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Abstract

We handle two major issues in applying extreme value analysis to financial time series,
bias and serial dependence, jointly. This is achieved by studying bias correction method when
observations exhibit weakly serial dependence, namely the β−mixing series. For estimating the
extreme value index, we propose an asymptotically unbiased estimator and prove its asymptotic
normality under the β−mixing condition. The bias correction procedure and the dependence
structure have a joint impact on the asymptotic variance of the estimator. Then, we construct
an asymptotically unbiased estimator of high quantiles. We apply the new method to estimate
the Value-at-Risk of the daily return on the Dow Jones Industrial Average Index.
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1 Introduction

In financial risk management, a key concern is on modeling and evaluating potential losses occurring
with extremely low probabilities, i.e. tail risks. For example, the Basel committee on banking su-
pervision suggests regulators to require banks holding adequate capital against the tail risk of bank
assets measured by the Value-at-Risk (VaR). The VaR refers to high quantile of the loss distribu-
tion with an extremely low tail probability.1 Estimating such risk measures thus relies on modeling
the tail region of distribution functions of asset values. To serve such a purpose, statistical tools
stemming from Extreme Value Theory (EVT) are obvious candidates. By investigating data in an
intermediate region close to the tail, extreme value statistics employs models to extrapolate inter-
mediate properties to the tail region. Although such an attractive feature of extreme value statistics

1In the revised Basel II accord and the subsequent Basel III accord, the VaR measures for risks on both trading
and banking books must be calculated at a 99.9% level.
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makes it a popular tool for evaluating tail events in many scientific fields such as meteorology and
engineering, it has not yet emerged into as a dominating tool in financial risk management. This
is potentially due to some crucial critiques on applying EVT to financial data; see, e.g. Diebold
et al. [2000]. The critiques are mainly on two issues: the difficulty in selecting the intermediate
region in estimation and the validity of the maintained assumptions in EVT for financial data. This
paper tries to deal with the two critiques simultaneously and provide adapted EVT methods that
overcome the two issues jointly.

We start with explaining the problem on selecting the intermediate region in estimation. Extreme
value statistics usually use only observations in an intermediate region. This has been achieved by
selecting the highest (or lowest when dealing with lower tail) k = k(n) observations in a sample
with size n. The problem on selecting k is sometimes referred to as “selecting the cutoff point”.
Theoretically, the statistical properties of EVT-based estimators are established for k such that
k → ∞ and k/n → 0, as n → ∞. In applications with a finite sample size, it is necessary
to investigate how to choose the number of high observations used in estimation. For financial
practitioner, two difficulties arise: firstly, there is no straightforward procedure for the selection;
secondly, the performance of the EVT estimators is rather sensitive to this choice. More specifically,
there is a bias-variance tradeoff: with low level of k, the estimation variance is at a high level which
may not be acceptable for application; by increasing k, i.e. using progressively more data, the
variance is reduced, but at the cost of an increasing bias.

Recent developments in extreme value statistics provide two types of solutions for selecting the
cutoff point. The first type of solutions aims to find the optimal cutoff point that balances the bias
and variance assuming that the bias term in the asymptotic distribution is finite; see e.g. Danielsson
et al. [2001], Drees and Kaufmann [1998] and Guillou and Hall [2001]. The second type of solutions
corrects the bias under allowing that the bias term in the asymptotic distribution is at an infinite
level, see e.g. Gomes et al. [2008]. Comparing with the optimal cutoff point method, the bias
correction procedure usually requires additional assumptions, such as the third order condition.
Nevertheless, it is preferred to the optimal cutoff point approach because of the following relative
advantages. First, since bias correction methods allow for an infinite bias term in the asymptotic
distribution, they correspondingly allow for choosing a higher level of k than that chosen in the
optimal cutoff point approach. Second, by choosing a larger k, bias correction methods result in a
lower level of estimation variance with no asymptotically bias. Third, in practice, bias correction
procedures lead to estimates that are less sensitive to the choice of k. This mitigates the difficulty
in the selection of the cutoff point.

The other criticism on applying extreme value statistics to financial data is on the fact that most
existing EVT methods require independent and identically distributed (i.i.d.) observations whereas
financial time series exhibits obvious serial dependence feature such as volatility clustering. This
issue has been addressed in works dealing with weakly serial dependence, see, e.g. Hsing [1991] and
Drees [2000]. The main message from these studies is that usual EVT methods are still valid, only
the asymptotic variance of estimators may differ from that in the i.i.d. case.
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Although the selection of the cutoff point and the serial dependence in data have been handled
separately, the literature addressing these two issues are mutually exclusive. In the bias correction
literature, it is always assumed that the observations form an i.i.d. sample; in the literature on
dealing with serial dependence, the choice of k is assumed to be sufficiently low such that there is
no asymptotic bias. Therefore, it is still an open question whether we can apply the bias correction
technique to datasets that exhibit weakly serial dependence. This is what we tend to address in this
paper.

We consider bias correction procedure on estimating the extreme value index and high quantiles
for β−mixing stationary time series with common heavy-tailed distribution. The bias term stems
from the approximation of the tail region of distribution functions. In EVT, a second order condition
is often imposed to characterize such an approximation. Such a condition is almost indispensable
for establishing asymptotic properties of estimators. To correct the bias, one needs to estimate
the second order scale function, the function A in (3) below. The existing literature is restricted
to the case A(t) = Ctρ with constants C 6= 0 and ρ < 0. The estimation of C requires extra
conditions. Instead we estimate the function A in a non-parametric way which makes the analysis
and application smoother.

The asymptotically unbiased estimators we obtain have the following advantages. Firstly, it
allows serial dependence in the observations. Secondly, one may apply the unbiased estimator with
a higher value of k, which reduces the asymptotic variance and ultimately the estimation error
thanks to the bias correction feature. Thirdly, the theoretical range of potential choices of k is
larger for our asymptotically unbiased estimators than for the original estimators. This makes the
choice of k less crucial. All these features become apparent in simulation and application.

The paper is organized as follows. Under a simplified model without serial dependence, Section 2
presents the bias correction idea for the Hill estimator. Section 3 presents the general model with
serial dependence, particularly, the regulatory conditions we are dealing with. Section 4 defines
the asymptotically unbiased estimators of the extreme value index and quantiles. In addition, we
state the main theorems on the asymptotic normality of these two estimators. The bias correction
procedure and the serial dependence structure have a joint impact on the asymptotic variances of
the estimators. Section 5 discusses such a joint impact for several examples. Section 6 demonstrates
finite sample performance of the asymptotically unbiased estimators based on simulation. An ap-
plication to estimate the VaR of daily returns on the Dow Jones Industrial Average Index is given
in Section 7. All proofs are postponed to Appendix A.

2 The idea of bias correction under independence

For the sake of simplicity, we first introduce our bias correction idea under the assumption of
independent and identically distributed (i.i.d.) observations in this section. We will show later that
our bias correction procedure also works for β−mixing series.
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2.1 The origin of bias

Let {X1, X2, . . .} be an i.i.d. sequence of random variables with a common distribution function F .
We assume that this distribution function belongs to the domain of attraction with a positive extreme
value index. We present the domain of attraction condition with respect to the quantile function
U := (1/1 − F )←, where ← denotes the left-continuous inverse function. That is, there exists a
positive number γ such that

lim
t→∞

U(tx)

U(t)
= xγ , x > 0 . (1)

Such a distribution function F is also referred as a heavy-tailed distribution. The relation (1) governs
how a high quantile, say U(tx), can be extrapolated from an intermediate quantile U(t) . Clearly,
estimating the extreme value index γ is a major step in estimating high quantiles.

