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Abstract. Asymmetric and symmetric chaotic attractors produced by the
simplest jerk equivariant system are topologically characterized. In the case of this
system with an inversion symmetry, it is shown that symmetric attractors bounded
by genus-one tori are conveniently analyzed using a two-components Poincaré
section. Resulting from a merging attractor crisis, these attractors can be easily
described as made of two foldings mechanisms (here described as mixers), one for
each of the two attractors co-existing before the crisis: symmetric attractors are
thus described by a template made of two mixers. We thus developed a procedure
for concatenating two mixers (here associated with unimodal maps) into a single
one, allowing to describe a reduced template, that is, a template simplified under
an isotopy. The so-obtained reduced template is associated with a description
of symmetric attractors based on one-component Poincaré section as suggested
by the corresponding genus-one bounding torus. It is shown that several reduced
templates can be obtained depending on the choice of the retained one-component
Poincaré section.
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1. Introduction

In a recent paper, we proposed a systematic procedure to extract template for genus-
one chaotic attractors with a single folding mechanism, that is, for attractor bounded
by a genus-one torus [1, 2] and characterized by a unimodal smooth first-return map
[3]. The procedure was developed for attractor with a single folding mechanism
between two successive intersections with a given Poincaré section. This type of
attractors corresponds to the Rössler attractor [4] as well as many other attractors (see
[5, 6, 7, 8, 9, 10, 11], for instance). When the system presents an inversion symmetry
as encountered in the simplest equivariant jerk system [12], there are some parameter
values for which the attractor presents two foldings, thus leading to a trimodal map
[13, 14]. Such a case occurs in fact in any system with an order-2 symmetry presenting
a merging attractor crisis [13, 15]. It can be also observed in the Lorenz system for
large R parameter values [16]. In that cases, the trimodal first-return map which
characterizes such attractor can be viewed as the product of two unimodal smooth
maps.

According to our previous work [3], any template can be described by a linker
made of splitting chart which divides the attractor in branches [17], torsion (local
or/and global), permutations and branch insertion where branches are squeezed
[17, 18]. For instance, a simple folding as observed in the spiral Rössler attractor [4, 19]
is characterized by a simple mixer made of a splitting chart inducing two branches, one
having a local negative torsion (a negative half-turn), and one negative permutation
between the two branches which are squeezed at a branch line matching, for instance,
with the one-component Poincaré section. A mixer is described by a single linking
matrix encoding torsion of each branch (diagonal elements) and permutation between
branches (off-diagonal elements) [17]; the template of the spiral Rössler attractor is
thus described by a simple linking matrix [19].

When an attractor has two foldings (two stretching and squeezing mechanisms)
as the symmetric attractor observed in the simplest equivariant jerk system, its
topological description must be made by using two branch lines (at which the branches
are squeezed), being associated with each of them. In our previous work, only
attractors with a single folding, that is, a single mixer were considered. When there are
some global torsions, we showed that the linking matrix can be decomposed into a sum
of linking matrices, one describing the folding and the others each global torsion for
instance [3]: in such a case, we had to consider the addition of linking matrices. When
the considered attractor is made of two foldings (two branch lines), the two mixers
have to be combined in a multiplicative way for getting a reduced template, that is, a
template made of a single mixer as it was done for instance in investigating the Burke
and Shaw attractor [13] or as briefly suggested in [20]. In the present work, our aim
is to show that the unique 4 × 4 linking matrix used for describing such a reduced
template can be obtained by the product of the two 2 × 2 linking matrices describing
the two mixers: such a multiplicative law will be particularly useful for characaterizing
attractors with multiple foldings because it is easier to construct a mixer for each of
the folding than one for the reduced template. With such a multiplicative law, the
procedure for characterizing an attractor with two foldings would be to get the two
mixers (their linking matrices) and then to apply the multiplicative law. In other
words, when an attractor has two unimodal foldings, each of them being made of
two branches, it can be described with a single mixer (folding) made of four branches
which can be viewed as the product of the two two-branch mixers. This multiplicative
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law that we will introduce in this paper appears as the required companion to the
additive law introduced in our previous work [3] to develop a systematic procedure for
extracting templates for attractors with multiple foldings. The present work concerns
attractors bounded by genus-one tori.

The subsequent part of this paper is organized as follows. In section 2 we sum up
our previous work to describe a template in terms of linker. The system under study,
the simplest equivariant jerk system obtained by Malasoma [12], is also introduced.
In section 3, we topologically characterized the symmetric attractor combining two
foldings and obtained its reduced template using a one-component Poincaré section,
that is, without taking into account the inversion symmetry of the system. In section
4, we investigated the symmetric attractor with a two-component Poincaré section
that permits to obtain two mixers in which the symmetry of the system is thus
explicitly described. The direct template reveals the two mixers corresponding to
the two asymmetric attractors that merged via a crisis to form a single symmetric
attractor. Section 6 gives some conclusions.

