(r),

and (c) V ◦ (U \ {α}) 6|= C(r). A set of update actions U is a founded (weak) repair of V

by η if U is a (weak) repair of V achieving C(η) and U is founded.

Remark 2. We have reformulated the original definition so that it applies to our more

general definition of active constraint. Both are equivalent as far as standard active

constraints are concerned.

Founded repairs do not necessarily exist [CT11, Example 2].

Example 3. Consider η =
{

〈p, {p←⊤}〉, 〈p∨q, {q←⊤}〉
}

. The set {p←⊤} is a founded

weak repair of V0 = ∅ by η. It is the only such repair: the second update action in

{p←⊤, q←⊤} cannot be founded on the second active constraint of η.

In the next section, we propose an encoding of the notion of founded repairs in

DL-PA.

Example 4 ([CT11], Example 3). Consider

η =
{

〈p∨q, {p←⊤}〉, 〈¬p∨q, {p←⊤}〉, 〈p∨¬q, {q←⊤}〉
}

.

The set {p←⊤, q←⊤} is the only founded repair of V0 = ∅ by η.



This illustrates circularity of support: each update action is individually founded be-

cause the others happen to be in the repair. Such repairs are considered to be unintended

and the notion of justified repair was proposed to overcome the problem. Justified re-

pairs can be encoded in DL-PA in a way similar to the encoding of founded repairs. We

however do not work this out here.

5.3 Founded Repairs in DL-PA

We re-use the abbreviations weakRepair(C(η)) and Minimal(C(η)) that we have intro-

duced in Section 4.3. Remember that in order to keep track of modifications we had

supposed that we have at our disposal fresh variables p±, one per variable p ∈ P. We

moreover need the following:

IsFounded(η) =
∧

p∈PC(η)



























p± →
∨

r∈η
p←X∈R(r)

〈

p←¬p
〉

¬C(r)



























where X ranges over {⊤,⊥}. The formula is true if and only if all current update actions

(encoded in the current valuation by means of the fresh variables p±) are founded.

Theorem 3. Let η be a set of active integrity constraints in the language of P and let

V0 ⊆ P be a database (i.e., no p± occurs in either of them). Let U be a consistent set of

update actions that is relevant w.r.t. V0.

– U is a weak founded repair of V0 by η iff

〈V0,V0◦U〉 ∈
∣

∣

∣

∣

∣

∣weakRepair(C(η)); IsFounded(η)?
∣

∣

∣

∣

∣

∣.

– U is a founded repair of V0 by η iff

〈V0,V0◦U〉 ∈
∣

∣

∣

∣

∣

∣weakRepair(C(η)); IsFounded(η)?; Minimal(C(η))?
∣

∣

∣

∣

∣

∣.

Proof. Suppose V is some repaired database (containing variables p±). Define the set

of update actions

UV ,η = {p←⊤ : p± ∈ V and p ∈ V} ∪ {p←⊥ : p± ∈ V and p < V}.

Let us prove that V ∈ ||weakRepair(C(η)); IsFounded(η)||? iff UV ,η is a weak founded

repair of V0 by η. The latter means that for every α ∈ UV ,η, the three conditions (a) α ∈

R(r), (b) V0 ◦UV ,η |= C(r), and (c) V0 ◦ (UV ,η \ {α}) 6|= C(r) are satisfied.

For the left-to-right direction consider some p←⊤ ∈ UV ,η. Then p± ∈ V . Condition

(b) is satisfied from the definition weakRepair(C(η)) and Theorem 2. Condition (a) is

satisfied by the existence of a candidate rule in the definition of IsFounded(η); remark

that we are guaranteed that the rule contains indeed p←⊤, as opposed to p←⊥, because

undoing the change on p changes C(r) to false (so X has to be ⊤). Condition (c) is

satisfied because V0 ◦ (U \ {p←⊤}) 6|= C(r) is equivalent to V0 ◦U |= ¬
〈

p←⊥
〉

C(r).

For the right-to-left direction, Theorem 2 ensures that UV ,η is a weak repair. To prove

that V ∈ ||IsFounded(η)||, consider some p± ∈ V . By definition, it entails p←X ∈ UV ,η

for some X ∈ {⊤,⊥}. Condition (a) ensures that there is a rule r ∈ η with p←⊤ ∈ R(r).

Condition (c) implies V |= ¬
〈

p←¬X
〉

C(r). This concludes.



6 A New Definition of Repair in DL-PA

We now propose two new definitions that take advantage of the resources of DL-PA.

More precisely, we make use of while loops in order to iterate the application of active

constraints. We start by discussing how databases can be repaired by applying active

constraints in sequence. This will lead us to the definition of dynamic repair. We show

that it is incomparable with both founded weak repairs and founded repairs.