In the heavy-tailed case, Hill [1975] proposes the following estimator of the parameter γ,

γ̂k :=
1

k

k∑
i=1

logXn−i+1,n − logXn−k,n , (2)

where X1,n ≤ X2,n ≤ . . . ≤ Xn,n are the order statistics and k is an intermediate sequence such that
k →∞ and k/n→ 0 as n→∞.

To obtain the asymptotic normality of the Hill estimator (and most other estimators in EVT),
it is necessary to quantify the speed of convergence in (1). We thus assume a second order condition
on the function U as follows. Suppose that there exist a positive or negative function A with
limt→∞A(t) = 0 and a real number ρ ≤ 0 such that

lim
t→∞

U(tx)
U(t) − x

γ

A(t)
= xγ

xρ − 1

ρ
,

for all x > 0. It is equivalent to

lim
t→∞

logU(tx)− logU(t)− γ log x

A(t)
=
xρ − 1

ρ
; (3)

see, for instance de Haan and Ferreira [2006, Proof of Theorem 3.2.5]. The parameter ρ controls
the speed of convergence, both of the sample maximum towards an extreme value distribution and
for the extreme value estimators towards a normal distribution. Larger absolute value of ρ means
better speed of convergence. This is illustrated in the last paragraph of Section 2.2.

The estimator γ̂k is consistent under the domain of attraction condition (1). Under the second
order condition (3), the asymptotic normality can be established for i.i.d. observations as

√
kλ (γ̂kλ − γ)

d−→ N

(
λ

1− ρ
, γ2
)
, (4)
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if the intermediate sequence kλ satisfies

lim
n→∞

√
kλA(n/kλ) = λ, (5)

where λ is a finite constant. This condition imposes an upper bound on the speed at which kλ goes
to infinity. The asymptotic bias for the Hill estimator is consequently given by the term λ

1−ρ .

To obtain an asymptotically unbiased estimator, we will first estimate the bias term and then
subtract that from γ̂k. The asymptotically unbiased estimator is then given as γ̂k − B̂iask , where

Biask :=
A(n/k)

1− ρ
. (6)

A formal definition of the asymptotically unbiased estimator is given in Equation (12) below. It is
clear that the second order parameter ρ plays an important role in the bias term.

2.2 Estimating the bias term

The estimation of the bias term requires estimating the second order parameter ρ and the second
order scale function, A(n/k), appearing in the condition (3). The parameter ρ controls the speed of
convergence of most γ estimators. In the following we restrict the study to the case ρ < 0 because
the estimation of the bias term exploits the regular variation feature of the A function whereas the
case of slowly variation (ρ = 0) is difficult to be handled. In the literature of bias correction, in
order to establish the asymptotic property of estimators of ρ, it is necessary to choose a higher
intermediate sequence kρ = kρ(n) such that kρ →∞, kρ/n→ 0 and

√
kρA(n/kρ)→∞ , (7)

as n→∞, see e.g. Gomes et al. [2002]. This provides a lower bound to the speed at which kρ goes
to infinity. Also, a third order condition is useful. Suppose that there exist a positive or negative
function B with limt→∞B(t) = 0 and a real number ρ′ ≤ 0 such that

lim
t→∞

1

B(t)

{
logU(tx)− logU(t)− γ log x

A(t)
− xρ − 1

ρ

}
=

1

ρ′

{
xρ+ρ

′ − 1

ρ+ ρ′
− xρ − 1

ρ

}
, (8)

for all x > 0. If the observations are i.i.d., the asymptotic normality of all existing estimators of ρ,
including that of the one we use in (11) below, holds under the condition (8) and with a sequence
kρ such that as n→∞, kρ →∞, kρ/n→ 0 and

√
kρA(n/kρ)→∞,

√
kρA

2(n/kρ)→ λ1,
√
kρA(n/kρ)B(n/kρ)→ λ2 , (9)

where λ1 and λ2 are both finite constants; see for instance Gomes et al. [2002] and Ciuperca and
Mercadier [2010]. Here, since we are going to deal with β−mixing series, we need to re-establish the
asymptotic property of the ρ estimator. The details are left to Appendix A.
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In order to avoid extra bias stemming from the third order condition, the k sequence we use for
the asymptotically unbiased estimator of the extreme value index is of a lower order, compared to
the kρ sequence. More specifically, we use a sequence kn such that as n→∞, kn →∞, kn/kρ → 0

and √
knA(n/kn)→∞,

√
knA

2(n/kn)→ 0,
√
knA(n/kn)B(n/kn)→ 0 . (10)

Comparing our asymptotically unbiased estimator with the original Hill estimator, the k se-
quences used for estimation are at different level. The conditions on kn and kλ imply that kn/kλ → +∞
as n → ∞. Since the asymptotic variance of both the asymptotically unbiased estimator and the
original Hill estimator is of an order 1/k, using a sequence kn increasing faster than kλ leads to a
lower asymptotic variance of our asymptotic unbiased estimator compared to that of the original
Hill estimator.

In addition, the k sequence used for the asymptotically unbiased estimator is more flexible in the
following sense. The third order condition (8) implies that A and B are regularly varying functions
with index ρ and ρ′ respectively. Consider the special case that A(t) ∼ Ctρ and B(t) ∼ Dtρ

′

as t → ∞ for some constant C and D. Then the condition that
√
kλA(n/kλ) → λ restricts the

level of kλ as kλ = O
(
n

2ρ
2ρ−1

)
, whereas condition (10) implies that kn = O (nτ ) for any τ ∈(

2ρ
2ρ−1 ,

2(ρ+max(ρ,ρ′))
2(ρ+max(ρ,ρ′))−1

)
.

3 The serial dependence conditions

In this section, we present the serial dependence conditions on the time series we are going to
deal with. The serial dependence structure follows from the so-called β−mixing conditions. The
β−mixing conditions have been introduced by Rootzén [1995], Drees [2000, 2003] and Rootzén [2009]
as follows. Let {X1, X2, . . .} be a stationary time series with common distribution function F . Let
Bji denote the σ-algebra generated by Xi, . . . , Xj . The sequence is said to be β-mixing or absolutely
regular if

β(m) := sup
`≥1

E

(
sup

E∈B∞`+m+1

∣∣∣P(E|B`1)− P(E)
∣∣∣)→ 0

as m→∞. The constants β(m) are called the β-mixing constants of the sequence.

The asymptotic normality of the original Hill estimator has been established for β-mixing se-
quences in Drees [2000, 2003] with some mild extra conditions. With a sequence kλ such that
√
kλA(n/kλ)→ λ as n→∞, it is proved that

√
kλ (γ̂kλ − γ)

d−→ N

(
λ

1− ρ
, σ2
)
,

where σ2 is equal to γ2 under independence but is more complicated otherwise. The extra conditions
for establishing the asymptotic normality of the Hill estimator are the following list of regulatory
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conditions. Suppose there exist a constant ε > 0, a function r(·, ·) and a sequence ` = `n such that
as n→∞,

(a) β(`)
` n+ `k−1/2 log2 k → 0 ,

(b) n
`kCov

(∑`
i=1 1{Xi>F−1(1−kx/n)},

∑`
i=1 1{Xi>F−1(1−ky/n)}

)
→ r(x, y) , for any 0 ≤ x, y ≤ 1+ε,

(c) for some constant C,

n

`k
E

(∑̀
i=1

1{F−1(1−ky/n)<Xi≤F−1(1−kx/n)}

)4
 ≤ C(y − x) ,

for any 0 ≤ x < y ≤ 1 + ε and n ∈ N.