2. Coexisting asymmetric attractors in a simple equivariant system

2.1. The simplest equivariant jerk system

As in the companion of the present paper, we will investigate the chaotic attractor
solution to the simplest equivariant jerk system

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ẋ = y
ẏ = z
ż = −αz + xy2 − x ,

(1)

discovered by Malasoma [12]. This system is equivariant under an inversion symmetry,
that is, it obeys to

f(Γ ⋅ x) = Γ ⋅ f(x) (2)

where x ∈ R3(x, y, z) is the state vector and

Γ =

⎡
⎢⎢
⎢
⎢⎢⎣

−1 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦

(3)

defines the inversion symmetry. While we previously focused on the two asymmetric
attractors which are co-existing before the merging attractor crisis, we will now
investigate the unique symmetric attractor remaining in the state space once the
two asymmetric ones merged. All these attractors are bounded by a genus-one torus.
The main difference between these two types of attractors is that the asymmetric ones
have a single folding while the symmetric attractor has two foldings [14]. This feature
induces deep differences in their topological analysis. Let us start by summarizing the
results we obtained for the two asymmetric attractors A and A as discussed in [3];
this will help us to introduce some conventions and concepts we need for the analysis
of the symmetric attractor As. The bar will be used for designating the image object
O obtained from an object O under the inversion symmetry.

In our previous paper [3], we introduced a convention to represent the attractor
with a clockwise flow. In order to uniquely orientate the first-return map, we also
proposed to work with cylindrical coordinates (r, θ, z) to investigate these attractors:
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the range for values of radius rn at the nth intersection with the Poincaré section
Si was normalized to the unit interval ]0,1[, and oriented from the inner part (0)
of the attractor to its periphery (1). The normalized variable is designated by ρi,n.
Four equivalent Poincaré sections were useful for describing accurately the different
elements of the two co-existing asymmetric attractors A and A [3]. These Poincaré
sections Si (i ∈ {a, b, c, d}) are defined as

Pi ≡ {(rn, zn) ∈ R2 ∣ θn = ϕi, θ̇n < 0} (4)

where ϕa = π, ϕb =
4π
5
, ϕc = 0, and ϕd =

9π
5
. For α = 2.0645, we designated by A the

attractor solution to system (1) and issued from initial conditions (x0, y0, z0) = (4,0,0)
and, by A its symmetric — under the inversion symmetry — from initial conditions(x0, y0, z0) = (−4,0,0) (Figure 1).
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A

Figure 1. (Color online) Coexisting asymmetric attractors, A (black) andA (red)
solution to system (1) and issued from two symmetric sets of initial conditions.
Parameter value α = 2.0645.

2.2. Bifurcations diagram

In their analysis [14], Letellier and Malasoma provided two bifurcation diagrams, one
for the original system and another for the image system, a system for which the
inversion symmetry was modded out [21]. When computed from two symmetric sets
of initial conditions (x0, y0, z0) = (4,0,0) and (x0, y0, z0) = (−4,0,0), the so-merged
bifurcation diagrams (Figure 2) look similar to the diagram obtained from the image
system as done in [14], but where the two asymmetric attractors can be distinguished.

For each of the two symmetric sets of initial conditions, the bifurcation diagram
(Figure 2) exhibits a period-doubling cascade which is a common route to chaos. These
diagrams also reveal that for α > 2.0644 two asymmetric attractors coexist in the state
space. After a merging attractor crisis at α < 2.0644, the range of realized xn-values
in the Poincaré section does no longer depend on the initial conditions. This means
that there is a unique symmetric attractor; in other words, the attractor is mapped
into itself under the inversion symmetry. The two attractors A and A co-existing in
the state space for α = 2.0645 (Figure 1) merged in a unique symmetric attractor As

solution to system (4) when α is decreased.
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Figure 2. (Color online) Bifurcation diagram of system (1) computed in Poincaré
section Sa versus parameter α and from two sets of initial conditions.

2.3. Templates and return maps

Attractor A (A) has a negative (positive) torsion τ−1 (τ+1) between the two sections
Sa and Sb (Sc and Sd) (Fig. 1). Torsion τ−1 (τ+1) is a negative (positive) π-twist:
consequently, τ−1 is mapped into τ+1 under the inversion symmetry. Direct templates
T 1

Dc(A) and T 1

Da(A) for these two attractors are shown in Figures 3a and 3b. As
justified later in this paper, we designated by T n

D the direct template of an attractor
using a n-component Poincaré section. Subscript a (c) indicates the considered section
and its corresponding branch line. In the present case, a single-component Poincaré
section is used and, consequently, the template is designated by T 1

Da when the branch
line associated with section Sa is considered. The template for attractor A can
be obtained from the template for attractor A (Fig. 3b) by applying the inversion
symmetry and adding a permutation between the branches of the template T 1

Dc(A)
so obtained (shown after the Poincaré section Sb in Figure 3a) to those of template
T 1

Da(A) to match with the standard insertion convention (see [3], for details). These
two templates are drawn together to sketch what happens at the merging attractor
crisis (Figure 3c). In this representation, the inversion symmetry is yet explicit because
mixer M1