6.1 Repairing a Database: A Dynamic View

Suppose there is only one active constraint r that is standard. Then it is clear how to

proceed: either V |= C(r) and there is nothing to do, or V 6|= C(r) and we have to apply

r. In the second case, each αi ∈ R(r) provides a PMA repair of V achieving C(r).5 What

about the case where R(r) is empty? Well, then V cannot be repaired and we are stuck.

So far so good. The situation gets way more intricate when the set of active con-

straints η contains two or more elements that can interact.

Even for standard active constraints it might not be enough to apply only one of

the update actions from R(r): some of the active constraints might have to be applied

several times in order to obtain integrity. The following example of an n-bit counter

highlights this.

Example 5. Suppose we represent binary numbers up to 2n+1−1 by means of n+1 propo-

sitional variables: ¬pn∧ · · · ∧¬p0 represents the integer zero and pn∧ · · · ∧p0 represents

2n+1−1. Let

r1 = 〈p0∨x0∨ · · · ∨xn, {p0←⊤}〉

r2k
= 〈pk∨¬pk−1∨ · · · ∨¬p0∨xk, {xk←⊤}〉, for k ≤ n

r3k
= 〈pk∨¬pk−1∨ · · · ∨¬p0∨¬xk, {pk←⊤, pk−1←⊥, . . . , p0←⊥}〉, for k ≤ n

r4k
= 〈¬pk∨pk−1∨ · · · ∨p0∨¬xk, {xk←⊥}〉, for k ≤ n

The idea is that when ¬pk∧pk−1∧ · · · ∧p0 is true, i.e., when the number 011. . .1 has to

be incremented to 100. . .0, then xk is made true by r2k
and remains so unless 100. . .0 has

been attained. This involves flipping the k digits in the conjunction ¬pk∧pk−1∧ · · · ∧p0:

with active constraints this is done one-by-one by the rule r3k
. Then xk is set to false

again by r4k
. Let ηn =

{

r1} ∪ {r21
, . . . , r2n

} ∪ {r31
, . . . , r3n

} ∪ {r41
, . . . , r4n

}
}

. Successive

repairing steps implement an n-bit counter counting from the initial database ∅ to the

database {pn, . . . , p0}.

The computation takes 2n+1−1 steps, demonstrating that sometimes atomic repairs

must be performed an exponential number of times: V0 = ∅ can only be repaired by

applying r1 a number of times exponential in n.

Our example highlights the difference between dynamic repairs and founded repairs:

in the latter an active constraint can only be used once.

5 For our more general active constraints where there is no syntactical link between C(r) and

R(r) we have to compute all possible minimal subsets U ⊆ R(r) such that V |= C(r). All of

them are PMA repairs.



6.2 Dynamic Weak Repairs and Dynamic Repairs

We associate to every active constraint r the DL-PA programs

πr = ¬C(r)?;
⋃

α∈R(r)

α and π±r = ¬C(r)?;
⋃

p←X∈R(r)

(

p←X; p±←⊤
)

,

where we consider that
⋃

α∈R(r) α equals fail when R(r) is empty. This matches the intu-

itive reading that we have given to active constraints in Section 5.1: the repair program

πr checks whether the static integrity constraint associated to r is violated and if so ap-

plies one of the update actions from R(r). The program π±r moreover stores that p has

been changed. This is also supported by the following proposition, which tells us that

applicability of an active constraint r is matched by the DL-PA notion of executability

of the program πr.

Proposition 6. Let r be an active constraint and let V be a database. Then applicability

of r at V is equivalent to both V |= 〈πr〉⊤ and V |= 〈πr〉
±⊤.

Proof. It suffices to observe that when π is a nondeterministic composition of update

actions then the equivalence ϕ↔ 〈ϕ?; π〉⊤ is DL-PA valid for every ϕ.

A dynamic weak repair of V by η is a set of update actions U such that U is relevant

w.r.t. V and

〈V ,V◦U〉 ∈
∣

∣

∣

∣

∣

∣

∣

∣

while ¬C(η) do
(
⋃

r∈η

πr

)

∣

∣

∣

∣

∣

∣

∣

∣

.

Finally, U is a dynamic repair of V by η if U is a PMA repair of V by η that is dynamic.

Example 6 (Example 4, ctd.). Consider again

η =
{

〈p∨q, {p←⊤}〉, 〈¬p∨q, {p←⊤}〉, 〈p∨¬q, {q←⊤}〉
}

.

There is a single dynamic (weak) repair of V0 = ∅ by η, viz. {p←⊤, q←⊤}.

