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In-line digital holography is a valuable tool for sizing, locating and tracking micro- or nano-objects in a
volume. When a parametric imaging model is available, Inverse Problems approaches provide a straight-
forward estimate of the object parameters by fitting data with the model, thereby allowing accurate re-
construction. As recently proposed and demonstrated, combining pixel super-resolution techniques with
Inverse Problems approaches improves the estimation of particle size and 3D-position. Here we demon-
strate the accurate tracking of colloidal particles in Brownian motion. Particle size and 3D-position are
jointly optimized from video holograms acquired with a digital holographic microscopy set up based on
a “low-end” microscope objective (×20, NA 0.5). Exploiting information redundancy makes it possible to
characterize particles with a standard deviation of 15 nm in size and a theoretical resolution of 2 x 2 x 5
nm3 for position under additive white Gaussian noise assumption. © 2015 Optical Society of America

OCIS codes: (090.1995) Holography: Digital holography, (100.3190) Image processing: Inverse problems, (100.6640) Image
processing: Superresolution; (100.3010) Image processing: Image reconstruction techniques, (120.3940) Instrumentation, measure-
ment, and metrology: Metrology

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Accurate 3D tracking of micro- or nano-objects is instructive in
a wide range of scientific domains (including biomedical imag-
ing, fluid mechanics, microfluidics). Digital holographic mi-
croscopy (DHM) is well suited for these studies as it allows
3D quantitative imaging with temporal resolution. These prop-
erties have led to the development of video holographic mi-
croscopy, which has been shown to be a reliable and accurate
tool for tracking colloidal particles [1]. Video holographic mi-
croscopy has also been shown to be useful for 3D tracking of
micro- [1–3] and nano- particles [4, 5] or rods [6] in Brown-
ian motion, as well as for the characterization of particle in-
teractions [7]. In these studies, tracking accuracy down to
3× 3× 10 nm3 for backpropagation reconstruction methods [5],
and 1 × 1 × 10 nm3 for Lorenz-Mie fitting [1] have been demon-
strated. Deconvolution strategies can be used to track particles
in three dimensions with similar axial and lateral resolutions,
in that case leading to nanometer resolution in the three spatial
dimensions [8]. However, in these studies, only high-end micro-
scope objectives (high magnification, high numerical aperture)
or dark-field configuration have been considered, thus hinder-
ing the generalization of these results to more cost effective de-

vices [9, 10].

“Inverse Problems” (IP) approaches have been shown to
be more accurate than classical reconstruction methods [11–
13], and also to be optimal in certain experimental configura-
tions [14, 15]. Instead of transforming acquired data with light
backpropagation algorithms, these methods aim to find values
of the imaging model parameters that maximize the likelihood
with acquired data. The combination of IP approaches with
“pixel super-resolution (SR)” which exploits the redundant in-
formation in sequences of video holograms has recently been
shown to improve object parameter estimates, with a gain in
variance at least proportional to the number of frames per re-
constructed sequence [16]. This result thus paves the way for
high-resolution 3D tracking of objects (e.g. colloidal particles),
in a more affordable experimental set up.

We take advantage of the recently proposed joint IP re-
construction approach to accurately track colloidal particles in
Brownian motion. We first describe the reconstruction proce-
dure used for accurate particle tracking from video hologram
sequences is described. We then discuss the accuracy of the
proposed procedure for the estimation of both 3D position and
particle size, whose results are comparable to state of the art
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Fig. 1. (Color online) Experimental set up for hologram acqui-
sition.

with a more affordable experimental configuration. Finally, ob-
tained trajectory statistics are compared with Brownian motion
theory statistics.