Da (M1

Dc) between section Sb and branch line lc (Sc and branch line la) is
symmetric of the other. Indeed,M1

Dc is the image of mixerM1

Da under the inversion

symmetry sinceM1

Dc =M
1

Da and their linking matrices are such as

L1

Da(A) = L1

Dc(A) = [ −1 −1
−1 0

⟧ = [1 0

0 0
⟧ . (5)

In this equation, the left bracket of the linking matrix means that there is a splitting
chart (in the present case, located after section Sb as shown in Figure 3a and dividing
the attractor in two branches) and the right double bracket means that there is a
branch line at the end of this linker where the (two) branches are merged (by squeezing)
to form a single branch. Figure 3c suggests how these two templates merged, leading
to an attractor with two mixers, one being the symmetric of the other.

The first-return maps to Poincaré section Sa are computed before (α = 2.0645)
and after (α = 2.0643) the merging attractor crisis (Figure 4). When two asymmetric



Systematic template extraction from chaotic attractors. II 6

Sa

Sb

Sd

Sc

Sa

Sb

Sd
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(a) Direct template T 1

Dc
(A) (b) Direct template T 1

Da
(A)

Sa

Sb

Sd

Sc lc

la

(c) The two direct templates T 1

Dc
(A) and T 1

Da
(A)

Figure 3. Direct templates for attractors A and A and how they merged into
a single one through the merging attractor crisis. Branch line lc (la) can be
associated with section Sc (Sa) since they are only separated by trivial branches.

attractors coexist, there are two disjoint unimodal first-return maps (Figure 4a). After
the crisis, the two return maps merged into a single bimodal map (Figure 4b).
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Figure 4. (Color online) First-return maps to Poincaré section Sa for the
asymmetric attractors A and A before the merging attractor crisis (a) and for
the symmetric attractor As after the crisis (b).

3. Reduced template using a one-component Poincaré section

The symmetric attractorAs solution to system (1) is investigated for α = 2.027 (Figure
5). We introduced a symbolic dynamics in such a way that each symbol of the set
Σ1

a(As) = {1,2,3,4} is associated with one of the branches of the first-return map as
shown in Figure 6a. Parity of the symbols is related to the branch slope, that is, an
odd (even) symbol is associated with an increasing (decreasing) branch [19]. In fact,
the α-value is chosen in such a way that the first-return map has four branches and
is associated with a complete symbolic dynamics, that is, with a situation for which
each symbolic sequence encoded using the four symbols (one per branch) is actually
realized. Such a complete trimodal map is directly the product of two complete
unimodal smooth map as investigated in [13]. The attractor is bounded by a genus-
one torus meaning that a one-component Poincaré section is sufficient to completely
characterize the attractor (at least when the inversion symmetry is ignored).

Table 1. Linking numbers between pairs of unstable periodic orbits extracted
from the symmetric chaotic attractor As solution to system (1). Parameter value:
α = 2.027.

(1) (2) (3) (23) (12)

(2) 0

(3) 0 0

(23) 0 0 -1

(12) 1 0 0 0

(134) 1 0 -1 -1 1

Periodic orbits are numerically extracted from the first-return map and we
computed linking numbers between pairs of orbits (Table 1). These linking numbers
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Figure 5. Symmetrical attractor As solution to system (1). Parameter value:
α = 2.027.
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Figure 6. First-return maps to the one-component Poincaré section Si of the
symmetrical attractor As solution to system (1). Parameter value: α = 2.027.
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can be recovered with the mixerM1

Ra(As) defined by the linking matrix

L1

Ra(As) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 −1 −1
0 −1 −1 −1
0 −1 −1 0

MQQQQQQQOa

(6)

describing the reduced template corresponding to branch line la (not distinguished
from the Poincaré section Sa). The subscript a at the right double bracket designates
the branch line (or equivalently in our approach the considered component of the
Poincaré section) used to define the natural order over the symbols, that is, in the
present case using 1◁2◁3◁4. The template associated with mixerM1

Ra(As) is shown
in Figure 7. Providing such a template for attractor As does not provide a topological
description evidencing the symmetry properties of the attractor. In the next section,
we will therefore investigate attractor As in order to evidence its symmetry properties.

Sa

1 2 3 4

la

Figure 7. Reduced template T 1

Ra
(As) for the attractor As solution to the

simplest equivariant jerk system. Parameter value α = 2.027.

