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Infinite energy solutions for a 1D transport equation with
nonlocal velocity

Omar Lazar and Pierre-Gilles Lemarié-Rieusset

Abstract

We study a one dimensional dissipative transport equation with nonlocal velocity and
critical dissipation. We consider the Cauchy problem for initial values with infinite energy.
The control we shall use involves some weighted Lebesgue or Sobolev spaces. More precisely,
we consider the familly of weights given by wgs () = (14|z|*)~#/2 where 3 is a real parameter
in (0,1) and we treat the Cauchy problem for the cases 8y € H'/?(wg) and 6y € H" (wg) for
which we prove global existence results (under smallness assumptions on the L* norm of
0o). The key step in the proof of our theorems is based on the use of two new commutator
estimates involving fractional differential operators and the family of Muckenhoupt weights.

Introduction

In this paper, we are interested in the following 1D transport equation with nonlocal velocity
which has been introduced by Cérdoba, Cérdoba and Fontelos in [14] :

00 + 0,HO + vA“0 =0
(Te) {9(0795) = Oy(x).

Here, H denotes the Hilbert transform, defined by
1 0
HO = —PV / M dy,
™ x—y
and the operator A® is defined (in 1D) as follows

—0(x —y)

Aaez(_maﬂe:cap.v./ b(x) ‘s dy
R |y|t e

where C,, > 0 is a positive constant which depends only on o and 0 < @ < 2 is a real parameter.

This equation can be viewed as a toy model for several equations coming from problems in
fluid dynamics, in particular it models the 3D Euler equation written in vorticity form (see e.g.
[1], [15], [29] where other 1D models for 3D Euler equation are studied).

One can observe that this equation is a one dimensional model for the 2D dissipative Surface-
Quasi-Gesotrophic (SQG), equation written in a non-divergence form (see [1], [5], [6] where the
divergence form equation is studied). The 2D dissipative SQG equation reads as follows

8:0(x,t) + u(6).V0 + vA%0 = 0

(596 {9(0,:::) — o(a),



where the velocity u(f) = R+ is given by the Riesz transforms R16 and R26 of 6 as
w(f) = (—R2b, R10) = (=0, A™10,0,,A716).

Obviously the velocity w(6) is divergence free. In 1D, we loose this divergence free condition,
while the analogue of the Riesz transforms is the Hilbert transform; one gets the equation (7).

One can also see this equation as an analogue of the fractional Burgers equation with the
nonlocal velocity u(f) = H6 instead of u(0) = 0. However, the nonlocal character of the velocity
makes the (7,) equation more complicated to deal with comparing to the fractional Burgers

equations which is now quite well understood (see [22], [7], [20]).
Finally, let us mention that this equation also shares some similarities with the Birkhoff-Rott
equation which modelises the evolution of a vortex patch, we refer to [14], [1] for more details

regarding this analogy.

It is easy to guess that this kind of fractional transport equation admits an L°° maximum
principle (due to the diffusive character of —A® and the presence of the derivative 6, in the
advection term). For § € L>, one thus may view 6,10 as a term of order 1, while A® is of order
«a; thus, one has to consider 3 cases depending on the value of «, namely a € (0,1), & = 1 and
a € (1,2). They are respectively called supercritical, critical and sub-critical cases.

The inviscid case (i.e. v = 0) was first studied by Cérdoba, Cérdoba and Fontelos in [14]
where the authors proved that blow-up of regular solutions may occur. They proved that there
exists a family of smooth, compactly supported, even and positive initial data for which the
associated solution blows up in finite time. By adapting the method used in [14] along with
the use of new nonlocal inequalities obtained in [13], Li and Rodrigo [26] proved that blow-up
of smooth solutions also holds in the viscous case, in the range « € (0,1/2). Using a different
method, Kiselev [20] was able to prove that singularities may appear in the case o € [0,1/2)
(where the case o = 0 conventionnally designs the inviscid case v = 0). In this latter range, that
is « € [0,1/2), Silvestre and Vicol [32] gave four differents proofs of the same results as [14], [26],
[32], namely they proved the existence of singularities for classical (C') solutions starting from a
well chosen class of initial data. In [16], T. Do showed eventual regularization in the supercritical
case and global regularity for the slightly supercritical version of equation 7, in the spirit of
what was done for the SQG equation in [31], [20]. One can also see the articles [17] and [2] where
local existence results are obtained in this regime. In the range « € [1/2,1), the question about
blow-up or global existence of regular solutions remains open.

The critical and the sub-critical cases are well understood. Indeed, by adapting methods
introduced in [23], [3], [L1], one recovers all the results known for the critical SQG equation
(under positiveness assumption on the initial data). The first global existence results are those
of Cérdoba, Cérdoba and Fontelos [14]. They obtained global existence results for non-negative
data in H' and H'/? in the subecritical case and also in the critical case under a smallness as-
sumption of the L> norm of the initial data. In [17], Dong treated the critical case and obtained
the global well-posedness for data in H® where s > 3/2 — o and without sign conditions on the
initial data. In the critical case, Kiselev proved in [20] that there exists a unique global smooth
solution for all §, € H'/2.

In this article, we will focus on the critical case (o = 1) and, in contrast with [14] and [17],
we shall not assume that 6 decays at infinity fast enough to ensure that ||f]]2 < +oo. It is worth
pointing out that, our solutions being of infinite energy, one cannot directly use methods coming
from L°°-critical case used for instance in [3]. However, in the case of an infinite-energy data,
on can still use energy estimates (in the spirit of [14]) to prove global existence results provided



that 6 increases only at a slow rate, namely

dz
2

The weight we consider is therefore given by wg(z) = (1 + |z|>)~#/2. Motivated by the work
done in [14], we will study the cases of small data in L> which belong moreover to H'/?(wg)
or H'(wg), although one can generalize to a higher regularity class of initial data (we think
that it should be even easier to treat). When the initial data lies in H/?(wg) or H'(wg) we
prove global existence of weighted Leray-Hopf type solutions but we require the L> norm of the
initial data to be small enough. As one may expect, in the subcritical case one can prove the
existence of global solutions without smallness assumption. This is done by the first author in
[24] using Littlewood-Paley theory along with a suitable commutator estimate. He also treated
the super-critical case where he obtained local existence results for arbitrary big initial data [24].