2. DATA ACQUISITION AND PROCESSING

A. Experimental set up

The experimental set up for hologram acquisition is depicted
in Fig. 1. It consists of an inverted microscope (Olympus
IX71 ®) modified to operate in an in-line holographic configura-
tion. Light emitted by a collimated fiber-pigtailed λ = 532 nm
Nd-YAG laser (Coherent Verdi ® operating at 80 mW), is con-
densed on the sample, which consists of a colloidal suspension
of 2r = 1 µm in diameter polystyrene beads (standard deviation
less than 0.1 µm according to the specifications) in permuted
water (FLUKA 89904 ®) maintained between the microscope
slide and the cover slide with a 1 mm thick rubber spacer. Inter-
ference between the light scattered by polystyrene beads and
the reference beam are collected using a ×20, NA = 0.5 mi-
croscope objective (Olympus UPlanFLN ®) corrected at infin-
ity. Finally, the holograms are recorded on a 12 bit CCD sensor
(Basler acA1600-20 um ®, 1626× 1236 pixels, with 4.4 µm pitch).
Effective magnification of our experimental arrangement was

For each hologram
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reconstruction
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Refined radius

Fig. 2. Synoptics of the joint IP reconstruction algorithm.

Fig. 3. White light image of a USAF resolution target used to
calibrate magnification.

estimated to be 21.12, leading to pixel pitches in the object half-

space of δ
obj
pix = 208.3 nm, and an imaging field of 340× 260 µm2.

Estimation of the imaging field extension was performed by
imaging an USAF resolution target under white light illumina-
tion (see Fig. 3). Images were recorded with a ωCCD/(2π) = 20
Hz framerate and τexp = 50 × 10−6 s exposure time. For ob-
ject tracking, a sequence of 1000 holograms consisting of a 50 s,
3D Brownian trajectory was recorded. Objects located between
zmin = 50 µm and zmax = 70 µm were considered. This range
of distances denotes the position of the analyzed objects com-
pared to the image of the CCD sensor through the microscope
objective. Within the specified distance range, the assumption
z ≫ 4r2/λ holds. Under this assumption, the diffracting par-
ticles can be considered as opaque, and the classical Huygens-
Fresnel diffraction integral finds an analytic solution [17]. The
intensity Iz (x, y) recorded for a spherical opaque object located
at a distance z from the imaging sensor is thus given by

Iz (x, y) ∝ 1 − 1
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where ϑ is the 2D aperture function of the particle under inves-
tigation, which is unity within the aperture and zero elsewhere.
Considering an opaque diffraction particle, the Fourier trans-
form of ϑ is
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(2)
with J1 the Bessel function of the first kind. The main advantage
of this image formation model is that it is analytic and depends
on only the 3D positions and radius of the particle. We therefore
use it in the remainder of the article.

B. Joint “Inverse Problems” reconstruction

Hologram sequences were processed using a recently proposed
IP reconstruction scheme based on joint estimation of image
model parameters that are experimentally invariant from one
frame to the next [16]. In the present study, the algorithm was
adapted to 3D tracking (see Fig. 2): joint estimation was per-
formed on the radius of the object, which, in our set up is the
only invariant parameter on the image sequence.
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The algorithm comprises two main steps.

1. First, each recorded hologram is processed using a clas-
sical IP reconstruction algorithm [11, 12]. This algorithm
identifies the parameters of the imaging model that best fit
(in the least square sense) the acquired data. It consists of
three steps:

(a) A global, or coarse detection step, which find the best-
matching model in the discretized parameter space
{x, y, z, r}.

(b) A local detection step, in which the coarsely esti-
mated values are continuously optimized using a gra-
dient decent algorithm.

(c) A cleaning step, in which the detected object is re-
moved from the original data in order to increase the
hologram signal to noise ratio (SNR).

This procedure is iterated, for each hologram of the se-
quence, until no more particles are detected.

As multiple objects are detected on each hologram in the se-
quence, all the detected particles except one are cleaned (i.e.
based on an additive model assumption all diffraction pat-
terns of detected objects are subtracted from the data). This
step increases the SNR of the remaining object for accurate
tracking and sizing. For the remaining object, we thus ob-
tain the position and size parameters {xn , yn, zn, rn}n=1..Nt

for the Nt = 1000 recorded holograms. This step is il-
lustrated in Fig. 4, which shows holograms cropped to
512 × 512 pixels around the tracked object. It should be
noted that the holograms were cropped for the purpose of
illustration, and that hologram processing was performed
on the whole image size (i.e. 1626 × 1236 pixels). The ob-
ject, indicated by a white arrow (Fig. 4(a)) was tracked us-
ing an imaging model as depicted in Fig. 4(b) (see Media 1
and 2).