Drees [2000] shows that the condition (a) is fulfilled if the original time series {X1, X2, · · · } is
geometrically β−mixing, i.e. β(m) = O(ηm) for some η ∈ (0, 1). In that case, one may take
`n = [−2 log n/ log η]. Drees [2003] remarks that the condition (b) holds if all vectors (X1, X1+m)

belong to the domain of attraction of a bivariate extreme value distribution. In that case, for any
sequence k, one may take a sequence ` such that `k/n → 0 as n → ∞. The limit function r(x, y)

depends only on the tail dependence structure of (X1, X1+m) form ∈ N. These two sufficient version
of conditions (a) and (b) hold for some known time series model, namely the ARMA, ARCH and
GARCH models, see the examples in Section 5 below. Lastly, the condition (c) has been verified
for these time series models as well. In addition, for all these models, it is only necessary to have
k = o(nζ) for some ζ < 1 as n→∞ in order to satisfy the regulatory conditions. This is compatible
with the requirement on the sequence kλ in extreme value analysis as follows. Under the second
order condition, |A(t)| is regularly varying with index ρ. Therefore, given any ε > 0, for sufficiently
large t, we have that |A(t)| > Ctρ−ε for some positive constant C; see inequality (B.1.19) in de Haan
and Ferreira [2006]. Together with the condition (5), we get that kλ = o(nζ) for any ζ > 2ρ−ε

2ρ−1−ε .
Therefore, the sequence kλ is compatible with condition (c).

We intend to correct the bias while allowing the observations to follow the β−mixing condition
and the regulatory conditions. Since the asymptotic bias of the original Hill estimator under serial
dependence has the same form as in (6), we can construct an asymptotically unbiased estimator
for β-mixing sequences with exactly the same form as in the independence case. Nevertheless, due
to the serial dependence, the asymptotic property of the estimator has to be reestablished. This is
what we do in the next section.

4 Main Results

We start by introducing the estimator of the second order parameter. Then we state our main
results on the asymptotic properties of the asymptotic unbiased estimators of the extreme value
index and high quantiles.
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4.1 Estimating the second order parameter

We adopt the notations of Gomes et al. [2002] as follows. For any positive number α, denote

M
(α)
k :=

1

k

k∑
i=1

(logXn−i+1,n − logXn−k,n)α ,

R
(α)
k :=

M
(α)
k − Γ(α+ 1)

(
M

(1)
k

)α
M

(2)
k − 2

(
M

(1)
k

)2 ,

S
(α)
k :=

α(α+ 1)2Γ2(α)

4Γ(2α)

R
(2α)
k(

R
(α+1)
k

)2 ,
s(α)(ρ) :=

ρ2
(
1− (1− ρ)2α − 2αρ(1− ρ)2α−1

)
(1− (1− ρ)α+1 − (α+ 1)ρ(1− ρ)α)2

.

Then the estimator of the second order parameter ρ is defined as

ρ̂
(α)
k :=

(
s(α)

)←
(S

(α)
k ) . (11)

4.2 Asymptotically unbiased estimator of the extreme value index

We now write explicitly the asymptotically unbiased estimator of the extreme value index. Let
kρ and kn, satisfying (9) and (10), be the number of observations selected for estimating ρ and γ
respectively. For some positive real number α, we define the asymptotically unbiased estimator as

γ̂kn,kρ,α := γ̂kn −
M

(2)
kn
− 2γ̂2kn

2γ̂kn ρ̂
(α)
kρ

(1− ρ̂(α)kρ
)−1

, (12)

where γ̂kn denotes the original Hill estimator as in (2).

The following theorem shows the asymptotic normality of our asymptotically unbiased estimator
for β−mixing series. The consistency of the estimator could be obtained under the second order
condition without requiring the third order condition.

Theorem 4.1. Suppose that {X1, X2, . . .} is a stationary β-mixing time series with continuous
common marginal distribution function F . Assume that F satisfies the third order condition (8)
with parameters γ > 0, ρ < 0 and ρ′ ≤ 0. Suppose that the two intermediate sequences kρ and kn
satisfy the conditions in (9) and (10) respectively. Suppose that the regulatory conditions (a)-(c)
hold with the intermediate sequence kn. Then,√

kn
(
γ̂kn,kρ,α − γ

) d−→ N
(
0, σ2

)
,
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where

σ2 :=
γ2

ρ2
(
(2− ρ)2c1,1 + (1− ρ)2c2,2 + 2(2− ρ)(ρ− 1)c1,2

)
,

with
ci,j :=

∫∫
[0,1]2

(− log s)i−1(− log t)j−1
{
r(s, t)

st
− r(s, 1)

s
− r(1, t)

t
+ r(1, 1)

}
ds dt ,

and r(·, ·) defined in the regulatory condition (b).

Compared to the original Hill estimator, we use different k sequences, namely kn and kρ, in the
asymptotically unbiased estimator γ̂kn,kρ,α. These k sequences are compatible with the regulatory
conditions. Recall that the third order condition (8) implies that A2 and AB are regularly varying
functions with index 2ρ and ρ+ ρ′ respectively. Conditions (9) and (10) ensures that kn, kρ = o(nζ)

for some ζ < 1 and consequently the compatibility of these two sequences with the regulatory con-
ditions. In general, as long as the original kλ sequence is compatible with the regulatory conditions,
so are kn and kρ.

We remark that our estimator is also valid as an asymptotically unbiased estimator of the extreme
value index when the observations are i.i.d.. In that case, the result is simplified to

√
kn
(
γ̂kn,kρ,α − γ

) d−→ N

(
0,
γ2

ρ2
{
ρ2 + (1− ρ)2

})
.

4.3 Asymptotically unbiased estimator of high quantiles

We consider the estimation of high quantiles. High quantile refers to the quantile at a probability
level (1−p), where the tail probability p = pn depends on the sample size n: as n→∞, pn = O(1/n).
The goal is to estimate the quantile x(p) = U(1/p). In extreme case such that npn < 1, it is not
possible to have non-parametric estimate of such a quantile.

We derive the following asymptotically unbiased estimator:

x̂kn,kρ,α(p) := Xn−kn,n

(
kn
np

)γ̂kn,kρ,α1−
(M

(2)
kn
− 2γ̂2kn)(1− ρ̂(α)kρ

)2

2γ̂kn{ρ̂
(α)
kρ
}2

 .

The first factor Xn−kn,n

(
kn
np

)γ̂kn,kρ,α
in this formula follows a similar structure as the quantile

estimator in Weissman [1978]. Having the additional term is to correct the extra bias induced by
using a high level kn; See a similar treatment in Cai et al. [2013] for the quantile estimator using an
asymptotically unbiased probability-weighted-moment approach.

The following theorem shows the asymptotic normality of the quantile estimator x̂kn,kρ,α(p).

Theorem 4.2. Suppose that {X1, X2, . . .} is a stationary β-mixing time series with continuous
common marginal distribution function F . Assume that F satisfies the third order condition (8)
with parameters γ > 0, ρ < 0 and ρ′ ≤ 0. Suppose that the two intermediate sequences kρ and kn

9



satisfy the conditions in (9) and (10) respectively. Assume in addition that n → ∞, npn/kn → 0

and log(npn)/
√
kn → 0. Suppose that the regulatory conditions (a)-(c) hold with kn. Then

√
kn

log(kn/(npn))

(
x̂kn,kρ,α(pn)

x(pn)
− 1

)
d−→ N

(
0, σ2

)
,

with σ2 as defined in Theorem 4.1.

