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Abstract

The paper addresses structural decomposition of images by using a family of
non-linear and non-convex objective functions. These functions rely on `p

quasi-norm estimation costs in a piecewise constant regularization framework.
These objectives make image decomposition into constant cartoon levels and
rich textural patterns possible. The paper shows that these regularizing objec-
tives yield image texture-versus-cartoon decompositions that cannot be reached
by using standard penalized least square regularizations associated with smooth
and convex objectives.

Keywords: Non-Convex Optimization, Regularization, Image decomposition.

1. Introduction

Image decomposition in cartoon and texture patterns plays an important
role in High Definition (HD) image processing [1, 2, 3]. For instance, recent
high definition image engines processes images by decomposing them into
smooth/texture/color components, enhancing every component separately, then
fusing the results. This yields high quality images and videos, even for images
issued from a low definition camera.
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Cartoon-versus-texture image decomposition is possible via certain regu-
larization objectives. Since regularization functions operate differently depend-
ing on the image content, the main issue raised by this decomposition is the se-
lection of best regularizers for splitting a given image into its cartoon (smooth3

or piecewise smooth) part and a purely textural4 part.
Most of the texture-structure decomposition methods available in the lit-

erature pertain to the class of least square objectives (quadratic forms) in the
sense that these methods are variants of Penalized Least Squares (PLS). The dis-
crete form of a PLS objective can be written in the following form, involving a
penalty function Qλ:

||x[i,r]−y||22 +2
i+r∑

`=i−r
Qλ(

∣∣y`
∣∣), (1)

where λ is a parameter for tuning data fidelity, smoothness and roughness.
The PLS problem inherits the convexity [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] or non-
convexity of Qλ [14, 15, 16, 17, 18, 19, 20, 21] (the quadratic term involved in
this problem is a convex function). Both convex and non-convex forms have
shown relevancy in many image processing applications involving

• denoising and deconvolution [4, 5, 8, 10, 14, 15, 22, 23, 2, 24];

• cartoon/texture decomposition and image inpainting [6, 7, 10, 25];

• inverse problems and compressive sampling reconstruction [26, 27, 28];
etc.

Note that a PLS problem can be expressed in the image input space [5, 8], the
Fourier domain [7], [10], the wavelet domain [4, 11, 13] or via Meyer’s oscillatory
functions [6, 12].

Some image regularizing objectives that do not pertain to the PLS class are
stack filters [29, 30, 31]. Stack filters include the classes of weighted medians
and some morphological type filters. In particular, non-convex objectives have

3We use the following definition of smoothness: a smooth 2D function is a function hav-
ing continuous derivatives up to certain order. This function is thus (at least) continuous ev-
erywhere. A 2D function that is smooth, excepted on 2D curves, is called piecewise smooth
function.

4The textural part of the image is then defined as the complementary with respect to differ-
ence operator of the carton part. This includes noise, for noisy image acquisitions.
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been considered in [31] for the design of stack filters. These objectives apply
on a binary level image representation obtained from a combination of thresh-
old operators over several positive boolean functions. The optimal solution for
these stacked objectives is then determined as the solution of a linear program
(see [31] for details). This optimal solution is mainly relevant for denoising pur-
poses, see [29, 30, 31], among other references.

The objective functions discussed in this paper do not involve any quadratic
term. In this respect, their cartoon-versus-texture image decompositions are
expected to differ significantly from those issued from PLS objectives.

These objectives operate structural image decomposition thanks to frac-
tional `p quasi norms. They are non-smooth by construction so as to make
sharp cartooning effect and rich texture rendering possible. The insight is to ap-
proximate the cartoon part of an image as a piecewise constant field by means
of functionals that promote the number of occurrences for any given value in
the pixel neighborhood. In this respect, these objectives operate in a way such
that image segmentation can be seen as a particular case of image filtering (the
gap between filtering and segmentation can be filled by tuning 1 parameter, the
order p of the `p quasi-norm used).

The paper will shows that choosing non-smooth objectives is essential for
high level cartooning (few gray levels, sharp edges) of many images since smooth-
ness constraint (for instance, the one induced by gradient concerns in solving
PLS problems) is known to yield over-smoothed results. Section 2 introduces
the non-smooth and non-convex objectives proposed in the paper and derives
the mathematical characterization of their solutions. Section 3 addresses the
non-convex and non-linear programming for computing these solutions and
provides the interpretation of these solutions with respect to image analysis.
Finally, Section 4 concludes the work.