2. In the second step a joint IP reconstruction was performed
on M = 100 image stacks, each composed of N = 10
holograms, built from the Nt = N × M = 1000 recorded
holograms. For each image stack m, the particle position
parameters {xn , yn, zn}n=(m−1)N+1..mN, and the averaged

radius over N images 〈r〉m
indiv = 1

N ∑
mN
n=(m−1)N+1 rn were

used as a starting point for the joint IP reconstruction.

Analyzed
object

Fig. 4. (a) Hologram of 1 µm diameter latex beads. The
tracked particle is indicated by a white arrow. (b) Imaging
model extracted from IP reconstruction (a) (See Media 1 and
2). Holograms were cropped to 512 × 512 pixels around the
tracked particle for the purpose of illustration.
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Fig. 5. (Color online) Trajectory extracted from the IP recon-
struction (dark blue) and the joint IP algorithm (dark red) of
the hologram sequence in Fig. 4. For the sake of readability,
only projection in the xy plane is proposed .

The particle radius rm
joint was estimated jointly, whereas

{xm
n , ym

n , zm
n }n=1..N were optimized individually.

The resulting trajectories are illustrated in Fig. 5 for the clas-
sical IP approach (corresponding to the first step in dark blue
in Fig. 2) and the joint IP approach (corresponding to the com-
plete algorithm in dark red in Fig. 5). As can be figured out
from the xy plane projection, the 3D positions of the tracked
object have been slightly modified thanks to the joint IP recon-
struction. This point will be discussed in more detail in the fol-
lowing section.

3. RECONSTRUCTION ACCURACY

The ability of the IP reconstruction to track colloidal suspension
in three dimensions has already been demonstrated in the liter-
ature. To prove the benefits of our processing scheme, the accu-
racy on the estimation of particle position parameters (x, y, z),
and size r is estimated in this section. It should be noted that,
due to the small correlation between the imaging model param-
eters in our experiment, the improvement in accuracy provided
by the joint IP reconstruction scheme is only significant for a pa-
rameter that remains constant along the hologram sequence (i.e.
the particle radius) [14]. The estimation of the position parame-
ters (x, y, z) is consequently not changed. Since, r is assumed to
be constant along the hologram stack, its estimation accuracy is
improved by our approach.

A. Accuracy of the 3D localization: a Monte-Carlo approach

As the tracked colloidal particle is in Brownian motion, we
cannot compare the estimated values of position parameters
{xn , yn, zn} with ground truth values. To get round this prob-
lem, the accuracy of the estimation of the 3D positions of the
tracked object was estimated with a Monte-Carlo simulation
in which 1000 synthetic holograms of a spherical opaque ob-
ject are generated. The 1000 (x, y, z) positions are considered
randomly around the mean experimental positions, while the
object radius is assumed to be equal to its mean experimen-
tal value. White Gaussian noise is added to the simulation.
The SNR (ratio of the magnitude of the signal to the standard
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deviation of the noise) is set at 5, which approximately cor-
responds to the SNR of the experimental holograms. An ex-
ample of a Monte-Carlo simulated hologram, cropped to 512
× 512 pixels for the purpose of illustration, is shown in Fig.
6(a). The simulated holograms were reconstructed using the
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Fig. 6. (Color online) Monte-Carlo estimation of the accuracy
of the reconstruction. (a) Simulated hologram with a SNR sim-
ilar to that of the experimental video hologram. The image has
been cropped to 512 × 512 pixels for the purpose of illustra-
tion. Comparison between Monte-Carlo simulated and recon-
structed values for (b) x, (c) z coordinates.

joint IP approach, and error between Monte-Carlo simulated

values {xn, yn , zn}MC and the estimated values {xn , yn, zn}est

were computed. The results are shown in Fig. 6, in which er-
rors between simulated values and estimated values, denoted
errx, and errz, are plotted against the image index of the video
hologram sequence. The three dimensional accuracy of our
estimation is given by the standard deviation of the error dis-
tributions in Fig. 6. We obtained a localization accuracy of
σx × σy × σz = 2× 2× 5 nm3. This accuracy is comparable with
that of previous studies [1, 4, 5] performed with high-end micro-
scope objectives, which result in a smaller field of view than our
set up. In our case, fitting on the signal high spatial frequencies,
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Fig. 7. (Color online) Evolution of the estimated particle ra-
dius for (a) classical IP reconstruction {rn}n=1..1000; (b) joint
IP reconstruction, with 10 consecutive holograms per image
sequence {rm}m=1..100; (c) joint IP reconstruction, with 10 ran-
domly chosen holograms per image sequence

{

rm
rand

}

m=1..100
.