5 Examples

In our framework, we model the serial dependence by the β−mixing condition and the extra reg-
ulatory conditions. In this section, we give a few examples that satisfy those conditions. The
referred studies below have documented that these examples satisfy the regulatory conditions for
any sequence k such that k = o(nζ) for some ζ < 1 as n→∞.

• The k-dependent process and the autoregressive (AR) process, AR(1): Rootzén [1995], Drees
[2003], Rootzén [2009];

• The AR(p) processes and the infinite moving averages (MA) processes: Resnick and Stărică
[1997], Drees [2002];

• The finite MA processes: Hsing [1991], Rootzén [1995], Drees [2002], Rootzén [2009];

• The autoregressive conditional heteroskedasticity process, ARCH(1): Drees [2002, 2003];

• The generalized autoregressive conditional heteroskedasticity (GARCH) processes: Stărică
[1999], Drees [2000].

We review some simple cases of these processes and provide the comparison of the asymptotic
variances under dependence to that under independence, and to that of the original Hill estimator
under serial dependence.

5.1 Autoregressive model

Consider first the stationary solution of the following AR(1) equation

Xi = θXi−1 + Zi , (13)

for some θ ∈ (0, 1) and i.i.d. random variables Zi. The distribution function of the innovation is
denoted by FZ . Assume that FZ admits a positive Lebesgue density that satisfies the Lipschitz
condition of order 1 (Billingsley [1979], pp. 418). Suppose that as x→∞,

1− FZ(x) ∼ px−1/γ`(x) andFZ(−x) ∼ qx−1/γ`(x) (14)
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for some slowly varying function ` and p = 1− q ∈ (0, 1). Then from Section 3.2 of Drees [2003] we
get that 1−F (x) ∼ dθ (1− FZ(x)) as x→∞, where dθ = (1−θ1/γ)−1. Furthermore, the regulatory
conditions hold with

r(x, y) = x ∧ y +
∞∑
m=1

{cm(x, y) + cm(y, x)},

where cm(x, y) = x ∧ yθm/γ .

Let us denote by σ2(θ, γ, ρ) the asymptotic variance of
√
k(γ̂k,kρ,α − γ). First, we compare

the asymptotic variance under model (13) with that under independence by calculating the ratio
σ2(θ, γ, ρ)/σ2(0, γ, ρ). Second, we compare σ2(θ, γ, ρ) with the asymptotic variance of the original
Hill estimator under serial dependence, σ2H , when using the same k sequence. From Drees [2000], we
get that under serial dependence

√
k(γ̂H − γ) converges to a normal distribution with asymptotic

variance σ2H = γ2r(1, 1). The two ratios are given as follows.

σ2(θ, γ, ρ)

σ2(0, γ, ρ)
= 1 +

2θ1/γ

1− θ1/γ
+

2ρ(1− ρ)

1− 2ρ(1− ρ)

θ1/γ log θ1/γ

(1− θ1/γ)2
,

σ2(θ, γ, ρ)

σ2H
=

1

ρ2

(
1− 2ρ(1− ρ) + 2ρ(1− ρ)

θ1/γ log θ1/γ

(1− θ1/γ)2 + 2θ1/γ(1− θ1/γ)

)
.

In the first row of Figure 1, we plot these ratios against the extreme value index γ for different
values of the parameters θ and ρ. From Figure 1a, we note that the variation of the first ratio is
mainly due to that of θ. The parameter ρ plays a relative minor role. We further give a numerical
illustration with γ = 1 and ρ = −1. With i.i.d. observations, the asymptotic variance of

√
k(γ̂k,kρ,α−

γ) is 5. Instead, if the observations follow the AR(1) model with θ = 0.5, then the asymptotic
variance of

√
k(γ̂k,kρ,α − γ) is close to 20. Hence, overlooking the serial dependence may severely

underestimate the range of confidence intervals.

Differently, we observe from Figure 1b that the variation of the second ratio is mainly due to
that of ρ. Although this ratio is greater than one, it does not imply that the asymptotically unbiased
estimator has a higher asymptotic variance, because the current comparison is conducted using the
same k level for both estimators, whereas the k value used in the asymptotically unbiased estimator
can be at a much higher level than that used for the Hill estimator. Theoretically the conditions
on kn and kλ guarantees that kn/kλ → +∞. Thus the variance of our estimator is at a lower level
asymptotically. Practically, if we consider the example that ρ = −1, then the ratio is in between 5
and 7. Under such an example, if we use a kn in the asymptotically unbiased estimator seven times
higher than kλ used for the original Hill estimator, we will get an estimator with lower variance. If
the level of ρ is more close to zero, then the ratio will be at a higher level. Correspondingly, one
needs a higher level of kn to offset the higher ratio. Nevertheless, together with the fact that the
asymptotically unbiased estimator does not suffer from the bias issue, it may still perform better
in terms of having a lower root mean squared error. Such a feature will show up in the simulation
studies in Section 6 below.
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5.2 Moving average model

Consider now the stationary solution of the MA(1) equation

Xi = θZi−1 + Zi , (15)

where the innovation Z satisfies the same conditions as in the AR(1) model in the previous sub-
section. Again from Section 3.2 of Drees [2003] we get that 1 − F (x) ∼ dθ (1− FZ(x)) as x → ∞,
where dθ = 1 + θ1/γ . One can also compute

r(x, y) = x ∧ y + (1 + θ1/γ)−1(x ∧ yθ1/γ + y ∧ xθ1/γ) .

We calculate the two ratios when comparing the asymptotic variance of the asymptotically unbiased
estimator under serial dependence to that under independence, and that of the original Hill estimator
under dependence as follows.

σ2(θ, γ, ρ)

σ2(0, γ, ρ)
= 1 +

2θ1/γ

1 + θ1/γ
+

2ρ(1− ρ)

1− 2ρ(1− ρ)

θ1/γ log θ1/γ

1 + θ1/γ
,

σ2(θ, γ, ρ)

σ2H
=

1

ρ2

(
1− 2ρ(1− ρ) + 2ρ(1− ρ)

θ1/γ log θ1/γ

(1 + θ1/γ) + 2θ1/γ

)
.

In the second row of Figure 1, we plot the variations of these ratios with respect to the extreme
value index γ for different values of the parameters θ and ρ. The general feature is comparable to
that observed from the first row. A notable difference between Figures 1a and 1c is that although
the ratios are both increasing in θ and the absolute value of ρ, their convexities with respect to γ
are different in the two models: we observe a concave (resp. convex) relation in γ under the MA(1)
(resp. AR(1)) model.

5.3 Generalized autoregressive conditional heteroskedasticity model

Consider the stationary solution to the following recursive system of equations{
Xt = εtσt,

σ2t = λ0 + λ1X
2
t−1 + λ2σ

2
t−1,

where εt are i.i.d. innovations with zero mean and unit variance. The stationary solution of this
GARCH(1,1) model, Xt, follows a heavy-tailed distribution, even if the innovations εt are normally
distributed, see Kesten [1973] and Goldie [1991]. The extreme value index of the GARCH(1,1)
model can be derived from the Kesten theorem on stochastic difference equations, see Kesten [1973].
Nevertheless, the calculation is not explicit.