2. Non-smooth and non-convex objective with minimum `p quasi norm er-
ror

2.1. Problem formulation

Let I = {I(m,n)}16m6M ,16n6N denotes a gray-level image. A (2r0+1)×(2r1+
1) pixel neighborhood centered on pixel I(m,n) is the set

{I(m + j ,n +k)} j=−r0,−r0+1,...,r0
k=−r1,−r1+1,...,r1

.
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This set is written hereafter in a vectored form by noting

x[i,r] = (xi−r , . . . , xi−1, xi , xi+1, . . . , xi+r ) ∈R2r+1

where r = ((2r0 +1)(2r1 +1)−1)/2 and xi = I(m,n) (for instance, i = n+(m−1)×
N if we consider line-by-line image scan). This reshaping has no consequence
with respect to the regularization problem considered in the paper.

The regularizing objectives studied in the paper are given by

fp (t ,x[i,r]) = ‖x[i,r]− t‖p
`p =

i+r∑
`=i−r

|x`− t |p , (2)

where x[i,r] is the neighborhood set given above and t ∈R. The paper addresses
3 issues:

• characterizing function fp given by Eq. (2),

• solving the minimization problem:

αp (x[i,r]) = argt min fp (t ,x[i,r]), (3)

and

• providing an interpretation of the solutions of the problem given by Eq.
(3) in terms of image cartoon and textural contents.

Some particular solutions of Problem Eq. (3) are widely used statistics in
image processing and analysis: α2 is the sample mean5 and α1 is the sample
median6 [32], the latter being unique because we have considered an odd num-
ber of samples in x[i,r].

The main differences between objective fp and the above PLS objectives are

• fp does not involve a quadratic error term (difference with respect to both
convex and non-convex PLS approaches).

5Function f2 is differentiable and convex: solve d f2
dt (t ) = 0 to derive thatα2 is the mean value:

α2 =
(∑i+r

`=i−r x`
)

/(2r +1).
6The sample median is such that the median value is constrained to belong to the sample

set.
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• vector y involved in PLS objective of Eq. (1) is reduced to a constant se-
quence with constant element t in fp objective. The search for this opti-
mal constant is restricted to a small pixel neighborhood, expressing local
variations with respect to a piecewise constant image model.

While ignoring quadratic error terms such as those involved in PLS, we can-
not guarantee a reasonable mean squared error and the resulting image can
“deviate” significantly from the original image in terms of the mean squared
error. However, it is well known that quadratic loss criteria do not promote
structural image perceptions whereas our goal is to point out and differenti-
ate structural contents of a heterogeneous image in terms of cartoon/texture
decompositions.

Problem Eq. (3) is non-convex in general for 06 p < 1. For instance, when
p = 0 (the pseudo-norm `0, associated with a counting process is then used),
solution α0 of this problem is the sample mode, this mode being non-unique
for distributions having multiple sample points with the same and most occur-
ring value.

In what follows, we are interested in Problem Eq. (3) for 0 < p < 1 and with-
out any additional constraints such as the linearization performed in [31] (in-
troduction of Boolean operators at stack levels). Sections 2.2 and 2.3 below
derive the mathematical characterization of solutions to this problem. These
characterizations highlight that the solutions to the Problem Eq. (3) pertain
to the sample data observed, as in the case of order statistics. However, these
characterizations also show that the solutions of Problem Eq. (3) are not order
statistics in the sense that the regularizing cost acts by modifying order statis-
tics depending on the number of occurrences of every value.

In the rest of the paper, we will assume that xi 6 x j if i < j (ordering op-
eration on the vectored pixel neighborhood) since once the pixel neighbor-
hood x[i,r] is extracted, the objective function fp is invariant with respect to
re-orderings of data in x[i,r]).

2.2. Solutions of Problem Eq. (3) are reached at the samples of x[i,r], when 0 <
p < 1

Theorem 1 Assume that xk < xk+1. Function fp (·,x[i,r]) defined by Eq. (2),
when restricted to the set ]xk , xk+1[, is concave on this interval. Its maximum
is the unique real x∗, with xk < x∗ < xk+1, satisfying:

k∑
`=i−r

∣∣x`−x∗∣∣p−1 −
i+r∑

`=k+1

∣∣x`−x∗∣∣p−1 = 0.
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PROOF

The result follows by computing and checking the sign of the first two derivatives
of fp (t ,x[i,r]) for t ∈]xk , xk+1[. �

The consequence of the concavity expressed in Theorem 1 is that in in-
terval [xk , xk+1], the minimum of function fp (·,x[i,r]) is either fp (xk ,x[i,r]) or
fp (xk+1,x[i,r]):

min
t∈[xk ,xk+1]

fp (t ,x[i,r])= min{ fp (xk ,x[i,r]), fp (xk+1,x[i,r])}.

