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We experimentally investigate magnetic frustration effects in thermally active artificial kagome spin ice.
Starting from a paramagnetic state, the system is cooled down below the Curie temperature of the constituent
material. The resulting magnetic configurations show that our arrays are locally brought into the so-called spin
ice 2 phase, predicted by at-equilibrium Monte Carlo simulations and characterized by a magnetic charge crystal
embedded in a disordered kagome spin lattice. However, by studying our arrays on a larger scale, we find the
unambiguous signature of an out-of-equilibrium physics. Comparing our findings with numerical simulations, we
interpret the efficiency of our thermalization procedure in terms of kinetic pathways that the system follows upon
cooling and which drive the arrays into degenerate low-energy manifolds that are hardly accessible otherwise.
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Artificial spin ices (ASI) are systems designed to explore the
intriguing physics observed in magnetically frustrated materi-
als. Generally fabricated by using lithography techniques, they
offer almost infinite possibilities to construct a wide variety
of spin models which can be accessed experimentally in a
controlled manner [1]. ASI systems have been the subject of
intense research in the last few years and have allowed the
investigation of a rich physics and fascinating phenomena,
such as the exploration of the extensively degenerate ground-
state manifolds of spin ice systems [2–4], the evidence of
new magnetic phases in purely two-dimensional lattices [5–7],
and the observation of pseudoexcitations involving classical
analogues of magnetic monopoles [8–10]. Notably, artificial
spin ices comprise very different types of systems, including
macroscopic arrays of compass needles [11], Josephson
junctions [12], superconducting loops [13], optical traps [14],
and colloidal systems [15].

Until recently, most of the experimental realizations based
on magnetic nanostructures were considered as purely ather-
mal systems. Therefore, demagnetization protocols based on
the slow decay of an oscillating field are often used to drag such
systems into disordered magnetic phases [16,17]. However,
these protocols show severe limitations in bringing ASI into
their predicted low-energy magnetic configurations, where
exotic effects emerge, and several other routes have been
suggested to make square or kagome ASI thermally active
[18–26]. To date, two main directions have been proposed.
The first one consists of working close to the blocking
temperature of the system, i.e., close to the ferromag-
netic/superparamagnetic transition [20,22–24]. The second
approach consists of cooling the system down to the ferro-
magnetic state starting from a paramagnetic regime obtained
above the Curie temperature (TC) [25,26].

Following the second procedure, we show that thermally
active artificial kagome arrays of nanomagnets can be locally
brought into the magnetic charge crystal phase [5,6]. Further-
more, we show that within these magnetic charge crystallites,
pairwise spin correlators are very similar to those expected
for the so-called spin ice 2 phase, predicted by Monte Carlo
simulations at low temperatures and characterized by a

magnetic charge crystal embedded in a partially ordered
kagome spin lattice with preferential spin-loop configurations.
In other words, besides the local observation of alternating ±1
magnetic charges, the spin configurations are also consistent
with those specific to the exotic spin ice 2 phase. However,
by computing the pairwise spin and charge correlators on the
array scale, we find that the overall magnetic configurations
are clearly out of equilibrium. Using a kinetic algorithm that
models how our artificial arrays of nanomagnets behave when
crossing the Curie temperature from the paramagnetic state,
we manage to reproduce very well our experimental data. We
thus interpret our experimental findings in terms of kinetic
pathways that the system follows upon cooling and we further
show how the kinetic process drives the arrays, locally, into
low-energy degenerate manifolds that are hardly accessible
using a field protocol.

Kagome arrays of 342 nanomagnets were fabricated by
electron-beam lithography and ion beam etching. Typical
dimensions are 500×100×10 nm3 and the nanomagnets are
connected at the vertices (see Fig. 1). The constituent material
is a ferrimagnetic CoGd alloy which has a Curie temperature
adjustable over a wide temperature range by tuning the alloy
composition. For the chosen composition (Co0.7Gd0.3), TC is
close to 475 K. Therefore, the networks were annealed at about
500 K, before being cooled down below TC in the absence of
an applied magnetic field. Since the remagnetization of the
nanomagnets is orders of magnitude faster than the cooling
rate when crossing the Curie point (typical time scales are
in the order of nanoseconds and seconds, respectively), the
process can be considered as quasistatic. At room temperature,
the nanomagnets are uniformly magnetized, with their magne-
tization aligned with the long axis of the magnetic elements,
and can therefore be considered as Ising pseudospins. The
resulting magnetic configurations were imaged using an
x-ray magnetic circular dichroism photoemission electron
microscope (XMCD-PEEM) at the nanospectroscopy beam
line of the Elettra synchrotron radiation facility [27]. A
typical XMCD-PEEM image of a kagome array is shown in
Fig. 1(a). The magnetic configurations imaged after cooling the
system through the Curie temperature show that the arrays are
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FIG. 1. (Color online) (a) A typical XMCD-PEEM image of our
arrays. Black and white contrasts give the local direction of the
magnetization of each individual nanomagnet. (b) Schematics of the
magnetic charge crystallites deduced from (a). Red and blue dots
correspond to ±1 magnetic charges, respectively. Charge domains
are colored in white and green. This image is characterized by a
mean nearest-neighbor charge correlator of −0.3.

efficiently demagnetized and that the ice rule is strictly obeyed:
among more than 3800 observed vertices (corresponding to 18
different arrays), no 3-in or 3-out configuration is observed.
The magnetic configurations thus fall in the pseudospin ice
manifold and all vertices are characterized by a ±1 magnetic
charge Q [5].