In addition, the stationary GARCH(1,1) series satisfies the β−mixing condition and the regu-
latory conditions, see Stărică [1999] and Drees [2000]. Thus, it can be considered as an example

12



Figure 1: Ratios between asymptotic variances. Figure 1a shows the ratio between the asymptotic
variance of the asymptotically unbiased estimator under the AR(1) model and that under the i.i.d. case.
Figure 1b shows the ratio between the asymptotic variance of the asymptotically unbiased estimator and
that of the original Hill estimator, under the AR(1) model. Figure 1c and 1d show the corresponding ratios
when the serial dependence is modeled by the MA(1) model.
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for which we can apply the asymptotically unbiased estimators. Since it is difficult to explicitly
calculate the r(·, ·) function and consequently the asymptotic variance, we opt to use simulations to
show the performance of the asymptotically unbiased estimator under the GARCH model.

6 Simulation

6.1 Data generating processes

The simulations are set up as follows. We consider four data generating processes for simulating the
observations used in our simulation study. Suppose Z follows the distribution FZ given by

FZ(x) =

{
(1− p)(1− F̃ (−x)) if x < 0,

1− p+ pF̃ (x) if x > 0,

where F̃ is the standard Fréchet distribution function: F̃ (x) = exp(−1/x) for x > 0, and p = 0.75.
Then FZ belongs to the domain of attraction with extreme value index 1. We construct three time
series models based on i.i.d. observations Zt as follows:

(Model 1) Independence: Xt = Zt (can be regarded as MA(1) with θ = 0),

(Model 2) AR(1): Xt given by (13) with θ = 0.3,

(Model 3) MA(1): Xt given by (15) with θ = 0.3.

In all three models, the theoretical value of γ is 1. In addition, we construct a GARCH(1,1) model
as in Subsection 5.3. We remark that the heavy-tailed feature of the GARCH(1,1) model does
not depend on whether the innovations follow a heavy-tailed distribution. Nevertheless, empirical
evidence supports using heavy-tailed innovations for modeling financial time series, see, e.g. McNeil
and Frey [2000] and Sun and Zhou [2013]. Correspondingly, we use the Student-t distribution as
the distribution of innovations.2 All parameters in the simulated GARCH(1,1) model are equal to
the estimates from the real data application in Section 7 .

(Model 4) GARCH(1,1): Xt given as in Subsection 5.3 with λ0 = 8.26 × 10−7, λ1 = 0.052,
λ2 = 0.941. The innovation term follows the standardized Student-t distribution with degree
of freedom ν = 5.64.

Following Kesten [1973] we calculate the extreme value index γ of the series in Model 4 at 0.258.

In our simulation study, we also compare the performance of our asymptotically unbiased quantile
estimator to that of the original Weissman estimator. For that purpose, we estimate x(0.001) for
simulated samples from the four data generating processes. We conduct pre-simulations to get the

2In order to get a unit variance, we simply normalize the standard Student-t distribution with degree of freedom
ν by its standard deviation

√
ν/(ν − 2).
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theoretical values of x(0.001): for each model, we simulate 500 samples with sample size 106 and
obtain 500 estimations of x(0.001). Table 1 reports the median of these 500 values for each model.

Table 1: Simulated theoretical values of x(0.001) under Model 1–4.

Model 1 Model 2 Model 3 Model 4
749.80 1072.26 972.85 0.0592

6.2 Estimation procedure

For each data generating process, we simulate N = 1000 samples with sample size n = 1000 each.
Firstly, we focus on the extreme value index γ. We apply both the original Hill estimator and the
asymptotically unbiased estimator in (12) to each sample. To apply the asymptotically unbiased
estimator we use the following procedure.

• Estimate the second order index ρ by (11) with α = 2

– Denote m as the number of positive observations in the sample. For each k satisfying
k ≤ min

(
m− 1, 2m

log logm

)
, calculate the statistic

S
(2)
k =

3

4

(M
(4)
k − 24{M (1)

k }
4)(M

(2)
k − 2{M (1)

k }
2)

M
(3)
k − 6{M (1)

k }3
.

– If S(2)
k ∈ [2/3, 3/4], then let

ρ̂k =
−4 + 6S

(2)
k +

√
3S

(2)
k − 2

4S
(2)
k − 3

.

– If S(2)
k < 2/3 or S(2)

k > 3/4, then ρ̂k does not exist.

– The parameter ρ is estimated as ρ̂kρ with

kρ = sup

{
k : k ≤ min

(
m− 1,

2m

log logm

)
and ρ̂k exists

}
.

• Estimate the extreme value index by (12) for various values of kn,3 using ρ̂kρ .

Here the choice of kρ in the first step follows the recommendation in Gomes et al. [2002].

Next, we estimate the high quantile x(0.001) by both the original Weissman estimator and the
asymptotically unbiased estimator as in Section 4.3. When applying the asymptotically unbiased
estimator for high quantiles, we use the same ρ̂kρ as estimated above.

3For Model 1–3, we use kn = 10, 11, . . . , 700, while for Model 4, we use kn = 10, 11, . . . , 450 due to lower number
of positive observations.
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After obtaining the estimates in the N = 1000 samples as γ̂(j)k for j = 1, 2, · · · , N , we calculate
the average absolute bias (ABias) and the root mean square error (RMSE) for the two extreme value
index estimators by

ABiask =

∣∣∣∣∣∣ 1

N

N∑
j=1

γ̂
(j)
k

γ
− 1

∣∣∣∣∣∣ , and RMSEk =

√√√√ 1

N

N∑
j=1

(
γ̂
(j)
k

γ
− 1

)2

.

Then we plot the results against the corresponding k values in Figure 2–5 for each model respectively.

Similarly, we obtain the ABias and RMSE for the two high quantile estimators. The ABias and
RMSE for the four models are plotted in Figure 6–9 respectively.

6.3 Results

Regarding the estimation of the extreme value index, we observe that even with a rather high level of
k, our asymptotically unbiased estimator does not suffer from a significant bias, at least for the first
three models; see Figure 2–4. In Model 4, the bias term increases with respect to k, but still stays
at a lower level than that of the original Hill estimator; see Figure 5. In addition, we compare the
reduction of RMSE when switching from the original Hill estimator to the asymptotically unbiased
estimator. Across the first three models, the best levels of RMSE are reached for the largest values
of k. In Model 4, the RMSE has a different pattern as k increases. However, the reduction is the
most significant in Model 4. Although the lowest achieved RMSE for the asymptotically unbiased
estimator is at a comparable level as the lowest RMSE for the original Hill estimator for Model
2 and 3, the decreasing of RMSE with respect to k demonstrated by the asymptotically unbiased
estimator allows for a more flexible choice of k compared to the U-shaped RMSE demonstrated by
the original Hill estimator.

Regarding the estimation of high quantile, we observe from Figure 6–9 that our goal in reducing
the bias is well illustrated on finite sample when using large k values. In addition, the RMSE of our
asymptotically unbiased quantile estimator stays at a lower level than that of the original Weissman
estimator for high levels of k. It is remarkable that the reduction in RMSE is higher for dependent
series than for independent series.

To conclude, the simulation studies show that under bias correction, the estimators for extreme
value index and high quantile remain stable for a wider range of k values even if the dataset exhibit
serial dependence. The bias correction method under serial dependence thus helps to tackle the two
major critiques for applying extreme value statistics to financial time series.

7 Application

We apply the asymptotically unbiased estimators on the extreme value index and high quantiles to
evaluate the downside tail risk in the Dow Jones Industrial Average (DJIA) index. We collect the
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Figure 2: Estimating the extreme value index: Model 1.