More precisely, by taking into account that

min
t∈]−∞,xi−r ]

fp (t ,x[i,r]) = fp (xi−r ,x[i,r])

and
min

t∈[xi+r ,+∞[
fp (t ,x[i,r]) = fp (xi+r ,x[i,r])

we derive from Theorem 1 that:

min
t∈R

fp (t ,x[i,r]) = min{ fp (xk ,x[i,r])}k=i−r,...,i+r (4)

and, for any t ∉ x[i,r]:

fp (t ,x[i,r]) > min{ fp (xk ,x[i,r])}k=i−r,...,i+r , (5)

so that we can formalize:

Theorem 2 The problem Eq. (3) is equivalent to:

βp (x[i,r]) = min{ fp (xk ,x[i,r])}k=i−r,...,i+r . (6)

2.3. Characterization of solutions for the Problem Eq. (3) for 0 < p < 1

From Theorem 2, we derive that function fp (·,x[i,r]) reaches its minimum
in the set x[i,r]. Identifying the solutions of Problem Eq. (3) thus amounts to
evaluating function fp to the values available in this sample set. It follows that
if we define

gp (t ,x[i,r]) =
i+r∑

`=i−r

(
ap,`t +bp,`

)
1l[x`,x`+1](t ), (7)
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with

ap,` =
{

fp (x`+1,x[i,r])− fp (x`,x[i,r])
x`+1−x`

if x` < x`+1

0 if x` = x`+1
(8)

and

bp,` =
{

x`+1 fp (x`,x[i,r])−x` fp (x`+1,x[i,r])
x`+1−x`

if x` < x`+1

0 if x` = x`+1
(9)

then we derive:

Theorem 3 The problem Eq. (3) is equivalent to:

λp (x[i,r]) = argt min gp (t ,x[i,r]), (10)

where function gp is defined by Eqs. (7), (8), (9) above.

Function gp is a piecewise linear version of fp : gp can thus be decomposed
into a linear programming problem involving 2r +2 linear constraints. In this
respect, solutions of Problem (10) pertain to the vertices of the polyhedron of
constraints (open polyhedron involving 2r + 1 vertices (x`, gp (x`)) for ` = i −
r, . . . , i + r ). Linear programming methods can thus be used to find solutions of
Eq. (3). However, we are not concerned by such methods hereafter since r is
small in our context (small pixel neighborhood): we evaluate function fp at the
vertices of this polyhedron and find the minimum by sorting the values of fp

on points {x`}`=i−r,...,i+r .

In addition, we have:

Theorem 4 Assume that:

x` ∈ {0,1, . . . ,D −1}, for every `= i − r, . . . , i + r, (11)

where D > 2 denotes the data dynamic (an 8-bit encoded image has a dynamic
D=256). Let 0 < p 6 q 6 1. Then,

fp (x`,x[i,r])6 fq (x`,x[i,r]). (12)

PROOF

On the one hand, if x[i,r] is a constant sequence, then we have: fp (x`,x[i,r]) is
zero for every 0 < p 6 1.

On the other hand, if there exist some k,` ∈ {i − r, . . . , i + r } such that xk 6= x`
and Eq. (11) holds true, then we have:
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• if D = 2, then fp (x`,x[i,r]) counts the number of elements that are different
from x`. In this respect, fp (x`,x[i,r]) = fq (x`,x[i,r]) for p 6= q.

• if D > 2, fp (x`,x[i,r]), as a function of p, is derivable and has a non-
negative derivative.

This ends the proof. �

Since fp is concave in all intervals [x`, x`+1] for `= i −r, i −r +1, . . . , i +r −1),
we derive that the piecewise linear functions gp and f1 verify: gp (t ,x[i,r]) 6
f1(t ,x[i,r]) for every p, with 0 < p 6 1. Since the minimum of f1 is reached at
xi (sample median of x[i,r] by construction) and f1 is convex, it follows that
for many sample x[i,r] distributions, the sample median xi inform us of the
location of αp (x[i,r]) when p is close to 1.