Dashed dark red line corresponds to the estimated average
value of the particle radius.

allowed us to achieve a lateral accuracy of one hundredth of a
pixel. The main purpose of the proposed Monte-Carlo simula-
tions was to assess the accuracy of our 3D localization scheme.
Note that these simulations also make it possible to evaluate the
maximum achievable accuracy σrMC of the particle size estima-
tion. Considering the above mentioned simulation parameters,
the achievable accuracy is σrMC = 8.5 nm.

Note that these results are related to the accuracy of our IP
reconstruction algorithm for the tracking of an individual object
under the assumption of an additive white Gaussian detection
noise. The above analysis therefore provides insights into the
ultimately achievable accuracy. Nevertheless, as can be seen
in Fig. 4 and Media 1, several objects are in the field of view,
leading to an inappropriate Gaussian white noise assumption.
A more objective assessment of the tracking accuracy can be
achieved by analyzing the acquired data statistics.
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Fig. 8. (Color online) Evolution of the mean-squared displace-
ment as a function of the observation time ∆t. Blue, red and
yellow circles are respectively obtained by computing Eq. (4)
for x, y, and z coordinates. Solid lines correspond to the fit of
the experimental data according to Eq. (5).

B. Accuracy of the 3D localization: analysis of experimental

data statistics

Brownian particle positions cannot be predicted. Nevertheless,
the fact that Brownian trajectories rely on known statistics can
be advantageously used for the characterization of the track-
ing accuracy. This analysis relies on the results proposed by
the authors of [18]. As predicted by Einstein [19] and Smolu-
chowski [20], the mean-square displacement of a particle dif-
fusing in a liquid during the time interval ∆t is

∆r2 (∆t) = 〈|r (t + ∆t)− r (t)|2〉
= 2dD∆t + (v∆t)2 , (3)

where d is the dimensionality of the concerned trajectory, D is
the diffusion coefficient of the particles in the surrounding liq-
uid, r (t) = (x(t), y(t), z(t)) is the coordinate vector of the con-
cerned trajectory, and v is the diffusing particle velocity in the
surrounding liquid.

Using our N experimental holograms, we can build a re-
lation similar to that of Eq. (3) with different time intervals
∆t = s × 2π/ωCCD [18]

∆r2
s =

(⌊

N

s

⌋)−1 ⌊N/s⌋
∑
k=1

∣

∣

∣
r(n+1)s − r(n)s

∣

∣

∣

2
, (4)

where s is the integer number of time steps considered for esti-
mation of the mean-squared displacement, and ⌊ N

s ⌋ is the en-
tire part of the ratio N/s. To account for measurement variance,
the authors of [18] have proposed a modification of Eq. (3)

∆r2(∆t) = 2dε2 + 2dD∆t + v2∆t2, (5)

where 2dε2 is the measurement related offset. Therefore, fitting
the mean-squared displacement obtained from the experimen-
tal displacement data (Eq. (4)) with Eq. (5) makes it possible
to estimate the accuracy of Brownian tracking. From these fits
(see Fig. 8), one can obtain the tracking errors for each coordi-
nate of εx = 17 ± 40 nm, εy = 18 ± 40 nm, and εz = 65 ± 60 nm.
Values of the errors as well as the uncertainty were obtained
considering a weighted non-linear regression scheme: the val-
ues of the errors are given by the value at ∆t = 0 of the fits, and
the uncertainties are determined through the fitting response
with a confidence interval of 95 %. Fig. 8 shows that the accu-
racy of the axial displacement ∆z2 is poorer than that of lateral

displacements ∆x, y2. This can be explained by the numerical
aperture of the microscope objective used (NA = 0.5). Never-
theless, these values are in agreement with the values obtained
in [18] considering the magnification and numerical aperture of
the imaging objective used in our study (×20 NA = 0.5 instead
of ×100 NA = 1.4 in Ref. [18]).