The construction of the solution is based on an energy method and amounts to control some
nontrivial commutators involving the weight wg along with some classical harmonic analysis tools
such as the use of the Hardy-Littlewood maximal function and Hedberg’s inequality for instance
(see [18], [30]) ; such tools are motivated by the fact wg is a Muckenhoupt weight. The new
commutator estimates can be used to prove existence of infinite energy solutions for other non-
linear transport equations with fractional diffusion such as the 2D dissipative quasi-geostrophic
equation as well as the fractional porous media equation for instance.

The rest of the paper is organized into five sections. In the first section, we state our main
theorems. In the second section we recall some results concerning the Muckenhoupt weights.
In the third and fourth section, we respectively establish a priori estimates and prove our main
results. In the last section we revisit the construction of regular enough solutions.

1 Main theorems

In the case of a weighted H'/? data we have the following theorem,

Theorem 1.1. Let 0 < 8 < 1 and wg(z) = (1 +22)"8/2. There exists a constante Cz > 0 such
that, whenever 0y satisfies the conditions

e 0y is bounded and small enough : |6y| < Cg

. /|90|2w5(x) dx < oo and / |AY20,Pwg(z) dz < oo,

there exists a solution 0 to equation Ty such that, for every T > 0, we have

e sup /|9(t,x)|2w5(m) dr < oo
0<t<T

e sup /|A1/29(t,x)|2w5(x) dx < oo
0<t<T

. /OT/|A0(t,x)|2w5(x) dx dt < oo



A similar result holds for higher regularity (weighted H! data).

Theorem 1.2. Let 0 < 8 < 1 and ws(x) = (1 + 22)7P/2. There exists Cs > 0 such that,
whenever Oy satisfies the conditions

e 0y is bounded and small enough : |6y| < Cg

o /|¢90|2w5(x) dx < 0o and / |Abo|?wgs () do < oo,

there exists a solution 6 to equation Ty such that, for every T > 0, we have

e sup /|9(t,x)|2w5(x) dx < 0o
0<t<T

e sup /|A9(t,x)\2wﬂ(x) dr < 00
0<t<T

T
. / /|A3/20(t,x)|2w5(1') dz dt < oo
0

2 Preliminaries on the Muckenhoupt weights.

In this section, we briefly recall the tools and the notations we shall use throughout the
article. We first recall some basic facts and notations on weighted Lebesgue or Sobolev spaces.
A weight w is a positive and locally integrable function. A measurable function # on R belongs
to the weighted Lebesgue spaces LP(wdx) with 1 < p < oo if and only if

101120 ey = ( 1@ ) dx)l/p .

An important class of weights is the so-called Muckenhoupt class A, for 1 < p < co. A weight is
said to be in the A, class of Muckenhoupt (with p € (1,00)) if and only if there exists a constant
C(w, p) such that, for every f € LP(wdx), we have the reverse Holder inequality

p—1
1 / 1 / _
sup — w(z) dx — w(zx) »—1 dx < C(w,p
r>0,z0€R (27" [QUU—T‘,JCO-&-T] ( ) ) (27’ [xO_T’,wo-‘y-T] ( ) ) ( )

In particular, if 0 < 8 < 1, then the weight wg(z) = (1 + |z|2)=#/2 belongs to the A, class for
all 1 < p < o0.
Let us recall that the Hardy-Littlewood maximal function of a locally integrable function f

on R is defined by
1
M f(x) = sup -~ |f(y)] dy.

r>0 2T [x—r,z+7]

We have the following other characterization of the A, class [8], [28] : a weight w belongs to A,
if and only if there exists a constant C),, such that for every f € LP(w dz), we have

[IMF(@) | Lr(w da) < Cpwll fllLr(wdz)-

Another important property of Muckenhoupt weights is that Calderén-Zygmund type operators
are bounded on LP(w dz) when w € A, and 1 < p < oo [30]. We shall use this property in the



case of the Hilbert transform #H and in the case of the truncated Hilbert transform Hx defined
by

Hatle) = 2PV, [ S0 44 ay (2.1)

where « is an even, smooth and compactly supported function such that a(x) =1 if |z| < 1 and
alz) =0 if |z| > 2.

We now recall the definition of the weighted Sobolev spaces H'(wdxz) and H'/?(wdz). The
space H'(w dz) is defined by

f € HY(wdz) & f € L*(wdz) and 0,f € L*(wdx).

Note that, as we have,
HO, = A and HA =9,

we see that, when w € Ay, the semi-norm ||0; f || L2 (w dg) is equivalent to the semi-norm ||Af|| 2 (wdaz)-
Therefore, when w € As, we have the following equivalence

f e H (wdz) & (1-02)'2f e L*(wdz) & f € L*(wdz) and Af € L?(wdz).
Analogously, we define the spaces H'/?(wdz) as
fe HY (wdz) e (1 - )Y f e L} (wdz) & f € L*(wdz) and AY%f € L*(wdz).

The following useful property will be used several times (see [30], p.57). Fix an integrable
nonnegative and radially decreasing function ¢ such that its integral over R is equal to 1. We
set, op = k= 1p(zk™1) for all k > 0, then

sup |f o ¢r(z)] < Mf(x) (22)

In the sequel, we shall use Gagliardo-Nirenberg type inequalities in the weighted setting. Let us
first note that, provided f vanishes at infinity (in the sense that lim; ;. e f = 0 in S’), one
may write

f:/oooetAAf dt.