Furthermore, when p is close to 1, the extrema xi−r and xi+r are the worst
candidates with respect to αp (x[i,r]) location in general, except if these values
have very large occurrences (extrema are not outliers if they have large occur-
rences).

One may think that Theorem 4 relates some order statistics. . ., however,
valueαp is not an order statistic as highlighted in Figure 1. Indeed, value occur-
rences have a higher impact on the location of αp (x[i,r]) than on the location
of order statistics (see Figure 1).

The following theorem highlights the role played by sample xk occurrences
in the sample set x[i,r].

Theorem 5 Let
S k = {`, i − r 6 `6 i + r, x` 6= xk }.

We have:
fp (xk ,x[i,r])6 fp (xm ,x[i,r])+Ck |xm −xk |p , (13)

where Ck = #Sk and # denotes set cardinality.

PROOF

We have

fp (xk ,x[i,r]) =
i+r∑

`=i−r

|x`−xk |p = ∑
`∈Sk

|x`−xk |p .
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Ordered nearly uniform test data α0.75 (x) α1 (x)

Test 1 0 0 0 0 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 1 2
Test 2 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 2 2
Test 3 0 0 0 0 0 0 0 1 1 2 2 3 3 3 3 4 4 4 4 4 4 3 2

Functions f0.75(t ,x) (blue), g0.75(t ,x) (red) and f1(t ,x) (black) for t ∈ [−1,5]

Test 1

Test 2 Test 3

Figure 1: Test data x[i,r], with i = 11 (median location) and r = 10 (samples on either side of the
median), as well as their optimal αp values when p = 0.75 and p = 1. Note that α1 is the sam-
ple median of the test data. The test data are some non-negative integer values (rounded ver-
sions) generated from the uniform distribution on the interval [0,4]. The graphs represent func-
tion f0.75(t ,x[i,r]) (blue), g0.75(t ,x[i,r]) (piecewise linear version of f , in red) and f1(t ,x[i,r]) (in
black). Depending on the occurrences of the different samples, the α0.75 can be the median
(Test 2), smaller than the median (Test 1) or larger than the median (Test 3). Optima αp pro-
vide us with a way of taking into account sample occurrences without deviating significantly
from the median value.
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Thus,
fp (xk ,x[i,r])6

∑
`∈Sk

|x`−xm |p + ∑
`∈Sk

|xm −xk |p .

On the one hand, ∑
`∈Sk

|x`−xm |p 6 fp (xm ,x[i,r]).

On the other hand, ∑
`∈Sk

|xm −xk |p =Ck |xk −xm |p .

This ends the proof. �

3. Programming and Interpretation of Eq. (3) from a signal processing per-
spective

3.1. Programming the solution of Eq. (3) for 0 < p < 1

Theorems 2 provides an equivalent formulation of the Problem Eq. (3):
αp (x[i,r]) =βp (x[i,r]) .

While computing αp (x[i,r]) from Eq. (3) is not straightforward, computing
βp (x[i,r]) from Theorem 2 is straightaway: it involves computing 2r + 1 val-
ues fp (xk ,x[i,r]) for k = i − r, . . . , i + r , sorting these values and retrieving the in-
dex/indices where the minimum value of fp is reached.

The computational complexity induced by the direct calculation amounts
to

• computing a symmetric matrix having zero diagonal and dimension (2r+
1)×(2r+1), the r×(2r+1) non-zero elements being those |xk−x`|p located
at row/column k and column/row ` 6= k,

• identifying the row (resp. column) with smallest sum of entries in a row-
wise (resp. column-wise) summation.

In what follows, quantity αp introduced above will be associated to image
regularization and is computed by using the following recursive approach (no-
tation ℵp ):

ℵp [i ] = argt min fp
(
t ,

{ℵp [i − r ], . . . ,ℵp [i −1], xi , xi+1, . . . , xi+r
})

. (14)
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From regularization perspective, this recursive computation consists in replac-
ing (over-writing) the central value I(m,n) by ℵp [m,n] before sliding the win-
dow to process the next pixel. Note that when considering a line-by-line image
scan, then over-writing involved in ℵp computation is