Although they are statistically consistent with the theoretical
errors estimated in Sec. A (i.e. σx × σy × σz = 2× 2× 5 nm3), the
experimental errors are noticeably higher. This can be partially
explained by the fact that the additive white Gaussian detection
noise hypothesis was not verified. As a matter of fact, several
objects can be found in the field of view, leading to a correlated
noise as well as to interaction effects that are not accounted for
in our statistical analysis.

C. Accuracy on the colloidal suspension size

Experimental estimation of the colloidal particle size also ben-
efits from the use of a joint IP reconstruction approach as il-
lustrated in Fig. 7. Fig. 7(a) shows the evolution of the esti-
mated radius obtained by reconstructing the holograms using
a classical IP approach to the whole image sequence of 1000
holograms. The radius estimates have a mean value equal
to 〈2r〉indiv = 1.007 µm which is compatible with the ven-
dor’s colloidal suspension specifications. The figure also shows
that the estimate is noisy. The standard deviation is equal to
σrindiv

= 58 nm. It should be noted that part of this dispersion
is the result of the bias, which varies in the sequence. Figure
7(b) shows the evolution of the estimated radius obtained with
a joint estimation of the radius in the stacks. Its mean value is
similar to the previous one i.e. 〈2r〉joint = 1.002 µm. The disper-
sion of the measurements is slightly lower, but a non constant
bias remains leading to a standard deviation of σrjoint = 49 nm.
As can be seen in Movie 1, particles that falls outside of our
detection range (and are therefore not cleaned by our IP recon-
struction procedure) are superimposed on the detected object
pattern. This effect is likely to contribute to the bias in radius
estimation.

To reduce this time correlated noise, the joint estimation
can be performed on stacks of holograms randomly selected
in the whole sequence. Results obtained using stack of im-
ages built with randomly selected holograms are plotted in Fig.
7(c). As expected, the bias in the radius estimation was suc-
cessfully removed. This confirms the fact that bias in the es-
timated radius is closely linked to correlated noise originating
from the presence of unwanted particles in the field of view.
From these measurements, the colloidal suspension size was
estimated to be 〈2r〉rand = 1.005 µm, with a standard devia-
tion of σrrand

= 15 nm. Nevertheless, it should be noted that
the obtained accuracy of the radius estimation is 50 % higher
than the one proposed in [1], which can be explained by the
fact that, in our study, we used smaller numerical aperture ob-
jectives (NA = 0.5 than the NA = 1.4 in [1]).

Standard deviations on the radius estimation for both clas-
sical (σrindiv

) and randomized joint IP reconstruction (σrrand
) pro-

vide useful information for our colloidal particle as the close-
ness of the measured radius to the average of the radii distribu-
tion is assessed. As we assume that the radius of the particles
remains constant over time, it is also relevant to estimate the
standard error of the mean (i.e. the standard deviation of the
sampling distribution of the sample mean) for both methods.
Considering a distribution x, the standard error of the mean σx̄
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is
σx̄ =

σx√
Ns

, (6)

where σx is the standard deviation of the distribution, and Ns is
the number of independent observations. Therefore, using Eq.
(6), the standard error of the mean radius for classical IP recon-
struction is σr̄indiv

= 1.8 nm, while it drops to σr̄rand
= 1.5 nm

for the randomized joint IP reconstruction. These errors were
estimated for Ns = Nt (classical IP) and Ns = M (randomized
joint IP) respectively. Results are summarized in Table 1. It can

Table 1. Standard deviation and standard error of the mean
of the radius estimation for both classical and randomized
joint IP reconstruction

σr (nm) σr̄ (nm)

Classical IP 58 1.8

Randomized joint IP 15 1.5

Improvement 280 % 22 %

be seen that our randomized joint IP greatly improves the esti-
mated radius dispersion. There is less improvement in the stan-
dard error of the mean radius, but it nevertheless demonstrates
the benefits of using a joint estimation of redundant parameters
in sequences of holograms.