0 100 200 300 400 500 600 700

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Model 1

A
B

ia
s

Hill Estimator
Asymptotically unbiased estimator

(a) ABias under Model 1.

0 100 200 300 400 500 600 700

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Model 1

R
M

S
E

Hill Estimator
Asymptotically unbiased estimator

(b) RMSE under Model 1.

Figure 3: Estimating the extreme value index: Model 2.
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(a) ABias under Model 2.
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Figure 4: Estimating the extreme value index: Model 3.

0 100 200 300 400 500 600 700

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Model 3

A
B

ia
s

Hill Estimator
Asymptotically unbiased estimator

(a) ABias under Model 3.
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(b) RMSE under Model 3.

Figure 5: Estimating the extreme value index: Model 4.
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(a) ABias under Model 4.
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Figure 6: Estimating the high quantile: Model 1.
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Figure 7: Estimating the high quantile: Model 2.
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Figure 8: Estimating the high quantile: Model 3.

0 100 200 300 400 500 600 700

0
1

2
3

4
Model 3

A
B

ia
s

Weissman Estimator
Asymptotically unbiased estimator

(a) ABias under Model 3.

0 100 200 300 400 500 600 700

0
1

2
3

4

Model 3

R
M

S
E

Weissman Estimator
Asymptotically unbiased estimator

(b) RMSE under Model 3.

Figure 9: Estimating the high quantile: Model 4.
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daily index from 1980 to 2010 and compute the daily loss returns. The indices and loss returns are
presented in Figure 10a and 10b. From the figures, we observe that although the loss return series
can be regarded as stationary, there is evidence of serial dependence such as volatility clustering.
More concretely, by fitting the GARCH(1,1) model with Student-t distributed innovations to our
dataset, we obtain estimates as λ̂0 = 8.26 × 10−7, λ̂1 = 0.052, λ̂2 = 0.941 and ν̂ = 5.64. The
existence of serial dependence prevents us from treating the series as i.i.d. observations. The serial
dependence has to be accounted for when performing extreme value analysis.

Figure 10: Historical time series of the DJIA index. The figures in the left and right panels show the
daily prices and loss returns of the DJIA index from 1980 to 2010 respectively.
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(b) Loss returns of DJIA.

Our goal is to estimate the Value-at-Risk of the return series at 99.9% level, which corresponds
to a high quantile with tail probability 0.1%, i.e. x(0.001). From 8088 daily observations, a non-
parametric estimate can be obtained by taking the eighth highest order statistic. We thus get 7.16%

as the empirical estimate.

Next, we apply both the original Hill estimator and the asymptotically unbiased estimator to
estimate the extreme value index of the loss return series. We start with estimating the second order
parameter ρ. Following the estimation procedure in Section 6.2, we choose kρ = 3515 and obtain
that ρ̂ = −0.611. Next we apply both estimators for kn = 50, 11, · · · , 2000. Since we do not employ
a parametric model for the time series, there is no explicit formula for calculating the asymptotic
variance of the two estimators. Therefore, we opt to use a block bootstrapping method to construct
the confidence interval for the extreme value index.

The block bootstrapping follows the routine tsboot in the package boot in R. The block lengths
are choosing to have a geometric distribution (sim=geom) with mean l=200. By repeating such a
bootstrapping procedure 50 times, we obtain 50 bootstrapped estimates for each estimator. The
sample standard deviation across the 50 estimates gives an estimate of the standard deviation of
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the underlying estimator for given kn. We construct the 95% confidence interval using the point
estimate and the estimated standard deviation. This procedure is applied to all values of kn and
for both estimators. The point estimates of the extreme value index as well as the lower and upper
bounds of the confidence intervals are plotted against different choices of kn in Figure 11.

Lastly, we apply both the original Weissman estimator and the asymptotically unbiased version
to estimate the VaR at 99.9% level. The construction of the confidence intervals follows a similar
block bootstrapping procedure. The results are plotted in Figure 12.

From the two figures, we observe that the estimates using the bias correction technique stays
stable for a larger range of k values. In contrast, the estimates based on the original Hill estimator
suffers from a large bias starting from k ≥ 400. When applying the original EVT estimators, it is
possible to choose k only around 250, which corresponds to 3% of the total sample. Correspondingly,
we obtain an estimated extreme value index at 0.349 from the Hill estimator and an estimated
VaR at 0.06549 from the Weissman estimator. With our asymptotically unbiased estimators, we
obtain can take k = 1000 and obtain an estimated extreme value index at 0.280 with an estimated
VaR at 0.05898. Note that the point estimates of the VaR are below, but close to, the empirical
estimate. In addition to the point estimation, we investigate the confidence intervals of the estimated
VaR. The Weissman estimator results in a 95% confidence interval as [0.04268, 0.08831], while the
confidence interval obtained from our asymptotically unbiased estimator is [0.04219, 0.07577]. Hence,
we conclude that the bias correction procedure helps to obtain a more accurate estimate with a
narrower confidence interval.

Figure 11: Estimating the extreme value index for the DJIA index. The figures present the estimates
of the extreme value index for the loss returns of the DJIA index with varying choice of k. The left panel
uses the Hill estimator. The right panel uses the asymptotically unbiased estimators of the extreme value
index in Section 4.2. The confidence interval is obtained from the block bootstrapping method.
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Figure 12: Estimating the VaR at 99.9% level for the DJIA index. The figures present the estimates
of the VaR at 99.9% level for the loss returns of the DJIA index with varying choice of k. The left panel
uses the Weissman estimator. The right panel uses the asymptotically unbiased estimators of high quantile
provided in Section 4.3. The confidence interval is obtained from the block bootstrapping method.
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A – Appendix – Proofs

The asymptotically unbiased estimator of the extreme value index is based on the moments

M
(α)
k :=

1

k

k∑
i=1

(logXn−i+1,n − logXn−k,n)α ,

defined in Subsection 4.1. One can write these statistics as functionals of the tail quantile process{
Qn(t) := Xn−[kt],n

}
t∈[0,1] as follows

M
(α)
k =

∫ 1

0

(
log

Qn(t)

Qn(1)

)α
dt .

Therefore, to derive the asymptotic property of the asymptotically unbiased estimator, we first
establish those of the tail quantile process and the moments. We first show that the tail quantile
process can be approximated by a Gaussian process as in the following proposition.

Proposition A.1. Suppose that {X1, X2, . . .} is a stationary β-mixing time series with continuous
common marginal distribution function F . Assume that F satisfies the third order condition (8)
with parameters γ > 0, ρ < 0 and ρ′ ≤ 0. Suppose that an intermediate sequence k satisfies that as
n → ∞, k → ∞, k/n → 0 and

√
kA(n/k)B(n/k) = O(1). In addition, assume that the regulatory

conditions holds. Then, for a given ε > 0, under a Skorohod construction, there exists two functions
Ã ∼ A and B̃ = O(B), where A and B are the second and third order scale functions in (8),
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and a centered Gaussian process {e(t)}t∈[0,1] with covariance function r defined as in the regulatory
condition (b), such that, as n→∞,

sup
t∈(0,1]

t1/2+ε
∣∣∣∣√k(log

(
Qn(t)

U(n/k)

)
+ γ log(t)

)
− γt−1e(t)

−
√
kÃ(n/k)

t−ρ − 1

ρ
−
√
kÃ(n/k)B̃(n/k)

t−ρ−ρ
′ − 1

ρ+ ρ′

∣∣∣∣∣→ 0 a.s.