ℵp [m,n] = argt min

fp

t ,



ℵp (m − r0,n − r1) · · · ℵp (m − r0,n −1) ℵp (m − r0,n) ℵp (m − r0,n +1) · · · ℵp (m − r0,n + r1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
ℵp (m −1,n − r1) · · · ℵp (m −1,n −1) ℵp (m −1,n) ℵp (m −1,n +1) · · · ℵp (m −1,n + r1)
ℵp (m,n − r1) · · · ℵp (m,n −1) I(m,n) I(m,n +1) · · · I(m,n + r1)
I(m +1,n − r1) · · · I(m +1,n −1) I(m +1,n) I(m +1,n +1) · · · I(m +1,n + r1)

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

I(m + r0,n − r1) · · · I(m + r0,n −1) I(m + r0,n) I(m + r0,n +1) · · · I(m + r0,n + r1)



†


where † stands for vectorization of a pixel neighborhood (whatever the vec-
torization order since ℵp is invariant with respect to set ordering). It is worth
mentioning that one can also choose a Peano Hilbert scan of the image, that
is: a continuous curve (1D) joining all pixels of I. From such an association,
the over-writing concerns pixel preceding position (m,n) with respect to Peano
Hilbert 2D grid ordering of I.

Operation Eq. (14) provides a value ℵp that is optimal in the `p error-norm
sense for representing a pixel neighborhood. Note that ℵ0, the recursive mode,
is robust to monotonic changes such as brightness and/or contrast variations.
Note also that ℵ1, the recursive sample median, ensuring the least absolute
deviations, is robust to the presence outliers. The value ℵp derived from Eq.
(14), as a compromise between ℵ0 and ℵ1, is thus expected to be robust to both
monotonic changes and the presence of outliers. As shown in Section 3 be-
low, applying Eq. (14) to image I, having size M ×N , amounts estimating I by a
regularized imageℵp with the same size and containing q ¿ M×N robust mea-
surements: each ℵp [m,n] having a large occurrence Qi , with

∑q
i=1 Qi = M ×N .

This corresponds to a cartoon-like part of an image that is estimated from the
q more robust `p error-norm statistics of the image. Other approaches relating
robust optimum can be found in [33].

In practice, Eq. (14) can lead to multiple solutions. When ℵp does not re-
duce to a singleton, indetermination raised by multiple solutions can be re-
moved by:

• increasing/reducing the window size associated with the pixel neighbor-
hood,

• making the objective convex by adding an appropriate penalty function,
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• sorting and selecting one among the solutions by specifying an additional
criterion/constraint.

In the current implementation, we have used the third issue and we set the
solution to be applicable (only if multiple solutions occur):

• the median of {ℵp [m,n]} if #{ℵp [m,n]} is odd,

• the median of the set {ℵp [m,n]}∪ {I(m,n)} when #{ℵp [m,n]} is even.

In this respect, the optimum args f1(s,argt min fp (t ,•)) is always associated with
one of the samples involved in the data (one amongst the observed values, a
remarkable property of the approach discussed in the paper).

Iguana Barbara Radar

Figure 2: Test images: “Iguana” and “Barbara” are optical images. “Radar” is a synthetic aper-
ture radar image.

3.2. Experimental results - Cartoon versus texture image decomposition

This section highlights the interest of exploiting non-convex and non-dif-
ferentiable regularization functions in image cartoon/texture decomposition.
A comparison is performed with respect to a convex regularization problem
based on the Total Variation (TV) objective.

TV objectives are widely used for cartoon/texture decomposition. TV meth-
ods are based on the PLS problem introduced in Section 2.1: these methods
involve an `2 based error-norm and an additional penalty function for tuning

12



the smoothness degree. TV cartoon/texture decomposition assumes an obser-
vation model having the form

x = u+v

where u denotes the cartoon image and v is the texture image (noise is consid-
ered as a ‘stochastic texture’ in this paper and we do not consider an additional
term for noise representation).

Optimal TV cartoon u∗ and texture v∗ images are defined to be solutions to
the following minimization problem:{

u∗ = argu minµT (x−u)+λC (u)
v∗ = x−u∗ (15)

where

• parameters λ,µ make tuning the amount of cartoon/texture possible,

• quantity C (u) is a TV penalty function promoting cartoon features, this
quantity being the energy of the gradient of u (note that u is assumed to
follow from samples of a differentiable function):

C (u) =
∫
R
||∇u(t )||2 dt

and T (x−u) = T (v),

T (v) = 1

2
||v||22

is an `2 error-norm representing the amount of extracted texture. The
corresponding TV is called TV-`2, see [8] among other references.