4. Templates using a two-component Poincaré section

Despite the fact that attractorAs is bounded by a genus-one torus, it can be convenient
to investigate such an attractor invariant under an order-2 symmetry (an inversion is
an order-2 symmetry since Γ2 = I where I is the identity matrix) by using a two-
component Poincaré section. The underlying idea is that such an attractor has two
foldings whose squeezing mechanisms are located at branch lines la and lc. Since
branch lines la and Poincaré section Sa (lc and Sc) are only separated by a trivial
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branch, la and lc can be identified to Poincaré sections Sa and Sc, respectively. A
two-component Poincaré section P2 is thus defined as

P2 ≡ Sa ∪ Sc = {(ρa,n, zn) ∈ R2 ∣ θn = ϕa, θ̇n < 0}∪
{(ρc,n, zn) ∈ R2 ∣ θn = ϕc, θ̇n < 0} (7)

where ρa,n ∈ ]0,1[ and ρc,n ∈ ]0,1[ are the working variables in the unit interval for
each branch line. They can be rewritten as a single variable

ρn = 1Sa
⋅ ρa,n + 1Sc

⋅ (1 + ρc,n) (8)

where 1Si
is the indicator function such as 1Sa

= 1 when θn = ϕa and zero otherwise
and 1Sc

= 1 when θn = ϕc, and zero otherwise.

0

1

2

0 1 2

ρ
n
+
1

ρn

1 2

1 2

Figure 8. First-return map to the Poincaré section P2 of the symmetric attractor
As. There are two unimodal smooth maps, one being the symmetric of the other
under the inversion symmetry. Parameter value: α = 2.027.

The first-return map to the Poincaré section P2 (Figure 8) can be viewed as
made of two unimodal smooth maps, one being the symmetric of the other under
the inversion symmetry and the signature of each folding. Both are located in the
off-diagonal panels of the first-return map to Poincaré section P2 (Figure 8), meaning
that any point from Sa (ρn ∈ ]0; 1[) is sent to Sc (ρn ∈ ]1; 2[), thus leading to the
transition matrix

Tr = [ 0 1

1 0
] (9)

between the components of the Poincaré section; the transition matrix is written using
the order Sa ≺ Sc. From the structure of the first-return map (Figure 8), it is possible
to define a symbolic dynamics using four symbols, one for each monotonic branch. As
commonly used [13, 14, 19, 22, 23], the parity of the symbol (an integer) is chosen
according to the slope of the corresponding monotonic branch, that is, odd (even) for
a branch with a negative (positive) slope. In order to explicit the symmetry, we will
use symbol σ (σ) for the Sa (Sc) component. We thus propose the set of symbols
Σ2(As) = {1,2,1,2}, branch 1 (2) being the symmetric companion to branch 1 (2).
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Periodic orbits are necessarily the same as those extracted from the single-
component Poincaré section. Indeed, it is possible to map the orbital sequence assigned
using a single-component Poincaré section (thus using the symbol set Σ1

a(As) as in
Section 3) into the orbital sequence associated with Poincaré section P2 (using the
symbol set Σ2(As)) as it was done in [13, 14]. Such a map between symbols from set
Σ1

a(As) and those from set Σ2(As) reads as

Φa =

RRRRRRRRRRRRRRRRRRRRRRR

Φa(1) = 1 2

Φa(2) = 1 1

Φa(3) = 2 1

Φa(4) = 2 2 .

(10)

Few remarks must be done here. First, the fact that we switched from a single-
component to a two-component Poincaré section induces that one symbol in the former
Poincaré section is mapped into two symbols in the latter one. When a two-component
Poincaré section is used, the topological period of an orbit, directly related to the
number of symbols used to describe it, is therefore no longer associated with the
number of revolutions made around the inner singular point but rather to the number
of times it crosses the Poincaré section. The topological period of an orbit is thus
directly related to the number of components used for defining the Poincaré section.
Second, the parity of the symbols is preserved by map Φa ∶ Σ1

a(As) → Σ2(As) in the
sense that the parity of a symbol σ1 from Σ1

a(As) is the same as the parity of the
symbol sequence σ2

1σ
2
2 from Σ2(As) where Φa(σ1) = σ2

1σ
2
2 . For instance, symbol “1”

designating a trajectory visiting branch 1 of the reduced template shown in Fig. 7 also
corresponds to a trajectory that visits branch 1 of mixerM2

c(As) and then branch 2
of mixerM2

a(As): the odd symbol “1” is thus mapped into the odd sequence “12”.
In section 3, we constructed a template T 1

R(As) using a single branch line (or
equivalently a one-component Poincaré section) as shown in Figure 7. We thus
obtained a branched manifold where the inversion symmetry was not explicit. When
two branch lines are used, the construction of the branched manifold is somehow
more natural as evidenced by the direct template T 2

D(As) shown in Figure 9a. The
two branch lines are designated by la and lc, respectively; one branch line is the
symmetric of the other under the inversion symmetry as in the symmetric attractor
shown in Figure 5a. The two global torsions τ−1 and τ+1 are located between section
Sa and Sb, and between Sc and Sd, respectively. In Figure 9a, the mixer occurring
between Sb and lc, is the symmetric of the mixer observed between Sd and la; the
permutation between branches 1 and 2, which does not occur between branches 1
and 2, is only due to the standard insertion convention (see [3] for details). It is
now possible to reduce template T 2

D(As) by injecting each global torsion in the mixer
which follows, thus leading to the reduced template T 2

R(As) shown in Figure 9b. In
this reduced template, the parity of local torsion in each branch is clearly associated
with the parity of the symbol used to designate it. For instance, branch 2 presents
a negative torsion by −2: this is an even branch, that is, an orientation preserving
branch.