Then for all N € N* by writing 1 = GZV_I(%) and integrating by parts (IV — 1) times, one
obtain the following equality

1 ot
f= T / (ea)Vera

(N -1

Then, for 0 < v < § < 2N, using the fact that the operator A2N~=9%7 is a convolution operator
with an integrable kernel which is dominated by an integrable radially decreasing kernel, along
with inequality 2.2, we have

o - t
@] £ C [ min(e 2 st T MO )
0
Then, we recover Hedberg’s inequality (see Hedberg [18])

AV f ()] < Co s (M f) (@) fllso (2.3)



Note that, if v € N*, one may replace A7 f(x) with 97 f(z). Using (2.3), one easily deduce the
following Gagliardo-Nirenberg type inequalities provided that the weight w € As

IAY2 £ L waz) < CIAILZIASNLES ey (2.4)

IAF N 22 waz) < CIAILEIAFIES iy (2.5)
and

100 £ | 22wy < CUFIL A2 FIZE (2.6)

The space of positive smooth functions compactly supported in an open set  will be de-
noted by D(£2). We shall use the notation A < B if there exists constant C' > 0 depending only
on controlled quantities such that A < C'B. We shall often use the same notation to design a
controlled constant although it is not the same from a line to another. Note that we shall write
indifferently 0,60 or 0, as well as ||.||, or ||.||z» for the classical Lebesgue spaces.

3 Useful lemmas

In our future estimations, we will need to control the LP norm of some nontrivial commutators
involving our weight wg and the nonlocal operators A and A2, The purpose of the following
subsection is to prove that we can indeed control those commutators.

3.1 Two commutator estimates involving the weight wg

In this section, we prove two useful commutator estimates that are crucial in the proof of the
energy inequality. The two commutator estimates are given by the following lemma.

Lemma 3.1. Let wg(z) = (1+ 22)7B/2, 0 < B < 1, then we have the two following estimates

e Let p > 2 be such that % - B8(1 - %) > 1, then the commutator w%j[Al/Q,wB} 18 bounded
from LP(wgdzx) to LP(wgdx).

o Let2 < p < oo, then the commutator \/%TB[A’ Jwg] is bounded from LP(wgdx) to LP(wgdx).

Proof of lemma 3.1 When estimating commutators involving the weight wg(z) = (1+22)~8/2,
we are lead to estimate quantities such that wg(z) —ws(y). In order to estimate wg(z) — ws(y),
we shall distinguish three areas that we will call Aq(x), As(x) and Az(z). Those areas are defined
as follows

A(x)={y / |z —y| <2}
Ag(x)={y [/ lx—yl =2} n{y [lz—y| < %maX(le )
Az(x) ={y / lz —y| > 2} N {y /|z —y| > %maX(le lyl)}

Note that we have R = Aj(z) U Ay(z) U Asz(z). In the sequel, we shall also use the notation

wg(z) ~ wg(y) if there exists two positive constants ¢ and C such that ¢ < ZE‘;; < C. In those

different areas, we will need to use the following estimates :



e A straightforward computation gives that |0,ws(z)| + |02ws(z)| < Cws(z)

e On A;(x), we have that wg(z) ~ ws(y) and moreover

lwa(z) —ws(y)| < |z -yl sup |0xwp(2)] < Clz — ylwg(x)
zE|x,y

On the other hand, if « is an even, smooth and compactly supported function such that
afz) =11if |z| <1 and a(x) =0 if || > 2, then

ws(y) — w(2) + alz — y)(z — y)dws(2)] < Clo — y[Pws(x) (3.1)
e On Ay(x), we shall only use that wg(x) =~ wg(y)
e On Az(z), we have 1 < wg(z)™! < Clz — y|? and 1 < ws(y)~! < Clr —y|?

Remark 3.2. Obviously, similar estimates hold for v5(z) = wg(z)'/2. Indeed, it suffices to
replace wg with 5 and S with 3/2.

Let us prove the first commutator estimate. We first write

A1/2f(33) :Co/f|(‘j‘)_f(y) dy

— |32
so that
1 1 wg(r) —wg(y 1
Al ) = [ ) ) ) dy
g wg(x)? J wp(x) T ws(y)r|r —yl
Let us set () )
wg(zr) —wp(y
K(x, y) = 1_/3; f 3/2
wa ()" Pws(y)? |z -y
On A;(x) we have
1
|K(z,y)| < CW
On Ay(z), since wg(z) = wg(y), we get
K < 071
On As(zx), we have the following estimate
()7~ + ws(y) "> !
wp(x)P wply) » ,
K(z,y)|<C <C
K (z,y)| < iz — g/ RRPSNE R

Note that, for 0 < 3 < 1 we have 3 — 3(1 — %) > 1 if p > 2. Therefore, if we introduce the
function x — ®(z) as follows

. 1 1
®(x) = min <|:c1/2’ |x|§—ﬁ(1—;)> ’



we find that ® belongs to L!(R) and that

W[Al/{ wg] f(x)

<C

‘ 1

/ Bz — y)ws(y)}f ()] dy

wp(x)?

The integral appearing in the left hand side is nothing but the convolution of z +— ®(x) € L*(R)

with z +— wg(x)%|f(x)| € LP(R). To finish the proof, we just have to take the power p in both
side then to integrate with respect to z and by Young’s inequality for convolution, we get

/ \@[A”Z,wﬁmx)

and therefore,

P

p
wiz <€ [[@swlf? @) do < Ol I} 115

| wsls@)

< CHfHLP(w/adI)
Lp(wﬁdx)

Let us prove the second commutator estimate. Let us denote v3 = ,/wg, recall that

1 @)= )

Af(z) = = lim ety [z — |2 Y

T e—0

Therefore,

LA Jws(@)]f = —— lim 25(y) — 8(x)
wg(;v) [A’ B( )]f F’yg(x) 2%0/6<zy|<1 |m—y|2 f(y) dy

Then, as we did before, we split the integral into three pieces. In other to deal with the integration
in Aq(z), we need to introduce a even, smooth and compactly supported function « such that
a(z) =1if |z| < 1 and a(x) = 0 if |z| > 2. By doing so, we get an extra term which is nothing
but the truncated Hilbert transform of f (see 2.1) times another controlled term. More precisely,
we write the commutators as follows

! ATRY 18(y) —8(@) — (y — ¥)a(z — y)days (@)
V] = s e~ o I dy
T ICI Py RS S 75(y) —78(x)
v5(x) Haf (@) + ™5 () /Ag(z)UAg(z) lz —y|? J() dy
Then, observe that on A;(x) we have (see 3.1)
L i ws(y) —ws(@) + alz — y)(@ — y)daws(2)| _
8(2) P s(y) 7 & — y|? =
On As(x), we have
1 s(y) — ()| _ 1
(@) “Pyp(y)t  lrwl T eyl

Here, we used the property that on A;(x) and As(z) we have y3(z) ~ vg(y) and therefore
_z 2
18(2)! TP s(Y) P ().