From these images, the pairwise spin and charge correlators
can be determined [28]. First, we have measured the nearest-
neighbor charge correlator 〈QiQi+1〉 for the 18 arrays we
studied. The values range between −0.30 and −0.10, with
an average value of −0.22. Although far from the −1
value expected for the magnetic charge crystal phase, our
measurements are consistent with Ref. [25] and indicate that
the magnetic charge has crystallized. In fact, we see the
formation of charge domains, with a perfect alternation of
positive and negative charges on adjacent vertices [see blue/red
circles in Fig. 1(b)]. In several cases, these charge domains can
extend over a significant fraction of the array and can include
more than 1/3 of the total number of vertices. To visualize the
distribution of domain sizes, charge domains are colored in
white and green in Fig. 1(b).

To gain further insight into the underlying physics, we
have also considered the pairwise spin correlators, which we
computed by averaging within the crystallites of magnetic
charges (locally) and over the entire array (globally). As an
emergent charge order can be found in both the ground-state
configuration and the spin ice 2 phase, the local averages of
the spin correlations can help discriminate between the two
regimes. Both cases are reported in Fig. 2 up to the seventh
neighbor (green and black diamonds, respectively) and each
correlation value corresponds to an average performed over
the 18 arrays studied. For comparison, the values for the
ground-state manifolds predicted by the nearest-neighbor spin
ice (SRSI) model and the dipolar spin ice (DSI) model are
also reported (red and blue spheres, respectively) [29]. This
experimental data show several remarkable features.

First, the measured pairwise spin correlators can have large
values, even for higher-order neighbors (see Fig. 2). By no
means can these values be obtained with only a nearest-
neighbor spin ice model [30]. Therefore, long-range dipolar
interactions cannot be neglected when modeling such arrays.

FIG. 2. (Color online) Average values of the pairwise spin cor-
relators defined up to the seventh neighbor and computed within the
charge domains (green diamonds, full line) and at the network scale
(black diamonds, dashed line). For comparison, values expected for
the ground-state manifolds of the nearest-neighbor (NN) SI model
and DSI model are represented as red and blue spheres, respectively.
The purple spheres correspond to the values given by Monte Carlo
simulations for a temperature of T/Jαβ � 0.034, which best fits the
experimental data. The error bars represent the numerical standard
deviations of each correlation type at a given temperature and are
computed over the set of sampling Monte Carlo snapshots (see
note [33]). The lines linking the experimental data points have no
physical meaning and are just guides for the eyes.

Second, the spin correlations we measure differ signifi-
cantly from those of the true ground state of the DSI model.
To further determine how far we are from the ground-state
manifold, we compared our experimental values for the spin
correlators with those given by Monte Carlo simulations [31]
by employing a correlation-scattering analysis [32]. We find
that the magnetic configurations we imaged within the charge
domains correspond to spin configurations that are very close
to the pseudoice manifold of the thermodynamic spin ice 2
phase. In fact, many of our experimental correlations fall
within the standard deviations of their corresponding Monte
Carlo averages obtained for a temperature of T/Jαβ � 0.034
(see green diamonds and purple spheres in Fig. 2).

Third, if we average the spin correlators computed glob-
ally (see black diamonds in Fig. 2), the resulting values
significantly differ from those calculated locally, within the
charge domains (green diamonds in Fig. 2). In terms of
effective temperature, the best fit obtained with our correlation-
scattering analysis gives a T/Jαβ value of about 0.05 (note
that the Cαν and Cαδ spin correlators are clearly out of
the standard deviations). This T/Jαβ value corresponds to
a charge correlator of about −0.54 [crossing between the
charge correlation plot and the vertical line in the inset
of Fig. 3(a)]. This contrasts with the −0.22 value that we
find experimentally when averaging at a global scale. We
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FIG. 3. (Color online) Pairwise spin and charge (insets) correlators predicted by (a) Monte Carlo and (c) kinetic simulations. In both cases,
long-range dipolar interactions between spins are taken into account. The colored spheres are the averaged experimental data points computed
on the network scale and further averaged over the 18 different arrays. (b) The definition of the first seven pairwise spin correlations. The color
code is the same for all three images.

then have to solve an apparent contradiction: while pairwise
spin correlations measured on the array scale are those
corresponding to configurations approaching the spin ice 2
phase (T/Jαβ = 0.05), the charge correlator severely deviates
from the at-equilibrium Monte Carlo average found for this
temperature [vertical line in the inset of Fig. 3(a)]. In fact, the
experimental 〈QiQi+1〉 value alone indicates that the system
has barely reached the spin ice 1 manifold [first crossing
between the charge correlation plot and the horizontal line
in the inset of Fig. 3(a)], although our systems contain large
magnetic charge crystallites. As we shall see further on, these
differences are signatures of the kinetics of the thermalization
process which leads to an out-of-equilibrium state.