The direct template (Figure 9a) is made of four elements as follows. When the
flow is followed from Sa to itself, we have one negative global torsion

τ−1 = ∣ −1 −1
−1 −1

∣
b

, (11)
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Sa

Sb

Sd

Sc lc

la

Sa

Sc
12

1 2

lc

la

(a) Direct template TR(As) (b) Reduced template T 2

R(As)

Figure 9. Templates for the attractor shown in Figure 5a. Parameter value
α = 0.027.

one mixer

M2

Dc(As) ≡ [−1 −1
−1 0

⟧
c

, (12)

one positive global torsion

τ+1 = ∣ +1 +1
+1 +1

∣
d

, (13)

and one mixer

M2

Da(As) ≡ [+1 0

0 0
⟧
a

. (14)

In [3], we showed that combining a linker L described by a linking matrix L with a
global η-torsion Tη (expressed in η half-twists) leads to

L′ = τη +L ≡ ∣ τη +L if η is even

τη +Lp if η is odd
(15)

where L′ is the resulting linker and Lp is the permuted linking matrix whose elements
Lnm are obtained from elements Lmn of matrix L [3]. Consequently, mixersM2

Da(As)
andM2

Dc(As) can be algebraically reduced according to

M2

Rc(As) = T−1 +M2

Dc(As)
≡ τ−1 +L

2p

Dc(As) = ∣ −1 −1
−1 −1

∣
b

+ [ −1 −1
−1 0

⟧
p

c

= [ −1 −2
−2 −2

⟧
c

= L2

Rc(As) (16)

and

M2

Ra(As) = T+1 +M2

Da(As)
≡ τ−1 +L

2p

Da(As) = ∣ +1 +1
+1 +1

∣
d

+ [ +1 0

0 0
⟧
p

a

= [ +1 +1
+1 +2

⟧
a

= L2

Ra(As) , (17)
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respectively. The reduced template T 2

R(As) is thus made of the two mixersM2

Rc(As)
andM2

Ra(As). Linking matrices L2

Ra and L2

Rc act from branches {1,2} to {1,2} and
from branches {1,2} to branches {1,2}, respectively.
5. Concatenation of mixers to obtain reduced templates

Our purpose is now to deduce the linking matrix L1

R(As) of the unique mixer
constituting the template when a one-component Poincaré section is used from
the two linking matrices L2

Ra(As) and L2

Rc(As) corresponding to mixers M2

Ra and
M2

Rc associated with branch lines la and lc, respectively. When two mixers are
concatenated, that is, one is applied after the other, the whole transformation
corresponds to a product between the two linking matrices associated with the two
mixers considered in the sense that the number of branches in the first mixer is
multiplied by the number of branches in the second one. In the case of the symmetric
attractor As, there are two 2-branch mixers which are concatenated, namely mixers
M2

a andM2
c ; the four-branch resulting mixer is, for instance, mixerMc(As) that we

obtained in Eq. (6).
Let us introduce the set of symbols Σ1

i (As) associated with each one-component
Poincaré section Si (i ∈ {a, b, c, d}) we already used for describing attractor As. As
shown in Figures 6, the orientation of the first-return map depends on the chosen
Poincaré section Si; such a feature reveals the presence of the two odd global torsions
τ±1 in the attractor. As already mentioned, the parity of symbols is related to the
sign of branch slope. We can thus define four maps Φi transforming the symbols of
set Σ2

a(As) and Σ2
c(As) into the symbols of set Σ1

i (As) according to

Φa =

RRRRRRRRRRRRRRRRRRRRRRR

Φ(1a) = 1 2

Φ(2a) = 1 1

Φ(3a) = 2 1

Φ(4a) = 2 2

,Φb =

RRRRRRRRRRRRRRRRRRRRRRR

Φ(0b) = 2 2

Φ(1b) = 2 1

Φ(2b) = 1 1

Φ(3b) = 1 2

,Φc =

RRRRRRRRRRRRRRRRRRRRRRR

Φ(1c) = 1 2

Φ(2c) = 1 1

Φ(3c) = 2 1

Φ(4c) = 2 2

,Φd =

RRRRRRRRRRRRRRRRRRRRRRR

Φ(0d) = 2 2

Φ(1d) = 2 1

Φ(2d) = 1 1

Φ(3d) = 1 2

. (18)

Symbols σ and σ designate which branches of mixersM1

c(As) andM1

a(As) are visited,
respectively. In each pair of symbols, the first (second) one designates the branch of
the first (second) mixer which is visited by the flow starting from a given Poincaré
section Si. When it will be necessary, we will add a subscript i ∈ {a, b, c, d} to the
symbols from sets Σ1

i (As) to clearly specify to which Poincaré section Si they refer
to. Symbols from Σ1

i (As) are chosen according to the natural order observed in the
Poincaré section Si constructed using variable ρi,n. The linking matrix L1

a(As) is
written according to the natural order of Σ1

i (As).
We have thus to transform our multiplicative law between linking matrices