Finally, on Az(z) we use the fact that vs(z) < 1,75(z)~" < C|z — y|?/2. We also have that
Y5(y) < LWB(?J)_l < Clx — y|6/27 therefore

2_ _2
1 [v8(y) — v8(2)] 8@ L+ s(y)
W) ) Tyl v =y
, 1
< I_1 1
|£C _ y|2—5max(§—57;)

Thus, we have proved that

RN A . ,
|m“’m1f‘éc %/@ Y)ws(y)F 1 F W) dy + CIH* f(@)

Since 2 — Bmax(% -1 %7 then the function © is an integrable function on R. Taking the

power p in both side, multiplying by w and then integrating with respect to x give the following
/\ V@1 wade < € [(©G)@) do+-C" [ [HF F@)] wida

where we set G(y) = wg(y)/?|f(y)|. Therefore, since © € L'(R) and G € LP(R), Young’s
inequality for the convolution gives

1
A, \Jwg(x
||m[ Vws(@)]f

where, in the second part of the inequality, we have used that the truncated Hilbert transform of
f is a Calderén-Zygmund type operator and as such is bounded on LP(wgdx) ( by the LP(wgdx)
norm of f) since wg € A, for all p € [2,00). This concludes the proof of the second commutator
estimate.

< [15@) ws da

p
LP(wgdx)

3.2 Bounds for Awg

We have used in the previous subsection the bound |0, wg(z)| < Cwg(z). A similar estimate
holds for the nonlocal operator A :

Lemma 3.3. For all 8 € (0,1), we have |Awg(z)| < Cwg(z)

Proof of lemma 3.3 We need to estimate the following singular integral

o) = 2 [ =m0

m [z =yl

To do so, we split the integral in three pieces

PV /wﬂ sly) ., PV / wg(y)
R S R e d
|x—y\2 Z |x—y\2 Y




The domains of integrations A;(z) with ¢ = 1,2, 3 are the same ones as those introduced in the
previous subsection. Using (3.1), we get the following estimate for the integration in A;(x)

P-V/ [ws(@) —ws @) o\ _ P~V-/ [ws(y) — wp(@) + alz — y)(@ — y)orws@)|
(@) T Ja@)

T |z — y|? |z —y[?

IN

Cuwp(x)

For the integral over As(z), we have

53/ |mm—%wn@§PV/ lws@l 4, < Cup(a)

The last integral can be estimated as follows

PV. wg(x) —w wg(x 1
[ @l g, o f el < Cusle)

T JAs(x) |z -y As(z) |z — y As(z) |z -y
This concludes the proof of the lemma. O

4 A priori estimates in weighted Sobolev spaces

In order to prove the theorems, we approximate our initial data by data which vanish at
infinity, so that we may use the existence and regularity results obtained in the last section (see
section 6). For a solution 6 in H®, s = 0, 1/2 or 1, we have obviously § € H®(wgdx). This
will allow us to estimate the norm of 6 in H®(wg dz); we shall show that those estimates do not
depend on the H®(dx) norm of 6y, but only on the norm of 6y in H*(wg dz) and thus we shall
be able to relax the approximation.

In the sequel, we shall just write w instead of wg for sake of readibility.

4.1 Estimates for the L?(wdz) norm

In this subsection, we consider the solution § € H! associated to some initial value fy € H*
and try to estimate its L?(wdz) norm.

As usually, we multiply the transport equation by wf and we integrate with respect to the
space variable. We obtain

1d 9
2dt(/0wdm> = /Hatﬁwdz

—/0A9 wdr — /9’}-{9830911) dzx.

When integrating by parts, we take into account the weight w and get

1d [, . 1
- =— [ |AY20)? _7/ ZA
2dt(/9 dx) /\ 0)* wdx 5 0% A w dx

1
_ / A2, w]f do + 5 / 0°HO D,w da.

10



Using lemma 3.1

1
/A1/29 —[AY2 wl0w dr < A0 12w an)
w

’1[A1/2,w]9
w

L2 (wdz)

IN

CIAM20| 2 (waa) 101 L2 (wtz)

1 2
5/|A1/29|2 dr + %/92 w da.

IN

Moreover, we have

1
3 / 0*°HO d,w dx

IN

Cléll [ to)Holw do

< Cl6ollso 161172 (o)

A

Thus, we find that

d
7 (/02w dz) —|—/|A1/29|2 wdr < C(1+ ||00||oo)/02 w dx — /92A9wdx

In particular, we have

% (/ O dz) " / [AV20 w de < C(1+ |0)|oc) /92 w dr — /62A0wd{£

If 8y is nonnegative, then the maximum principle gives us that § > 0. Then, using the pointwise
Cérdoba and Cérdoba inequality [12] (valid for 6 > 0)

A(6%) < 300
and using lemma 3.3, we get

%/9281»7-[9 w dz < —%/A(03) w dr = —% /03Aw dzx < C||90\|m/92w dx

Integrating in time s € [0,7] we conclude thanks to Gronwall’s lemma that we have a global
control of both ||0||Loo([07T])L2(de)) and ||A1/29HLQ([QT],LQ(wda:)) by ||90||L2(wda:) and ||90||oo

Remark 4.1. If no assumption is made on the sign of 6y, we just obtain

57&(/ o d””) + [1A126P w do < 1+ Boll) [ 67 w oot 160 [ 1020]wds, (4

which requires a control on [[Af]| L2 (wda)-

4.2 Estimates for the H'/?(wdr) norm

In this subsection, we consider the evolution norm of 6 in H'/?(wdz). We have

%% </|A1/20|2 wd:c) = /&QAl/z(wAl/zé)da:

— / AOAY2 (wAY20)dx — / HOOLON 2 (wA20) da.