D. Comparison with Brownian motion theory

To prove the advantages of our approach in Brownian motion
tracking, we calculated the theoretical average of the 3D dis-
placement of a 2r = 1 µm polystyrene bead in water. Ac-
cording to Stokes-Einstein theory [19] the average squared-
displacement is

〈∆r2〉 = 6Dτobs, (7)

where τobs is the “length” of observation (here τobs =
(2π)/ωCCD = 50 × 10−3 s), and D the diffusivity of the particle

D = kBTγ−1, (8)

where γ = 6πµrp, is the drag coefficient of the particle. The
trajectory shown in Fig. 5 was obtained at room tempera-
ture T = 300 K, for particles in water of dynamic viscosity
µ = 0.89 × 10−3 kg.m−1.s−1. The radius of the particle rp cor-
responds to the colloidal suspension radius given by the man-
ufacturer’s specifications. From Eq. (7), one can assess the “so-
called” averaged displacement ∆′

th defined as

∆r′th =
√

〈∆r2〉 =
√

6Dτexp (9)

that we used to demonstrate the advantages of our approach.
According to the experimental parameter, the theoretical dis-
placement of the particle from one frame to the next is ∆′

th ≈
0.271 µm. The experimental averaged displacement d′exp can be
estimated from data considering

∆r′exp =
√

〈∆x2〉+ 〈∆y2〉+ 〈∆z2〉, (10)

where ∆ii=x,y,z is the 3D displacement of the object between two
frames. Using Eq. (10), the experimental averaged displace-
ment is ∆r′exp ≈ 0.251 µm, which is in good agreement with the
Brownian motion theory.
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Fig. 9. (Color online) Power spectral density of the experimen-
tal trajectory (blue) fitted with the theoretical Brownian mo-
tion power spectral density (orange). Results are plotted in a
y-semilog scale.

This agreement was confirmed by estimating the power
spectral density (PSD) of the reconstructed trajectory. Con-
sidering a mass-less particle, and according to the fluctuation-
dissipation theorem, the PSD is

∣

∣

∣
F
{

∆r2
}
∣

∣

∣

2
= kBTγ−1ω−2. (11)

Therefore, fitting the PSD extracted from the experimental tra-
jectory with Eq. (11) made it possible to measure particle diffu-
sivity D. Fig. 9 shows the results and the good agreement be-
tween the acquired data and the Brownian motion theory. For
our trajectory, we obtained D = 0.2893± 0.0054 µm2.s−1, which
slightly overestimates the value calculated according to our ex-
perimental conditions (D = 0.2469 µm2.s−1).

4. CONCLUSION

Colloidal particles in Brownian motion were tracked using a
jointly optimized IP reconstruction algorithm. Using a cost
effective experimental set up, and under assumption of ideal
white Gaussian detection noise, the proposed approach makes
it possible, to track in 3D 2r = 1 µm polystyrene particles with a
2× 2 × 5 nm3 resolution and a 15 nm standard deviation on the
particle radius estimation. Analysis of the experimental data
made it possible to assess the tracking errors, that are noticeably
higher than, -and statistically consistent with- the ideal theoreti-
cal values. The suitability of the approach was demonstrated by
comparing the theoretical average Brownian motion displace-
ment with experimentally observed displacement. Bias in the
experimental measurements was due to the presence of un-
wanted particles in the field of view, resulting in time-correlated
background noise. To confirm this last point, the joint IP recon-
struction algorithm was modified by randomly building image
stacks. This resulted in debiasing of the colloidal suspension
size estimation. It should be noted that the size of image stack
used for joint estimation has an influence on the accuracy of the
estimation.

It should also be noted that a simplified imaging model rely-
ing on four parameters (3D position and suspension size) was
sufficient for this particular tracking study. Nevertheless, a
more complete imaging model, such as Lorenz-Mie theory, can
be considered for more severe experimental conditions. In that
case, joint estimation of additional parameters such as the col-
loidal particle refractive index would be possible, keeping in
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mind that the estimation of all the parameter remaining con-
stant during the image acquisition will benefit from our joint IP
reconstruction scheme.
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