Proof of Proposition A.1. By writing Xi = U(Yi) where each Yi follows a standard Pareto distribu-
tion, we obtain that {Y1, Y2, · · · } is a stationary β−mixing series satisfying the regulatory conditions.
This is a direct consequence of Yi = 1/(1− F (Xi)). We write Qn(t) = Xn−[kt],n = U(Yn−[kt],n) and
focus first on the asymptotic property of the process

{
Yn−[kt],n

}
t∈[0,1]. By verifying the conditions

in Drees [2003, Theorem 2.1], we get that under a Skorohod construction, there exists a centered
Gaussian process {e(t)}t∈[0,1] with covariance function r defined in the regulatory condition (b),
such that for ε > 0, as n→∞,

sup
t∈(0,1]

t1/2+ε
∣∣∣∣√k(tYn−[kt],nn/k

− 1

)
− t−1e(t)

∣∣∣∣→ 0 a.s.. (16)

Next, we present an inequality on the U function based on the third order condition (8). Under
the third order condition, there exists two functions Ã ∼ A and B̃ = O(B), such that for any δ > 0,
there exists some positive number u0 = u0(ε) such that for all u ≥ u0 and ux ≥ u0,∣∣∣∣∣∣

logU(ux)−logU(u)−γ log x
Ã(u)

− xρ−1
ρ

B̃(u)
− xρ+ρ

′ − 1

ρ+ ρ′

∣∣∣∣∣∣ ≤ δxρ+ρ′ max(xδ, x−δ) . (17)

This inequality is a direct consequence of applying de Haan and Ferreira [2006, Theorem B.3.10] to
the function f(u) = logU(u)− γ log u.

We combine the asymptotic property of
{
Yn−[kt],n

}
t∈[0,1] in (16) with the inequality (17) as

follows. Taking u = n/k and ux = Yn−[kt],n in (17), we get that given any 0 < δ < −ρ − ρ′, for
sufficiently large n > n0(δ), with probability 1,∣∣∣∣∣logQn(t)− logU(n/k)− γ log

(
k

n
Yn−[kt],n

)
− Ã(n/k)

(
k
nYn−[kt],n

)ρ − 1

ρ

−Ã(n/k)B̃(n/k)

(
k
nYn−[kt],n

)ρ+ρ′ − 1

ρ+ ρ′

∣∣∣∣∣∣ ≤ δÃ(n/k)B̃(n/k)

(
k

n
Yn−[kt],n

)ρ+ρ′+δ
. (18)
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By applying (16), we bound the four terms in (18) that contain kn
n Yn−[knt],n as

t1/2+ε
∣∣∣∣√k(log

(
k

n
Yn−[kt],n

)
+ log t

)
− t−1e(t)

∣∣∣∣→ 0 a.s.,

t1/2+ε

∣∣∣∣∣√k
((

k
nYn−[kt],n

)ρ − 1

ρ
− t−ρ − 1

ρ

)
− t−ρ−1e(t)

∣∣∣∣∣ = o(t−ρ)→ 0 a.s.,

t1/2+ε

∣∣∣∣∣√k
((

k

n
Yn−[kt],n

)ρ+ρ′
− t−ρ−ρ′

)
− (ρ+ ρ′)

(
t−ρ−ρ

′−1e(t)
)∣∣∣∣∣ = o

(
t−ρ−ρ

′
)
→ 0 a.s.,

t1/2+ε
(
k

n
Yn−[kt],n

)ρ+ρ′+δ
= O(t1/2−ρ−ρ

′+ε−δ) = O(1) a.s.

When taking n→∞, with the facts that supt∈(0,1] t
1/2+εt−1 |e(t)| = O(1) a.s.,

√
kÃ(n/k)B̃(n/k) =

O(1) and Ã(n/k), B̃(n/k)→ 0, the proposition is proved due to the free choice of δ.

By applying Proposition A.1, we get the asymptotic property of the moments M (α)
k as follows.

Corollary A.2. Assume that the conditions in Proposition A.1 hold. Then, under the same Sko-
rokhod construction as in Proposition A.1, as n→∞

√
k
(
M

(α)
k − γαΓ(α+ 1)

)
− αγαP (α)

1 −
√
kÃ(n/k)γα−1

Γ(α+ 1)

ρ

(
1

(1− ρ)α
− 1

)
−
√
kÃ(n/k)B̃(n/k)γα−1

Γ(α+ 1)

ρ+ ρ′

(
1

(1− ρ− ρ′)α
− 1

)
−
√
kÃ(n/k)2γα−2

Γ(α+ 1)

2ρ2

(
1

(1− 2ρ)α
− 2

(1− ρ)α
+ 1

)
→ 0 a.s.,

where P (α)
1 are normally distributed random variables with mean zero. In addition

Cov(P
(α)
1 , P

(α̃)
1 ) =

∫∫
[0,1]2

(− log s)α−1(− log t)α̃−1
{
r(s, t)

st
− r(s, 1)

s
− r(1, t)

t
+ r(1, 1)

}
ds dt ,

with the covariance function r defined as in regulatory condition (b).

Proof of Corollary A.2. Recall that

M
(α)
k =

∫ 1

0

(
log

Qn(t)

U(n/k)
− log

Qn(1)

U(n/k)

)α
dt .

Under the same Skorokhod construction as in Proposition A.1, we get that as n→∞,

sup
t∈(0,1]

t1/2+ε
∣∣∣∣√k(log

(
Qn(t)

Qn(1)

)
− γ(− log t)

)
− γ(t−1e(t)− e(1))−

√
kÃ(n/k)

t−ρ − 1

ρ

−
√
kÃ(n/k)B̃(n/k)

t−ρ−ρ
′ − 1

ρ+ ρ′

∣∣∣∣∣→ 0 a.s. .
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The second order expansion (1 + x)α = 1 + αx+ α(α−1)
2 x2 + o(x2) yields that, as n→∞,

sup
t∈(0,1]

t1/2+ε
∣∣∣∣√k((log

(
Qn(t)

Qn(1)

))α
− γα(− log t)α

)
− αγα(− log t)α−1(t−1e(t)− e(1))

−
√
kÃ(n/k)αγα−1(− log t)α−1

t−ρ − 1

ρ
−
√
kÃ(n/k)B̃(n/k)αγα−1(− log t)α−1

t−ρ−ρ
′ − 1

ρ+ ρ′

−
√
kÃ2(n/k)

α(α− 1)

2
γα−2(− log t)α−2

(
t−ρ − 1

ρ

)2
∣∣∣∣∣→ 0 a.s..

Some terms are omitted because supt∈(0,1] t
1/2+εt−1 |e(t)| = O(1) a.s. and Ã(n/k)→ 0 as n→∞.

By taking ε < 1/2, we can then take the integral of
(

log
(
Qn(t)
Qn(1)

))α
on (0, 1] and use the fact

that
∫ 1
0 (− log t)a−1t−bdt =

Γ(a)

(1− b)a
for b < 1 to obtain the result in the corollary. The random term

is P (α)
1 =

∫ 1
0 (− log t)α−1(t−1e(t)− e(1)) dt . The covariance can be calculated from there.

Next, we handle the estimator of the second order parameter ρ. The estimator of ρ is based on
a different k sequence, kρ, satisfying (9). Because kρ satisfies the condition in Proposition A.1, we
get the asymptotic properties of the moments M (α)

kρ
as in Corollary A.2. Then, following the same

lines as in the proof of Gomes et al. [2002, Theorem 2.2], we get the following proposition.