11



Then, we get the weight w outside from the differential terms
1d 1/242 9
g \ [ A0 wde | = — [ |AG]" wdz — [ 300,048 wdz
+ /Ae(wA1/2A1/29_Al/Q(wAl/Ze)) dx
" / (wAY2AY/20 — V2 (wAY20)) H09,0 da

Finally, we distribute in the second term the weight w = +? equally into the 0, and the A term,
we obtain

%% </|A1/29|2 wdx) = - /|A9|2 wdx — /HQ@I(VG)A('}/H) dx

/7—[,07/&9 (70,0 — 0,(v0)) dx

- /&6(79)7{6‘(71\9 —A(v0)) dx
+ / AG(wAf — AV (wA?0)) dx

+ / (wAf — AV (wAY20))HD,0 dx

= /|A9|2wd:c+J1+Jg+Jg+J4+J5
Let us estimate J;. Using the H!'-BMO duality, we write

J1 < C1l1H0l Brrol|0x (v0) A(70) |42

Now, we shall use the fact that if a function f € L? then the function g = fHf belongs to the
Hardy space H! : indeed, we have

2H(fHS) () = (Hf(2))? — f(x)? (4.2)
so that fH.f belongs to H! and we have

FHF e = IFHE + IHH) 1 < CllFI3
From formula (4.2), we get the following estimate
T2 5 00l 900022 5 160l (1012t + IADI )
To estimate J2, we use the fact that [9,7| < Cyv and that w € Ay, we obtain
Jy = /7—[0 ~AG 08, dr < /‘wl/‘*m w278 w1/49‘ da

S ClHOI Lt wa) A0 L2 (wda) [10]] L4 (wa)-

Then, using the interpolation inequality
1/2 1 9111/2
161124 waa S N2 101 5y
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we finally get
J2 < 1160lloo 101l 22 (wdar) 1A L2 (wa) -

In order to estimate .J3, we take p; and ¢; with 2 < p; < 00 and —I— = = % and using lemma
3.1 we obtain

B < 0.(00) |2 HO(AG — A(O))2
1
< 1010l [H8] o ) ‘me _AGO)
0 LP1 (wdx)
< 1000 2101 s (w191 1 ()

Then, using
1—2 2
HQHLT(deL’) < CHGHOO " H9||£2(wd:c)

with r = p; and r = ¢1, we find,

J3 5 ||90||00||9HL2(wdx) (||9HL2(wda:) + ||A9||L2(wdz))

The estimation of Jy is easy, it suffices to use lemma 3.1

Jo < ||A9| L2 (wde) < Cul|AG|| 2wy | A 20)] 12 (i)

L2 (wdz)

‘1[1\1/2,’(1)]/\1/29
w

It remains to estimate J5. We take p and ¢ with 2 < p < 4 and 1 5+ l = 1 , and we assume p to

be close enough to 2 to grant that % —B(1 - 7) > 1 so that we may apply lemma 3.1 and we
obtain

Js

IN

||aw9HL2(wd:r)

’Hel[Al/Q,w]Al/Qe
w

L2 (wdz)

l[A1/2, w]A1/29
w

S 10201 L2 (wda) 1 HO La (wdz)
Lr(wdx)

A

||8$0HL2(wdw) ||0HL‘1(wda:) HAl/QGHLT’(wdw)

Moreover, using following weighted Gagliardo-Nirenberg inequality (see (2.4))

1/2
IAY20]| s (wday S IO X2 AN AT iy

we get

IN

IAY20] L () A2 e A6

(wdx)
S 100l P IAON L2 IAV2011 2 -

Then, since
2 1—2
100ty < 100110122

we get

< 1-2 2-3 120,51

I5 S 100l Lo 101 22 Cuaw) IAON 2 oy 1A 0N £z 1ty -
Using the fact that
21
IAY20) 7508 o < 10112 D]

(wdz)

13



we obtain

1/2 3/2
Ts < C500ll o< 1011 sty 14013 5t
Using Young’s inequality, we finally find that there exists constants Cs > 0 and C7 > 0 (where

C7 depends on ||fg]|s), such that

d
p / IAY20)2 wde < — (1 — c*6||90||0<,)/|1\9|2 wdx
(4.3)
+C7 </ 0? wdx + / |AY/29)2 wdw) .
Combining (4.1) and (4.4), we finally obtain
% (/ 162 4 |AY/20)? wdz) <—(1- Cg\|90|\oo)/|A0|2 wdz
(4.4)

+ Cy (/ 0% wdz + / |AY/29)2 wdx)

By Gronwall’s lemma, we conclude that we have a control of ||0|| Lo 12 (wdz), Of HA1/29||L00L2(wd:E)
and of [|A8]| 212 (waz) bY [100]lcc, 160]| 22 (wdz) and [|AY260]| L2 (waz) (if 60llec < &7, Where Cg > 0
is a constant depending only on ).

4.3 Estimates for the H'!(wdr) norm

In this subsection, we estimate the norm of  in H'(wdx).

In order to study the evolution of the H!(wdx) norm of 6, we shall study the evolution of
the semi-norm |[|0,0||L2(war) instead of ||Af12(w4dq) since they are equivalent (see Remark 2).
Therefore, we write

%% (/IMIQ wdx) - _/ate 0, (wD,0) da

/(319)2 HO Opw dx + /aza AO HOw dx

+/A9 050 Oyw dx—i—/AHAﬁw dx

The last term which come from the linear part of the equation can be rewritten as
/AHAH w d = —/A9A29 w dr = — /A3/29[A1/2,w]A9 - / |A%202 w da

Moreover, an integration by parts gives

%/(619)2 HO Opw dr = — /axe AO HO w dx — %/(@9)2 AO w dx

So that, we get

1d 1
2dt </|6909|2 wdl‘) = —/|A3/26|2 w dr — /AB/ZG[A1/2,w]A9— 5/(6950)2/\0 w de

%/((’%9)2 HO O, w dx + /&,;GAG O,w dx

_|_

—/|A3/29|2 wdr+Ji+ Jo+ J3 + Jy

14



To estimate J; we write
1
Jp = — A3/29 A2 WA dx < ||A%%0 —[AY2 w]Al
V== [N N2 0IA i < A0 | s A2 1A