Many variants of the above PLS based TV have been proposed in the lit-
erature. The variants include weighted Hilbert norms associated with Fourier
(notation F ) domain representation and a selective filter G :

T (v) = 1

2
||W GFv||22

13



where

• G is an all-pass filter and W is a fractional weight function having the
form

W (ω) = 1

ε+||ω||
in [10], the corresponding TV being called TV-H−1, or

• G is associated to a Gabor filter (band-pass on texture frequencies when
a priori knowledge is available on frequencies of interest associated with
the textural information) in [7], the corresponding TV being called TV Ga-
bor Hilbert norm or simply TV-G . It is usual considering in this TV model,
a radial weight function

W (ω) = 1−e− (||ω||−r )2

2σ2 .

The test images given in Figure 2 are selected to cover different texture types
and different image acquisition modalities. “Iguana” and “Barbara” are optical
images whereas “Radar” is a synthetic aperture radar image. “Iguana” image
has a textured skin showing different type of cells and stripes on its body. In
addition, some numerical characters and a signature have been affixed at the
bottom-right of the image. “Barbara” image highlights grid-wise and linewise
striped textures on clothes and tablecloth. In “Radar” image, the texture is a
composition of forest, small urban structures and speckle (stochastic texture
issued from reflection, refraction and diffraction of coherent radar waves on
ground surface). The black line given in this radar image is an airstrip, the im-
age also includes a volcano (top center of the image) and a part of the city of
Goma in Congo (near the airstrip).

It is worth mentioning that performance evaluation depends on the a priori
norm used: a quadratic regularization function yields optimal performances in
the mean squared error sense. An absolute deviation strategy such as median
regularization will yield optimal results when performance is evaluated with
respect to `1 error-norm7 and more generally, an `p regularization will lead to

7This equivalent is to say that optimality is conditioned by the error-norm chosen for mea-
suring performance: the mean, the median and the mode filters are both optimal filters since
these filters correspond respectively to the solutions ℵ2 and ℵ1 and ℵ0. The difference between
these optimal filters is the a priori error-norm used to assess their quality.
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minimal `p error-norm by construction. Performance expressed in terms of
PSNR is thus a biased performance measurement for the purpose of this sec-
tion, the bias being related to the error-norm used for performance measure-
ments (`2 for PSNR, which relates to mean squared error). Performance eval-
uation will thus be limited to visual perception of cartoon/texture when the
decomposition is performed by using ℵp -value and the TV methods described
above.

In all TV based experimental results, the regularization parameter λ is fixed
at 1000 and different µ parameters are used. Among the effective methods for
finding the optimal solution of this TV problem, we first consider the algorithm
of [34] based on Split Bregman iterations, with no a priori on the texture of
interest (in this respect, G is an all-pass filter).

Experimental results with different TV strategies (TV-G , TV-H−1 and TV-`2)
are reported in Appendix A, in a context related to the definition of an ideal
concept of cartoon.

Cartoon versus texture decompositions of the test images of Figure 2 are
given for different ℵp -values and different TV µ regularization parameters in
Figures 3, 4, 5, 6, 7, 8. For the sake of comparison, these images are displayed
without histogram equalization (post-processing commonly used to enhance
textural information). Indeed, histogram equalization performs adaptively with
respect to the input image histogram and induces a biased comparison. Before
comparing, it is worth highlighting that ℵp -value and TV capture different tex-
tural information and have different dynamics. Furthermore, the textural in-
formation quality is known to rely on personal perception: interpretation is left
to the reader personal perception of cartoon and textures

“Iguana” cartoon images obtained by using ℵp -values, especially with 7×7
window size, are characterized by a high level cartoon description: all iguana
cells and stripes have been removed from the cartoon part (see Figure 3) and
placed in the textural part (see Figure 4). This yields a peeling-like effect of the
iguana skin, with an important number of regions with constant values “un-
der the skin” (cartoon) separated from the skin stripes and cells (texture). Re-
sults obtained from TV on “Iguana” are such that small µ parameters yield re-
maining textural cells in the cartoon images whereas largeµ parameters tend to
over-smooth the cartoon image (see Figure 3) without clearly highlighting the
edges/segments between different regions. The best TV results are obtained for
µ = 500. The corresponding texture (see Figure 4) involves a smooth trend. In
addition, both TV cartoon and texture images exhibit oscillating behavior for
large µ parameters.
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The same remarks as above hold true for “Barbara” image (see Figures 5, 6):
while TV performs slightly better on this image than on “Iguana” image, TV per-
forms less relevantly than ℵp -value for a complete extraction of textures having
non-thin structures. Note also that TV continue to introduce oscillations in
both cartoon and texture images. In contrast, textures captured by ℵp -value
seem to be mainly associated with edges the image. For the specific case of
“Barbara” image, substantial results (similar to the ones derived by ℵp -value)
have been obtained in [6] and [35].