Proposition A.3. Suppose that {X1, X2, . . .} is a stationary β-mixing time series with continuous
common marginal distribution function F . Assume that F satisfies the third order condition (8)
with parameters γ > 0, ρ < 0, ρ′ ≤ 0. Suppose that an intermediate sequence kρ satisfies (9). In
addition, assume that the regulatory conditions holds. Then, for the ρ estimator defined in (11) and
as n→∞ √

kρÃ(n/kρ)
(
ρ̂
(α)
kρ
− ρ
)

is asymptotically normally distributed.

We remark that analogous to the result in Theorem 2.1 in Gomes et al. [2002], the consistency
of the ρ estimator for β-mixing time series can be proved under only the second order condition (3)
and weaker conditions on kρ.

Finally, we can use the tools built in Corollary A.2 and Proposition A.3 to prove our main results.

Proof of Theorem 4.1. From Corollary A.2, with kn satisfying (10), under the same Skorokhod
construction as in Proposition A.1, the Hill estimator has the following expansion

√
kn (γ̂kn − γ)− γP (1)

1 −
√
knÃ(n/kn)

1

1− ρ
→ 0 a.s.

which leads to √
kn
(
γ̂2kn − γ

2
)
− 2γ2P

(1)
1 −

√
knÃ(n/kn)

2γ

1− ρ
→ 0 a.s. .
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Together with the asymptotic property of M (2)
kn

obtained again from Corollary A.2, it implies that

√
kn

(
M

(2)
kn
− 2γ̂2kn

)
− 2γ2(P

(2)
1 − 2P

(1)
1 )−

√
knÃ(n/kn)

2γρ

(1− ρ)2
→ 0 a.s. .

Thus, the asymptotic unbiased estimator has the following expansion, almost surely as n→∞,√
kn
(
γ̂kn,kρ,α − γ

)
=
√
kn (γ̂kn − γ)− 1

2γ̂kn ρ̂
(α)
kρ

(1− ρ̂(α)kρ
)−1

√
kn

(
M

(2)
kn
− 2γ̂2kn

)
=γP

(1)
1 +

√
knÃ(n/kn)

1

1− ρ
− 1

2γ̂kn ρ̂
(α)
kρ

(1− ρ̂(α)kρ
)−1

(
2γ2(P

(2)
1 − 2P

(1)
1 ) +

√
knÃ(n/kn)

2γρ

(1− ρ)2

)

=γP
(1)
1 −

γ(1− ρ̂(α)kρ
)

ρ̂
(α)
kρ

(
P

(2)
1 − 2P

(1)
1

)
+
√
knÃ(n/kn)

ρ

(1− ρ)2

1− ρ
ρ
−

1− ρ̂(α)kρ

ρ̂
(α)
kρ

 . (19)

In the last step we use the fact that γ̂kn → γ a.s., as n → ∞. Further, the relation kn/kρ → 0

implies that
√
knÃ(n/kn)√
kρÃ(n/kρ)

→ 0, as n → ∞. Thus, according to Proposition A.3 and Cramér’s Delta

method, we get that as n→∞,

√
knÃ(n/kn)

ρ

(1− ρ)2

1− ρ
ρ
−

1− ρ̂(α)kρ

ρ̂
(α)
kρ

 P→ 0.

Together with the consistency of ρ̂(α)kρ
, the expansion (19) implies that as n→∞,

√
kn
(
γ̂kn,kρ,α − γ

) P→ γ

ρ

(
P

(1)
1 (2− ρ) + P

(2)
1 (ρ− 1)

)
.

The theorem is proved by using the covariance structure of
(
P

(1)
1 , P

(2)
1

)
given in Corollary A.2.

Proof of Theorem 4.2. Denote dn := kn/(npn) and Tn =
(M

(2)
kn
− 2γ̂2kn)(1− ρ̂(α)kρ

)2

2γ̂kn{ρ̂
(α)
kρ
}2

.

With P (α)
1 defined in Corollary A.2, following the lines in the proof of Theorem 4.1, we obtain that,

under the same Skorokhod construction as in Proposition A.1,

√
kn

Tn − Ã
(
n
kn

)
ρ

− γ(1− ρ)2

ρ2
(P

(2)
1 − 2P

(1)
1 )→ 0 a.s., (20)

as n → ∞, which implies that Tn → 0 a.s. Together with
√
knÃ

2
(
n
kn

)
→ 0 as required in condi-

tion (10) we have a stronger result that is, as n→∞,

√
knÃ

(
n

kn

)
Tn → 0 a.s. . (21)
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Consider the following expansion

√
kn

log dn

(
x̂kn,kρ,α(pn)

x (pn)
− 1

)
=

√
kn

log dn

(
Xn−kn,nd

γ̂kn,kρ,α
n

x (pn)
− 1

)
(1− Tn)−

√
kn

log dn
Tn

=
dγnU

(
n
kn

)
U
(

1
pn

)
 √kn

log dn

Xn−kn,n

U
(
n
kn

) − 1

 d
γ̂kn,kρ,α−γ
n +

√
kn

log dn

(
d
γ̂kn,kρ,α−γ
n − 1

) · (1− Tn)

−
√
kn

log dn

Tn − Ã
(
n
kn

)
ρ

+ Tn ·

√
knÃ

(
n
kn

)
log dn

U
(

1
pn

)
d−γn

U
(
n
kn

) − 1

Ã
(
n
kn

) dγnU
(
n
kn

)
U
(

1
pn

)

−

√
knÃ

2
(
n
kn

)
log dn

U
(

1
pn

)
d−γn

U
(
n
kn

) − 1

Ã
(
n
kn

)
dγnU

(
n
kn

)
U
(

1
pn

) − 1

Ã
(
n
kn

)

−

√
knÃ

(
n
kn

)(
Ã
(
n
kn

)
+ B̃

(
n
kn

))
log dn

U( 1
pn )d−γn
U( n

kn )
−1

Ã
(
n
kn

) + 1
ρ

Ã
(
n
kn

)
+ B̃

(
n
kn

)
=: I1 − I2 + I3 − I4 − I5.

The third order condition in (8) implies that as n→∞,∣∣∣∣∣∣∣∣∣
U
(

1
pn

)
d−γn

U
(
n
kn

) − 1

Ã
(
n
kn

) +
1

ρ

∣∣∣∣∣∣∣∣∣ = O

(
Ã

(
n

kn

)
+ B̃

(
n

kn

))
. (22)

The limit relation in (22) further implies that as n→∞,

U
(

1
pn

)
d−γn

U
(
n
kn

) − 1

Ã
(
n
kn

) → −1

ρ
and

U
(

1
pn

)
d−γn

U
(
n
kn

) → 1.

Combining (22) with condition (10), we get that I4 → 0 and I5 → 0 as n → ∞. Next, from (21),
we get that I2 → 0 and I3 → 0 a.s., as n→∞.

Lastly, we deal with the term I1. Denote the limit of
√
kn
(
γ̂kn,kρ,α − γ

)
as Γ. Then we have

that as n→∞ √
kn

log dn

(
d
γ̂kn,kρ,α−γ
n − 1

)
→ Γ, a.s.,
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which implies that 1
log dn

d
γ̂kn,kρ,α−γ
n → 0 a.s. Together with the facts that Tn → 0 a.s. and

√
kn

Xn−kn,n

U
(
n
kn

) − 1

 = O(1) a.s.

as n → ∞, we get that I1 → Γ a.s. as n → ∞. The theorem is proved by combining the limit
properties of the five terms in the expansion.
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