Therefore, using the second part of 3.1, we conclude that
Ji < C1lIAY20] 12 wan 16]] 12 ()

For Js, using Holder’s inequality together with the fact that wg € A3 allows us to get
1 9 1 1 1 1 3
Jo = . (0.0)“A6 w dx = ~5 w3 0,0 w3 0,0 w3HOIL0 dx < C||85,30||L3(wdw)

Then, using the following weighted Gagliardo-Nirenberg inequality (see inequality 2.4 of 2.4)

2/3
10261115 (waay < CallONSL2IAZ 2011353 )

we get
Jy < C2||9Hoo||A3/29||2L2(de)

The estimation of J3 and Jy are quite similar to the estimation of J,. Indeed, we have
Ja < G [ 0107 6] w do < a0, 11500

Then, using the interpolation inequality

2/3
1601 22wz < 101101135 a0

together with the Gagliardo-Nirenberg inequality previously recalled, we get
4/3
Ts < C30oel| A2 i) 101 it

For J,, we write

Jy < c:l/w%|axo| w2 [HO,0| du < Call0u0l32 (span)
Therefore, by the maximum principle for the L> norm and Young’s inequality, we get
(/ 0.6 wdx) < —(1-Callfoll) / 3202 w do + Cy[[AY 20132 gy 10 L2 )

E 4/3 2/3
+C3 1010 | A 20 157 oy 101257 i) + CllO2O132

2dt

< (=14 G0 ]l) / IAS201 wd
+Cs (10132 ey + 192132 )
where the constant Cs depends on ||6p||cc. Then, integrating in time s € [0, T] gives
T T
10T s iy < ~(1+ Chll0lloc) [ 1IN0y s+ Cs [ 100 sy 05 (43
Therefore, Gronwall’s lemma allows us to conclude that we have a global control of ||020|| .5 2 (wda)

and [|A%20]| 2212 (wdz) Y [[00llco and [|00]| 71 (waz), Provided that [|o]lsc < @, Where Cj > 0 is a
constant that depends only on f.
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5 Proof of the theorems

5.1 The truncated initial data
We shall approximate 6 by 6o, r = 6o(x)¥(£), where 1 satisfies the following assumptions :
o ¥ € D(R)
e 0<y<1
e Y(x)=1"for x € [-1,1] and = 0 for |z| > 2

This approximation neither alters the non-negativity of the data, nor increases its L norm.
We have obviously the strong convergence, when R — 00, of 6y g to 6y in H*(wdzx) if 8y €
H?(wdz) and s = 0 or s = 1. The only difficult case is s = 1/2. This could be dealt with
through an interpolation argument. But we shall give a direct proof that

: 1/2 _
Rlm A /280 = 00,8)| L2 (w dz) = O-

As we have the strong convergence of ¥rA'/?6y to AY/?6, in L?(wdx), we must estimate the
norm of the commutator [AY/2, 9]0 in L*(w dz), where we write ¥ r(z) = ¥(%). We just write

R R I

with

ax) ~ R o (0l 2l Y L pxoy
FETRE Rlo =y Jo—yP2) = @R TR
where the kernel K is integrable, nonnegative and radially decreasing; thus, from inequality (2.2),
we find that
Y2 vl < 1K B2 MEg

which gives
A2 9R)00 ]| 12w dz) < CR™Y2(100] 12 (10 da) -
5.2 Proof of theorem 1.1

We consider the sequence 6y ny, N € N and N > 1. We have the convergence of 0y n
to 0y in HY?(wdz). Moreover, if ||fy]|s is small enough we know that we have a solution
On of our transport equation 7 with initial value 6y n. Using the a priori estimates of the
previous section, we get (uniformly with respect to N) that the sequence 6y is bounded in the
space L>®([0,T], H'/?(wdz)) and L?([0,T], H' (wdz)) for every T € (0,00). Now, let ¢(x,t) €
D((0, 0] x R), then ¥y is bounded in L?([0,T], H'). Moreover, we have

O (YON) = OnOp + 900N = (I) + (I1)
Obviously, (1) is bounded in L?([0,T7], L?). For (II), we write
YO N = —0,0NHON — VAN = =100, (ONHON) + VONAON — P AON

Since Oy is bounded in L2([0,T], L*(wdz)) then by the continuity of the Hilbert transform
on L?, the sequence Hfy is bounded in L?([0,T], L?*(wdz)) therefore, since fy is bounded
in L*°([0,T], L), we get that 0, (ONHOIN) (=0,(YONHON) — (Ox¢)0nHON ) is bounded in
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L2([0,T], H~ ). Therefore, since (1 — 6x)Afx is bounded in L2([0,7],L?)) we conclude that
9:(¢0y) is bounded in L?([0,7], H~1). By Rellich compactness theorem [25], there exists a
subsequence 6y, and a function 6 such that

Oy, — 0 strongly in L7 _((0,00) x R),

Futhermore, since the sequence 6, is bounded in spaces whose dual space are separable Banach
spaces, we get the two following *-weak convergences, for all T < co

Oy, —— 0 *-weakly in L>([0,T], H/?(wdz)),

Nk—)+OO

and,
On, —— 0 *-weakly in L*([0,T], H' (wdxz)),

It remains to check that 6 is a solution of the transport equation 7. Let ® be a compactly
supported smooth function, we need to prove the equality

// 0 0, dx dt = // O (HO0,0 + A) dx dt — /@(O,z)@o(z) dzx.
t>0 >0

To prove this equality, it suffices to prove that we can pass to the weak limit in the following
equality

// On, OV da dt:// U (HOn, 0u0x, + A0y, ) da dt—/\If(O,a:)GNmo(x) da.
t>0 t>0

The *-weak convergence of O, toward 6 in L°°((0,T), L?)) implies the convergence in D’([0, T'] x
R) and therefore
ateNk S 6t0 in D/([O,T] X R)
Np——4o0