For “Radar” image, ℵp -value makes a segment-wise cartooning effect pos-
sible (see Figure 7) with no visible texture for large window sizes and when p
decreases from 1 to 0.25: the deterministic structures and stochastic speckle
involved in the original image are relocated in the texture image (see Figure
8). In contrast to this concise ℵp -value based cartoon/texture decomposition,
TV “Radar” cartoon and texture images are impacted by a blurring effect (see
Figure 7, 8). This blurring is probably due to the sensitivity of the TV to the
smoothness degree of the input data, whereas “Radar” is highly heterogeneous.
An adaptation of TV to multiplicative image models (case of “Radar” image) can
be found in [36]. Note, however, that ℵp -value performs well on multiplicative
type “Radar” image without the need of an adaptation.

When analyzing ℵp based cartoon decompositions associated with differ-
ent windows sizes and different p-values in Figures 3, 5, 7, we observe that no
explicit limit from denoising to segmentation exists. The piecewise constant
(segmentation-like) behavior induced by ℵp regularization is illustrated in de-
tails in Figure 9 (line sections of test and cartoon images).

To conclude this section, a comparison of ℵp and TV based decompositions
is given in Figure 10 for a color image (richer visual rendering than a gray level
image).

4. Conclusion

The paper has investigated the properties of some non-convex objectives
for the decomposition of digital images in cartoon-versus-texture components.
These objectives are associated with regularizing functions that can reach a
high level of texture extraction and sharp cartoon edge preservation. The car-
tooning effect induced by these objectives ranges from denoising (small win-
dow sizes and when p parameter of the `p error-norm is close to 1) to image
segmentation (large window sizes and when p is close to zero). Such a high
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Cartoon ℵp -Value - Iguana
Window 3×3

ℵp -Value , p = 1 ℵp -Value, p = 0.75 ℵp -Value, p = 0.50 ℵp -Value, p = 0.25

Window 7×7
ℵp -Value , p = 1 ℵp -Value, p = 0.75 ℵp -Value, p = 0.50 ℵp -Value, p = 0.25

TV, µ= 50 TV, µ= 500 TV, µ= 2500 TV, µ= 5000

Figure 3: Cartoon images obtained from different fp objectives and different µ-parameters of
TV on the Iguana image of Figure 2. The corresponding texture images are given in Figure 4.
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Texture ℵp -Value - Iguana
Window 3×3

ℵp -Value , p = 1 ℵp -Value, p = 0.75 ℵp -Value, p = 0.50 ℵp -Value, p = 0.25

Window 7×7
ℵp -Value , p = 1 ℵp -Value, p = 0.75 ℵp -Value, p = 0.50 ℵp -Value, p = 0.25

TV, µ= 50 TV, µ= 500 TV, µ= 2500 TV, µ= 5000

Figure 4: Texture images obtained from different fp objectives and different µ-parameters of
TV on the Iguana image of Figure 2. The corresponding cartoon images are given in Figure 3.
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Cartoon ℵp -Value - Barbara
Window 3×3

ℵp -Value , p = 1 ℵp -Value, p = 0.75 ℵp -Value, p = 0.50 ℵp -Value, p = 0.25

Window 7×7
ℵp -Value , p = 1 ℵp -Value, p = 0.75 ℵp -Value, p = 0.50 ℵp -Value, p = 0.25

TV, µ= 10 TV, µ= 100 TV, µ= 1000 TV, µ= 10000

Figure 5: Cartoon images obtained from different fp objectives and different µ-parameters of
TV on the Barbara image of Figure 2. The corresponding texture images are given in Figure 6.
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Texture ℵp -Value - Barbara
Window 3×3

ℵp -Value , p = 1 ℵp -Value, p = 0.75 ℵp -Value, p = 0.50 ℵp -Value, p = 0.25

Window 7×7
ℵp -Value , p = 1 ℵp -Value, p = 0.75 ℵp -Value, p = 0.50 ℵp -Value, p = 0.25