L1

a(As) = L2

Rc(As)⊗L2

Ra(As) (19)

into a sum of linking matrices. The composition law ⊗ is multiplicative in the
sense that the dimension dr of the matrix resulting from the concatenation of two
others is the product of the dimension of the first by the dimension d2 of the second.
Nevertheless, the resulting matrix is obtained by summing dr ×dr matrices. The 2× 2
matrices L2

Rc and L2

Ra must therefore be “expanded” into 4 × 4 matrices. The first
one occurring in the product ⊗ is expanded by transforming each element lmn into a
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2 × 2 block
lmn lmn

lmn lmn
. (20)

Matrix L2

Rc(As) is thus expanded into

L1

Rc(As) =
RRRRRRRRRRRRRRRRRRRRR

−1 −1 −2 −2
−1 −1 −2 −2
−2 −2 −2 −2
−2 −2 −2 −2

RRRRRRRRRRRRRRRRRRRRRc
(21)

working between the natural order 1a◁ 2a◁ 3a◁ 4a (12◁ 11◁ 21◁ 22) in section Sa
and the natural order 1c◁ 2c◁ 3c◁ 4c (12◁ 11◁ 21◁ 22) in Section Sc.

The second linking matrix is expanded from a d1×d1 matrix in which each element
Lij is replaced by a block B corresponding to the second linking matrix transformed
as

Lij =

RRRRRRRRRRRRRRRRRRRRRR

B L2

Rc,ii and L2

Rc,jj are both even;

B L2

Rc,ii is odd and L2

Rc,jj is even;

B∣ L2

Rc,ii is even and L2

Rc,jj is odd;

Bp L2

Rc,ii and L2

Rc,jj are both odd.

(22)

where

● B is matrix B whose row order is reversed;

● B∣ is matrix B whose column order is reversed;

● Bp is matrix B which was permuted.

In the present case, the linking matrix L2

Ra(As) is thus expanded as

L1

Ra(As) =
RRRRRRRRRRR
L
2p

Ra
L2

Ra

L
2 ∣
Ra

L2

Ra

RRRRRRRRRRRa
=

RRRRRRRRRRRRRRRRRRRRR

2 1 1 2

1 1 1 1

1 1 1 1

2 1 1 2

RRRRRRRRRRRRRRRRRRRRRa
(23)

working between the natural order 1c◁2c◁3c◁4c (12◁11◁21◁22) in the Poincaré
section Sc and the natural order 1a◁ 2a◁ 3a◁ 4a (12◁ 11◁ 21◁ 22) in section Sa.

In order to sum these two expanded matrices, it is necessary to check whether
the four branches are well ordered at the output of the first mixer to be injected in the
second mixer. This can be achieved by constructing a braid as follows. The symbolic
sequences used for describing each branch are those used in the initial section, that
is, in the present case, used in Sa. The upper line is the natural order of symbols in
the initial Poincaré section, that is, in section Sa. Then the first expanded linking
matrix is used to construct the first part of the braid (only permutation between
branches are drawn, local torsions are omitted). In the example investigated, one
can remark that, at the end of the first mixer (branch line lc corresponding to the
second row of symbol sequence in the braid shown in Figure 10a), the second branch,
namely branch 12 should be sent to branch 2 of mixerM2

Ra (since the second symbol
is 2) while the third, namely branch 21, should be sent to branch 1 (the second
symbol being 1). By definition, the left two branches issued of M2

Rc are actually
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sent to branch 1 of branch M2

Ra while the right two branches are sent to branch 2.
We thus have to insert a positive permutation between branch 12 and 21, that is,
between the first and the third branches, to have the two branches 11 and 21 issued
from M2

Rc sent to branch 2, as their symbolic sequences suggest. In order to sum
the expanded matrices describing the two mixers, additional permutations between
branches is therefore required. Consequently, the 4 × 4 matrix

L2

concat =

RRRRRRRRRRRRRRRRRRRRR

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

RRRRRRRRRRRRRRRRRRRRRc
(24)

must be added.
We have now the three linking matrices required to construct the linking matrix

L1
a(As) of mixerM1

a(As). We have

L1

a(As) = L2

Rc ⊗L2

Ra

= [ −1 −2
−2 −2

⟧
c

⊗ [ +1 +1
+1 +2

⟧
a

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −2 −2
−1 −1 −2 −2
−2 −2 −2 −2
−2 −2 −2 −2

RRRRRRRRRRRRRRRRRRRRRc
+

RRRRRRRRRRRRRRRRRRRRR

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

RRRRRRRRRRRRRRRRRRRRRc
+

RRRRRRRRRRRRRRRRRRRRR

2 1 1 2

1 1 1 1

1 1 1 1

2 1 1 2

MQQQQQQQQOa
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 0 0 0

0 0 −1 −1
0 −1 −1 −1
0 −1 −1 0

MQQQQQQQQOa
,

(25)

from which the reduced braid can be easily drawn as shown in Fig. 10b.
Using branch line lb as a reference, the mechanisms observed in the symmetric

attractor are mixer M2
c, torsion T+1, mixer M2

a, torsion T−1, respectively. In that
branch line, the natural order is

22◁ 21◁ 11◁ 12 . (26)