Moreover, since Afy, is a (uniformly) bounded sequence on L?([0, oo] x R) therefore we also have
convergence in the sense of distribution

Ay, ——— A9 in D'([0,T] x R).

ng——+oo

It remains to treat the nonlinear term, we rewrite it as

// \I/'HQN,C 8m6‘Nk d(E dt = —/ QN,‘,HHN,C&C\I! — // \I’HNkamHQNk dt dLL'
t>0 t>0 t>0

Using the strong convergence of 6y, on L2 ((0,00) x R) and the *-weak convergence of H6y,
in L?([0,T], L?), we conclude that the products Ox, H6y, converge weakly in Lj,.((0,00) x R)
toward §H60. For the second term, we also use the strong L? ((0,00) x R) convergence of 0y,
and the weak convergence of 9, H6 on L?((0,00) x R), we conclude that the product converges
in L ((0,00) x R). O

loc

5.3 Proof of theorem 1.2

The proof of Theorem 1.2 is similar to the proof of Theorem 1.1, using a priori estimates on
the H'(w dx) norm instead of the H'/?(w dx) norm.
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5.4 The case of data in L?*(dz) or L*(wdx)

When 6y € L?2N L and is non-negative, we have a priori estimates on the L? norm of # that
involves only ||fg]|2 and ||0o||0, but this is not sufficient to grant existence of the solution 6, as
we have not enough regularity to control the nonlinear term H600,.6.

Indeed, we have a control of H in L>?H'/? and of 9,0 in L>H~'/2. But to pass to the limit
in our use of Relich theorem, we should have (local) strong convergence of 6,, to 6 in L2H'/2
while we may establish only the *-weak convergence. This can be seen as follows : if 6, is a
bounded sequence in L2H'/? that converge locally strongly in L2L? to a limit 6 and if 6,,0,6.,
converges in D', we write

=@wﬁwm+;A@D+c/w“t@—%@wwdy

|z —y[?
While we have the convergence in D’ of 0, (0, H0,) + 3A(6%) to 9,(6H0) + 1 A(6?), we can only
write
_ 2 _ 2
[ ) =)y, [ 00.0)=000)

n—r+00 |z — y|? |z — y|?

dy + p,

where p is a non-negative measure.

6 The construction of regular enough solutions revisited

The global existence results of Cérdoba, Cérdoba and Fontelos in [14] and of Dong in [17]
correspond to Theorems 1.1 to 1.2 in the case § = 0 : they are mainly based on the maxi-
mum principle (if 6y is bounded, then 6 remains bounded and if 6, is non-negative, 6 remains
non-negative) along with the use of some useful identities or inequalities involving the nonlocal
operators A and H. We do not know whether our solutions become smooth (this is know in
the case 8 = 0 for Theorem 1.1, this is proved by Kiselev [20]). Another interesting question is
whether we have eventual regularity in the sense of [31] for our solutions.

In this section, for conveniency, we sketch a complete proof of Theorems 1.1 and 1.2 in the
case 3 = 0, under a smallness assumption on ||p||o (although this latter case is treated in [14],
we shall give a slightly different proof for the a priori estimates). Before starting the a priori
estimates, one has to deal with the existence issue, namely, proving the existence of at least one
solution. This step is rather important for this model since for instance one can derive a nice
energy estimate for the L? (resp weighted L?) norm (see [11], resp see section 4.1) whereas the
existence of such a solution is not clear in both cases (see section 6.2). Since we aim at proving
global existence results and not only a priori estimates, we need to give a proof of the existence
of regular enough solutions. This is done in six steps and is based on classical arguments.

First step : regularizations of the equation and of the data

We use a nonnegative smooth compactly supported function ¢ (with [ ¢(z)dz = 1) and for
positive parameters €, 77 we consider the parabolic approximation of equation (77) :

00 + 0, HO + vAO = eAD

T x
(77) MQm:%*%@)mmpr@:%ﬂ?)
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(with A# = 926) which we rewrite as

t
0 = e (0 * ) — / e U320, HO + vA9) ds.
0

We may solve this equation in C([0, T, ], H*) N L*((0, T ,,), H*), for some small enough time
T.,. Indeed, we have, for T > 0 and for a constant C. independent of T, for all vy € H?3,
u,v € C([0,T], H?) N L2((0,T), H*) and w € L*([0,T), H?) :

“Byollms < Ivollme and A0 r2(0,m),22) < Cellfol mr2

e sup |e
0<t<T
t
. / et 2y ds € C([0,T), H) N L*([0, T, H*)
S CeT1/2Hw||L2H2

0
t
/ ee(t—s)AwdS
0 2

¢
Fo / et=3)8y ds
0

sup
0<t<T

sup
0<t<T

< Cellwl[ 2
2

HA fot ec(t=8)Ay, ds‘

<C
L2((0,7),L2) — cllwl 22

||AUHL2H2 S CT1/2||U||LOCH3

o |upHv|l 2> < CTY2||ul| poo s || v]| oo s

Thus, using Picard’s iterative scheme, we find a solution
t
= e By — / e IR0, HO + vAb) ds
0

on an interval [0, T¢ |, where T, ,, depends only on € and ||yo||2. If ||f]| g3 remains bounded, we
may bootstrap the estimates to get an extension to a larger interval. Thus, if 77, is the maximal
existence time, we must have

T, <+oo= sup ||0cy(t.)|[gs =—+o0.
0<t<Ty

€,n

The strategy is then to have a criterion on )y to ensure that T;, = +oo for every € > 0 and
to get uniform controls on the solutions 0, to allow to get a limit when € and 7 go to 0.