To model the experimental procedure, we make the hypoth-
esis that upon cooling below TC , each nanomagnet is subject
to thermal fluctuations, but once magnetized, magnetization
reversal is no longer possible due to the relatively high
energy barriers at stake. Except for the first nanomagnet, the
magnetization of a given nanomagnet is biased by the stray
field of its environment [34]. Therefore, we model the full
sample magnetization by the following steps: (1) randomly
choose a nanomagnet and set the direction of its magnetization,
(2) calculate the resulting stray field over the entire array and
pick the not-yet-magnetized nanomagnet that perceives the
highest effective field, (3) set the direction along which this
nanomagnet will orient itself, according to a Boltzmann-like
probability, and (4) go back to step (2) and keep repeating
steps (2) to (4) until the full sample is magnetized [35].
Once the array is fully magnetized, we calculate the resulting
spin-spin and charge-charge correlators on the network scale
and repeat these measurements for temperatures (T/Jαβ)
ranging from 102 to 10−3. The corresponding values of
the spin correlators [defined in Fig. 3(b)] are reported in
Fig. 3(c) with the same color code used for the Monte Carlo
simulations.

Although there are some differences between the correla-
tors deduced from the two numerical approaches, they still
show striking similarities. This is mostly due to the fact
that the spin interactions in both cases are described by the
dipolar spin ice Hamiltonian, hence the energy landscape is
the same [29]. However, the Monte Carlo approach explores
the different configurations at equilibrium and in an ergodic
manner, whereas the kinetic algorithm is a rather one-shot
approach, sequentially magnetizing each spin according to
a Boltzmann probability in its attempt to minimize the free
energy. Therefore, although some correlations can differ in
both magnitude and sign for certain temperature windows (see
the behavior of the Cαδ and Cαν correlators for T/Jαβ ranging
from 1 to 0.1 in Fig. 3), the overall matching is good, especially
at low temperature where our experimental correlations fall.

By performing a correlation-scattering analysis like in the
Monte Carlo case, we can place our experimental values
for both the pairwise spin and charge correlators on the
temperature-dependent variations predicted by the kinetic
model. Interestingly, they all agree upon the same effective
temperature, T/Jαβ = 0.56, and a vast majority of them fit
within the standard deviations associated to this temperature
[see Fig. 3(c) and inset]. The kinetic algorithm thus describes
well all of our experimental findings and solves the apparent
contradiction mentioned above. We emphasize that if the
dipolar interactions are suppressed in the kinetic algorithm,
leaving only nearest-neighbor interactions at play, the model
fails to reproduce our experimental results.

We have finally compared the magnetic configurations we
imaged with the ones obtained by applying ac demagnetization
protocols, similar to those used in other works [7,16,17]. We
find out that for the same arrays, the effective temperature
deduced from the analysis of the pairwise spin correlators is
about one order of magnitude lower if the thermal kinetic
approach is used. This feature raises further questions on the
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FIG. 4. (Color online) Snapshots of the kinetic algorithm at a low
temperature. The nanomagnets that are magnetic are represented by
a black arrow. The numbers indicate the ordering sequence. Red and
blue dots correspond to ±1 magnetic charges, respectively, whereas
black dots are associated with charges that have not yet been fully
defined.

underlying mechanisms that make one procedure more effi-
cient than the other in driving the system to a low-temperature
state and clearly deserves more in-depth analysis. However, we
have noticed that the kinetic procedure allows local magnetic
configurations that are difficult to obtain through the use
of a field protocol. Figure 4 shows snapshots of a kinetic
simulation performed at low temperatures and at different
steps of the magnetization process. The numbers labeling
the nanomagnets indicate in which order they remagnetize.

In this temperature regime, the magnetization process favors
the formation of full hexagons with flux closure magnetic
configurations. These local spin arrangements are specific
to low-energy manifolds obtained with at-equilibrium Monte
Carlo simulations, in which loop-flip algorithms are used to
overcome the critical slowing down behavior encountered by
single spin-flip protocols [5,7]. Interestingly, when working
at the superparamagnetic limit, single spin flips are able to
drive building blocks of such artificial systems into their
corresponding ground-state configurations, but they quickly
become inefficient as the system size increases [24]. However,
the kinetic process at work in this study spontaneously favors
closed-loop configurations. We thus relate the efficiency of
our thermalization procedure to the kinetic pathways that the
system follows when crossing the Curie temperature of the
constituent material.

In conclusion, we have studied the behavior of thermally
active artificial kagome spin ice systems by cooling the sample
from a high-temperature paramagnetic state down below the
Curie point of the constituent material. The resulting magnetic
configurations present large magnetic charge crystallites and
a detailed correlation analysis shows that our arrays are
brought, locally, into the spin ice 2 phase, characterized by
the emergence of a magnetic charge order within a disordered
spin network. The kinetic processes that take place during
the cooling procedure thus stand as efficient means to drive
the system into low-energy manifolds where exotic physics
emerges, opening new avenues to investigate unconventional
magnetism in artificial spin systems.
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