Before applying the product we have to reduce the three linking matrices τ−1, L
2
a(As)

and τ+1 into a single one. The first step could be, for instance, to combine torsion T+1
with mixerM2

a(As) according to rule (15). We thus obtain

L2

Ra = [ +1 +1
+1 +2

⟧
a

. (27)

We can now combine this reduced mixer with torsion T−1. Since when the torsion is
after the insertion branch of the mixer, there is no need for a permutation, we have
thus

L′ = L + Tη ≡ L + τη (∀η) . (28)
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(a) Direct braid (b) Reduced braid

Figure 10. Braids used for constructing the concatenation of the two mixers
observed in the symmetric attractor As. The topology is described with respect
to branch line la.

The addition law between linking matrix and torsion is therefore not commutative.
Mixer L2a(As) is now expressed with respect to branch line lb and thus becomes
L2Rb(As) whose linking matrix is

L2

Rb = [ 0 0

0 +1
⟧
b

. (29)

Adding an odd global torsion after a branch line does not require to permute the
linking matrix of the mixer. We have thus

M2

Rb(As) =M2

Dc ⊗M
2

Rb

≡ L2

Dc ⊗L2

Rb

= [ −1 −1
−1 0

⟧
c

⊗ [ 0 0
0 +1 ⟧

b

.

(30)

From the first part of the direct braid (Figure 11a), we observe that a permutation
must be inserted between branch 12 and 21 (the second and the fourth with respect
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to branch line lb), leading to the matrix

L2

concat =

RRRRRRRRRRRRRRRRRRRRR

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

RRRRRRRRRRRRRRRRRRRRRc
. (31)

The first linking matrix L2

Dc(As) is expanded by transforming each element lmn into
a 2 × 2 block

lmn lmn

lmn lmn
(32)

and the second linking matrix L2

Rb(As) is expanded by using the transformation (22),
leading to

L1

Rb(As) =
RRRRRRRRRRR
L
2p

Rb
L2

Rb

L
2 ∣
Rb

L2

Rb

RRRRRRRRRRRb
=

RRRRRRRRRRRRRRRRRRRRR

+1 0 0 +1
0 0 0 0

0 0 0 0

+1 0 0 +1

RRRRRRRRRRRRRRRRRRRRRb
. (33)

We thus obtain the linking matrix of the reduced mixer

L1

Rb(As) = L2

Dc ⊗L2

Rb

= [ −1 −1
−1 0

⟧
c

⊗ [ 0 0

0 +1
⟧
b

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 0 0

−1 −1 0 0

RRRRRRRRRRRRRRRRRRRRRc
+

RRRRRRRRRRRRRRRRRRRRR

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

RRRRRRRRRRRRRRRRRRRRRc
+

RRRRRRRRRRRRRRRRRRRRR

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

MQQQQQQQQOb
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 −1 0

−1 −1 −1 0

−1 −1 0 0

0 0 0 +1

MQQQQQQQQOb
.

(34)

This matrix is in fact the permuted matrix L1p
a (As), a permutation induced by the

torsion T−1 which is present between sections Sa and Sb.
Let us now treat the case of linking matrix MRc(As). From branch line lc to

itself, we have the mechanisms, T+1, M
2

a, T−1, andM
2

c . The best way is to combine
each torsion with the next mixer, that is, to construct

M2

Ra = T+1 ⊕M
2

Da (35)

and
M2

Rc = T−1 ⊕M
2

Dc . (36)

We have thus

L2

Ra = ∣ +1 +1
+1 +1 ∣ + [ +0 +0

+0 +1 ⟧ = [ +1 +1
+1 +2 ⟧ (37)
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(a) From branch line lb (b) From branch line lc (c) From branch line ld

Figure 11. First part of the braids corresponding to the relative organization
of the branches within the symmetric attractor As and starting from different
branch lines.

and

L2

Rc = ∣ −1 −1
−1 −1 ∣ + [ 0 −1

−1 −1 ⟧ = [ −1 −2
−2 −2 ⟧ . (38)

Between these two matrices, an additional permutation 11 and 22, that is, between
the second and the fourth branches, is required as revealed by the direct braid shown
in Figure 11b. The linking matrix L1

Ra(As) must be expanded in the trivial way and
matrix L1

Rc must be expanded according to transformation (22), that is, according to

RRRRRRRRRRR
L
2p
Rc L2

Rc

L
2 ∣
Rc L2

Rc

RRRRRRRRRRRc
. (39)

We thus have

L1

Rc(As) = L2

Ra ⊗L2

Rc

= [ +1 +1
+1 +2

⟧
a

⊗ [ −1 −2
−2 −2

⟧
c

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 1 1 1

1 1 2 2

1 1 2 2

RRRRRRRRRRRRRRRRRRRRRc
+

RRRRRRRRRRRRRRRRRRRRR

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

RRRRRRRRRRRRRRRRRRRRRc
+

RRRRRRRRRRRRRRRRRRRRR

−2 −2 −2 −2
−2 −1 −1 −2
−2 −1 −1 −2
−2 −2 −2 −2

MQQQQQQQQOc
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1
−1 0 0 0

−1 0 +1 0

−1 0 0 0

MQQQQQQQQOc
.