Second step : applying the maximum principle

This point is classical. If 8 is the solution of equation (7"), we define M (t) = sup 0(¢,x)
and m(t) = migﬂgg O(t,x). For t = tg, if M(ty) > O then the supremum is attaineﬁengst some
point xg, and we have 9;0(to, zo) < 0, since Ab(to,xo) > 0, AbB(tg,z9) < 0 and 9,0(to,x0) =
0 (recall that 6(tg,.) is C?); now, we have, for t < tg, e(t’z“Z:f(J(to’zo) > M(?:i\f(t“) so that
lim sup 7M(t) = M(to)

t—ty t—to

< 0. We see that this is enough to get that M is non-inecreasing on the
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set {t / M(t) > 0}, and thus to get M (t) < M(0); a similar argument gives m(t) > m(0). This
gives us that [|0loc < |60 * ¢yllec < [60]/c and, if 6y > 0, then §(x,t) > 0 for all ¢ > 0.

Third step : global existence for the regularized problem

In order to show that the H? norm of a solution @ to equation (7¢") does not blow up, we
now compute 0 ([|0]|5 + [|026]|5). As 920 belongs (locally in time on [0,77,)) to L*([0,T*,), H")
and 0,020 to L2H !, therefore we may write

01015 + 102601) =2 [ 216(6 - 326)da
= — 212015 - 207201 ~ 20201 — 2632613
—2 / 0160,0 dz + 2 / 02002 (H00,.0) dx
— — 22015 - 2] A720] — 20,01 2602613

-2 / 0H00,6 dz + 2 / 03002 (HO) 0,0 dx

+6 / 3002 (HH) 0%0dx + 5 / D300, (HH) 020 dx

< — 2[|AY20)13 — 2| AT26][3 — 2¢]19,6113 — 2¢[ 936113
+2[0llc 1011211020112 + (21|00l + 5l H0:0l7) 956117 5
+ 61020131 H0301l3

We then use the boundedness of the Hilbert transform on L3 and L7 and the Gagliardo-Nirenberg
inequalities
826115 < llol1A° 123115

020117 < 1012711201137
10211773 < IONLTIAT2003"
and we find, for a constant Cy (that does not depend on 6y nor on ¢),
0c(10113 + 1936113) < Collbolloc (16113 + 1930113) + 2(Collbolloe — 1)IIAT/26]13 — 2¢[0z6]13  (6.1)
Thus, if Co||6o]|cc < 1, we find that, on [0, 77, ), we have
16113 + 1936115 < €%l ([16g % oy ][5 + 160 * Oepyl13)

and thus T7, = +oo.
Fourth step : relaxing ¢

From inequality 6.1, we get that 6, is controlled, on each bounded interval of time [0, 7],
uniformly with respect to €, in the following ways :

e sup sup ||0c,(¢,.)|lgs < 400
>0 0<t<T

T
. sup/ 0e.n||377/2 dt < +00
e>0J0
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and we get from equation (7;""), that

T
¢ sup / Hatee,n||2H1/2 dt < 400
0<e<1Jo

We then use the Rellich theorem [25] to get that there exists a sequence €, — 0 so that 6,
converges strongly in L2 _((0,+00) x R?) to a limit 6,. As 6., is (locally) bounded in L2H"/2,

loc
the strong convergence holds as well in (L2H')jo., so that 6, is a solution of (7;), with initial

value Oy * @,,.

Moreover, we know that [|0, || < [|6o]|s and that, for every finite T' > 0,

T
sup ||6,(t,.)||gs < +oo and / 10, 1137/2 dt < +oc.
0<t<T 0
Fifth step : uniform estimates in H'/? and H'

e control of the L? norm :

1d ,

/ 0, Dby d = — / 0, A6, dz — / 0,,(H6)0,.0, dx

(6.2)
< */|A1/29n|2dx+ 16010 1[0 12| Aby |2
e control of the A'/2 norm :
1d
5 (/ A1/29,,|2dx> :/A@7 9,0, dx
=— / |A0,|? do — /(7—[977) (A8, 0,0,,) dx
_ _/|A9n|2dx+/9nH(A9,, 9.0,) dx
We now use the identity, valid for every f € L2,
2H(fHS) (@) = (Hf(2))* - f(2)? (6.3)
along with
0.0, = H(AG,)
to get
[H(AGy 020) 11 < [[AG]13
and finally obtain
d
7 / |AY20,12 dz 4+ 2(1 — [|6o]|00) / |AG,|? dz < 0. (6.4)
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e control of the H! norm : we write

1d
5%/|A0n|2dx) :/A?a7 0:0,, dx

__ / 26, 2 do — %/az(wn) (026,) da

Using a Gagliardo—Nirenberg inequality, we get

1
3| [ 2:(048,) 0:0,)2 ds| < 10018 < L0450, 1

and finally obtain

d
- (/ A0n|2dyc> +2(1 - C’1H00Hoo)/|A3/20n\2dx <0. (6.5)

Sixth step : relaxing 7

From inequalities (6.2) and (6.4), we get that, for 6 € H'/2, (when 6|~ is small enough)
6, is controlled, on each bounded interval of time [0, 77, uniformly with respect to 7, in the
following ways :

e sup sup |6,(t,.)| g2 < +o00,
7>00<t<T

T
. sup/ 10,1372 dt < +o0
n>0.J0
and we get from equation (77), that

T
° sup/ ||8t05,n||%,,1/4 dt < +oo.
n>0J0

We may then use the Rellich theorem [25] and get that there exists a sequence 7, — 0 so that
0,, converges strongly in L2 ((0,+00) x R?) to a limit . As 6, is (locally) bounded in L2H! we

loc

have weak convergence in L>H'; we then write 10,050, = 0, (0,HO,) — 0,HI,0, and find that
0 is a solution of (77), with initial value 6.

Moreover, we find that we have
® [10]lcc < [l€0lloo

o sup [AY/20(t,.)[|2 < (|00l
t>0

+oo 2 1
o [ IA0I3 ds < s |

AM260]13
o 166t )2 < 190llz + [0llc fo A6(s. )|z ds

Similarly, if 6§y € H' (with ||fp||oc small enough) , then inequality (6.5) will give a control of
the H' norm of 6,) uniformly with respect to 1, and thus, we find for the limit 6 that,

o sup [|AG(%, )]l < [|Abol2
t>0
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o Jo T IIAR20)3 ds <

; NTAL:

1
2(1-C1 0ol
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