Example 7 (Example 3, ctd.). Consider again η =
{

〈p, {p←⊤}〉, 〈p∨q, {q←⊤}〉
}

, whose

only founded weak repair was {p←⊤}. There are two dynamic weak repairs of V0 = ∅

by η, namely {p←⊤} and {p←⊤, q←⊤}. Only the former is a dynamic repair.

The next example illustrates that dynamic weak repairs are not necessarily founded.

Example 8. Consider η =
{

〈p∨q, {p←⊤, q←⊤}〉, 〈p∨r, {p←⊤, r←⊤}〉
}

. There are four

dynamic weak repairs of V0 = ∅ by η, namely U1 = {p←⊤}, U2 = {q←⊤, r←⊤},

U′
1
= {p←⊤, q←⊤}, and U′′

1
= {p←⊤, r←⊤}. Only U1 and U2 are dynamic repairs.

The next theorem characterises dynamic repairs in terms of DL-PA programs.

Theorem 4. Let η be a set of active integrity constraints in the language of P and let

V0 ⊆ P be a database (i.e., no p± occurs in either of them). Let U be a consistent set of

update actions that is relevant w.r.t. V0. U is a dynamic repair of V0 by η iff

〈V0,V0◦U〉 ∈
∣

∣

∣

∣

∣

∣

∣

∣

while ¬C(η) do
(
⋃

r∈η

π±r

)

; Minimal
(

C(η)
)

?
∣

∣

∣

∣

∣

∣

∣

∣

.

Other definitions of dynamic repairs are possible. We could e.g. stipulate that U is a

dynamic repair of V if it is a dynamic weak repair that is minimal w.r.t. set inclusion,

i.e., such that there is no dynamic weak repair U′ of V such that U′ ⊂ U. We have not

explored this option in detail, but it seems that it can be captured in DL-PA as well.



7 Discussion and conclusion

We have shown how several definitions of database repair via active integrity constraints

can be expressed in DL-PA, including a new proposal in terms of their iterated appli-

cation. This allows us to claim that DL-PA is a nice integrated framework for database

updates: it not only provides operators p←⊤ of insertion and p←⊥ of deletion and

more generally sets U of such assignments that can be applied to a database V; it also

provides a means to reason about the repair of the resulting V◦U when some element

of the set of integrity constraints is violated. For example, V ′ is a possible repair of the

update of the database V by the deletion of p if and only if the couple 〈V ,V ′〉 belongs to

the interpretation of the DL-PA program p←⊥; repair, where repair is one of the repair

programs of theorems 2, 3, 4. Moreover, the set of candidate repaired databases is the

interpretation of the DL-PA formula
〈(

p←⊥; repair
)−〉

ϕV , where ϕV is a conjunction of

literals describing V syntactically.

Beyond identifying possible repaired databases, our programs repair also allow to

solve decision problems. For example, we may check whether it is possible at all to

repair V by model checking in DL-PA whether

V |=
〈

repair
〉

⊤.

We can also check whether there is a unique repair of V by model checking whether the

set of databases V ′ such that 〈V ,V ′〉 ∈ ||repair|| is a singleton. This amounts to model

check for each of the variables p occurring in the constraints whether

V |=
[

repair
]

p ∨
[

repair
]

¬p.

We might as well wish to check possibility or unicity of the repairs independently of a

specific database V . For example, we can check whether η can repair any database by

checking whether the formula
〈

repair
〉

⊤ is DL-PA valid. A further interesting reasoning

task is to check whether two sets of active constraints η1 and η2 are equivalent under a

given semantics by checking whether ||repairη1
|| = ||repairη2

||.

Our active integrity programs of the form r = 〈C(r),R(r)〉 generalise the condition

C(r) from disjunctions of clauses to arbitrary formulas (that could actually even be

DL-PA formulas). This opens up two perspectives. First, our definition also covers re-

vision programs [CT11]; we leave it to future work to establish the exact relationship.

Second, we could further generalise the action R(r) from a set of update actions to ar-

bitrary DL-PA programs. Dynamic repairs would then still make sense, while it is not

clear how founded and justified repairs would have to be defined.

It is known that deciding the existence of a repair is NP-complete for PMA repairs

and for founded weak repairs, while it is Σ2
P

complete for founded repairs [CT11].

We leave to future work the investigation of the complexity of dynamic repairs. What

can already be said is that our repair programs repairη all have length polynomial in

the size of η. Complexity results for the fragments of DL-PA containing the respective

repair programs would therefore provide an upper complexity bound. These results re-

main to be established; they would parallel those for fragments of QBF. First steps are

in [Her14].
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