(40)
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Matrix L1

Rc(As) is the symmetric of matrix L1

Ra(As), that is, it obeys to

L1

Rc(As) = −L1

Ra(As) −
RRRRRRRRRRRRRRRRRR

0 +1 +1 +1
+1 0 +1 +1
+1 +1 0 +1
+1 +1 +1 0

RRRRRRRRRRRRRRRRRR
= L

1

Ra(As) (41)

as it was established in [3].
The last case to treat is when the template starts from branch line ld. As we did

for the case of mixerM1

b(As), we can reduced the linking matrices corresponding to
torsion T−1, mixerM2

Da(As) and torsion T+1 into the single reduced matrix

L2Rd(As) = [ 0 −1
−1 −1 ⟧

d

. (42)

After expanding the linking matrices, we got

L1

Rd(As) = L2

Da ⊗L2

Rd

= [ +1 0

0 0
⟧
a

⊗ [ 0 −1
−1 −1

⟧
d

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 +1 0 0

+1 +1 0 0

0 0 0 0

0 0 0 0

RRRRRRRRRRRRRRRRRRRRRd
+

RRRRRRRRRRRRRRRRRRRRR

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

RRRRRRRRRRRRRRRRRRRRRd
+

RRRRRRRRRRRRRRRRRRRRR

−1 −1 −1 −1
−1 0 0 −1
−1 0 0 −1
−1 −1 −1 −1

MQQQQQQQQOd
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1
0 +1 0 −1
0 0 0 −1
−1 −1 −1 −1

MQQQQQQQQOd
.

(43)

As shown in the braid issued from branch line ld (Fig. 11c), it was necessary to permute
branches 22 and 11 (first and third branches according to the natural order ◁d), and
linking matrix L1

Rd(As) was expanded according to transformation (22). Since there
is only a torsion T+1 between mixersM1

d(As) andM1
c(As), we have

L1

d(As) = L1p
c (As) , (44)

as expected. Moreover, mixerM1

d(As) is the symmetric of mixerM1

b(As), that is,

L1

d(As) = −L1

b(As) −
RRRRRRRRRRRRRRRRRR

0 +1 +1 +1
+1 0 +1 +1
+1 +1 0 +1
+1 +1 +1 0

RRRRRRRRRRRRRRRRRR
= L

1

b(As) . (45)

All these mixers are related according to

L1

a(As) = L1p

b
(As) = L1

c(As) = L1p

d (As) . (46)

These four mixers thus describe the same attractor As.
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6. Conclusion

Topological characterization is known to be a refined way to describe the mechanisms
organizing unstable periodic orbits constituting the skeleton of chaotic attractors. In
order to limit the number of possible templates for a given attractor, we introduced
some conventions such as always representing the attractor with a clockwise flow and
to compute first-return map with a variable normalized to the unit interval from the
center to the periphery of the attractor. Nevertheless templates remain proposed
using an arbitrarily chosen Poincaré section and, as we showed in this paper, many
templates which look like different but are topologically equivalent can be obtained
for a given attractor. Indeed, when there is a global torsion between two Poincaré
sections, the resulting templates will be drawn in two different ways since branches are
ordered in reversed ways. One template can be obtained from the other by permuting
linking matrix.

In a companion paper, we showed that when mixers — associated with a branch
line where branches are squeezed — are combined with open linker (without splitting
chart nor branch line as global torsions are), the resulting mixer can be obtained using
an additive law working on the linking matrices. In this paper we treated the case
where two mixers are combined to form a single one (the so-called reduced mixer).
In that case, a multiplicative law is required in the sense that the reduced mixer has
a number of branches equal to the product of the number of branches in the first
mixer by the number of branches in the second mixer. Rules for expanding linking
matrices to the appropriate dimension were thus proposed to transform then the
multiplicative law into an additive law. Manipulating algebraically linking matrices
rather than drawing rather complex branched manifolds thus open new possibilities
to construct templates of chaotic attractors characterized by first-return maps with
a large number of branches and/or made of multiple mixers as often encountered in
attractors produced by systems with large-order symmetry.
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[16] O. E. Rössler, Horseshoe map in the Lorenz equation, Physical Letters A, 60 (5), 392-394,
1977.

[17] N. B. Tufillaro, T. Abbott & J. Reilly, An experimental approach to nonlinear dynamics

and chaos, Addison-Wesley, New York, 1992.
[18] R. Gilmore, Topological analysis of chaotic dynamical systems, Reviews of Modern Physics,

70 (4), 1455-1529, 1998.
[19] C. Letellier, P. Dutertre & B. Maheu, Unstable periodic orbits and templates of the Rössler
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