

SIMPOSIO DE BIOECONOMIA EN AMERICA TROPICAL SAN JOSE, COSTA RICA 2013

ECENIBiot

Agricultural residues

MINISTERIO DE CIENCIA, TECNOLOGÍA Y TELECOMUNICACIONES

micit

	Primary	Secondary
Origin	In the field during agricultural practices or during harvest	In a related industry during transformation of the main product
Examples	Straw, stalks, leaves	Bagasse, shells, fibers
Characteristics	Heterogeneity Spread over large areas	Homogeneity Concentrated in the industry

Crop residues selected for productions assessment in EU-28 and LAC

29 res fro cro

0 crop sidues om 21 ops	PRIMARY RESIDUES		hau A lot A.
	Secondary residues	 Sugarcane bagasse Groundnut shells Coconut shell, husks and pith Rice husk Corn cob Oil palm empty bunches, fibers 	

Presidencia de la Nación

🥑 cirad

Inta

CEI

Crop residues generated by agricultural production in EU-28 and LAC

Crop residues generated by agricultural production in EU-28 and LAC

<u>In EU-28</u>

- 7 % of world crop residues production
- Only 3% secondary residues
- Straws of wheat and barley + stalks of maize and rapeseed = 85% residue production
- France, Germany, UK, Poland and Spain = 5 main producers (60% of EU production)

In LAC

Milhau A Fallot A.

- 19 % of world crop residues production
- 72% are primary; 28% are secondary
- Sugarcane bagasse / tops and leaves + Soybean and maize stalks = 81% residue production
- Brazil = 60% of LAC crop residues production
- Brazil, Argentina, Mexico, Colombia

Availability

Primary residues availability limited by costs and transportation

EXAMPLE WITH RICE

Straw: 5 ton/ha generated (GTP) 0.7 ton/ha potentially available (PP)

In a region where rice use 30% of land

→ 476,000ha are needed to feed a 10MW plant

into

Ministerio de Ciencia, Tecnología e Innovación Productiva

Learning from the Indian experience

- Assessment of crop residues production and their availability
- Compare with how they are use for energy production through the CDM experience
- → understand conditions in which crop residues can be mobilized for energy production

Learning from the Indian experience

THE INDIAN CONTEXT

- 2010, India generated 0.6 billion tons crop residues = 10% world production
- 2004-2010: 136 CDM using crop residues for energy generation → data
 - Installed capacity of 1300MW (0.8% total installed cap.) (9.8MW/project on average)
 - Mainly consume secondary residues: rice husk and bagasse
 - Primary residues poorly exploited: 1-3% PP, mainly cotton stalks
 - Technology: Direct combustion, energy for captive use or sold to the grid
 - Average efficiency: 0.6 kWh/kg residues

Milhau A.

Conditions for the exploitation of residues

- **Financial analysis**, based on IRR, gives information concerning important parameters to maintain viability of projects:
 - Electricity purchase tariff and crop residues cost: most determinant factors.
 - Carbon credits: impulse projects implementation but cannot compensate for fuel cost increase.

Milhau A. Fallot A.

Conditions for mobilizing residues for energy production

• cannot absorb residue price increase

Perspectives for energy production from residues in LAC and EU

In LAC, situation similar to India

- Important quantity of residues generated (++ secondary residues) but projects didn't boomed in LAC as in India
- Obstacle: Electricity purchasing conditions limit adoption of projects (Mexico & Colombia, pioneers in small scale)
- Industrial <u>opportunity</u> for economic and environmental competitiveness (Bagasse valorization largely adopted...)

Milhau A Fallot A.

- <u>Alternative</u>: residues can be transform into biomaterial
- <u>Challenge: improve technology efficiency and provide market for the energy</u>
- <u>Caution</u>: projects should be go with measures to prevent take off residues from soils, animals or other uses

In EU-28

- Scarcity of secondary residues limits projects feasibility
- Experiences of large-scale energy production from straw in Denmark, UK...
- Obstacle: availability and constancy of resource → residues mixed with other fuels such as wood or coal
- European countries can invest in residue projects in developing countries through CDM