TV, µ= 10 TV, µ= 100 TV, µ= 1000 TV, µ= 10000

Figure 6: Texture images obtained from different fp objectives and different µ-parameters of
TV on the Barbara image of Figure 2. The corresponding cartoon images are given in Figure 5.
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Cartoon ℵp -Value - Radar
Window 3×3

ℵp -Value , p = 1 ℵp -Value, p = 0.75 ℵp -Value, p = 0.50 ℵp -Value, p = 0.25

Window 7×7
ℵp -Value , p = 1 ℵp -Value, p = 0.75 ℵp -Value, p = 0.50 ℵp -Value, p = 0.25

TV, µ= 1000 TV, µ= 10000 TV, µ= 100000 TV, µ= 1000000

Figure 7: Cartoon images obtained from different fp objectives and different µ-parameters of
TV on the Radar image of Figure 2. The corresponding texture images are given in Figure 8.
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Texture ℵp -Value - Radar
Window 3×3

ℵp -Value , p = 1 ℵp -Value, p = 0.75 ℵp -Value, p = 0.50 ℵp -Value, p = 0.25

Window 7×7
ℵp -Value , p = 1 ℵp -Value, p = 0.75 ℵp -Value, p = 0.50 ℵp -Value, p = 0.25

TV, µ= 1000 TV, µ= 10000 TV, µ= 100000 TV, µ= 1000000

Figure 8: Texture images obtained from different fp objectives and different µ-parameters of
TV on the Radar image of Figure 2. The corresponding cartoon images are given in Figure 7.
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Cartoon ℵp -Value / effects on a line section
Window 3×3

Iguana Barbara Radar

Window 7×7
Iguana Barbara Radar

TV / effects on a line section
Iguana Barbara Radar

Figure 9: Line sections of the original test images in dashed-black-color (legend: Input), their
cartoon ℵp -Value versions (legend: Norm p) and their TV versions for different µ-parameter
(legend: value of parameter µ). The cartoon effect induced by the fp objective results in piece-
wise constant curves whereas TV yields smooth curves).
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Iguana Original

Cartoon ℵp -Value, p = 0.9 Texture ℵp -Value, p = 0.9

Cartoon TV, λ= 1000, µ= 500 Texture TV, λ= 1000, µ= 500

Figure 10: Global comparison of ℵp -Value and TV cartoon/texture decompositions on a color
image. The window size used for ℵp -Value is 5× 5 pixels. ℵp -Value cartoon is sharp and sig-
nificant textural information has been extracted. TV cartoon representation is limited by the
smoothness degree (over-smoothing occurs due to a differentiability assumption).
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level cartooning and texture extraction can benefit modern high definition im-
age processing which raises the need of separating an image into fundamental
textured and cartoon parts, processing each part separately and fusing the cor-
responding processed images for increasing definition.

A first extension of this work concerns weighted functionals such as the
ones involved in TV-G and TV-H−1. Another extension of this work concerns
multi-level/multi-scale decompositions such those described in [37, 38, 39, 40].
As far as the theoretical point of view is concerned, a non-straightforward ex-
tension of this work is a direct seeking of an ideal cartoon model where total
variation is constrained by predefined pixel levels and a weight function asso-
ciated with the number of occurrences of observed levels. An heuristic motiva-
tion of this issue is given in Appendix A.
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Appendix A. Ideal cartoon, Lp spaces and smoothness

What is cartoon? How to define a texture? The computer vision and image
processing literature have proposed several definitions of these image compo-
nents from regularity (cartoon) and intensity variations with pseudo-periodicity
assumptions (texture).

The “regularity-versus-variations” assumption on cartoon and texture parts
has naturally led researchers to use gradient methods for finding cartoon as
an optimal solution of a split-functional defined on Hilbert spaces (see Section
3.2 for details on TV based approaches). Note that one difficulty induced by
gradient methods is the non-trivial choice of gradient descent steps: these steps
depend on the regularity of the experimental objective, the one associated with
an arbitrary input image. However, this is not the main limitation of gradient
based objectives in effective cartoon identification: a fine tuning of gradient
steps is always possible, at the cost of a slow convergence rate.

The main limitation of gradient based methods is probably the differentia-
bility constraint imposed to the cartoon image. This differentiability assump-
tion does not comply with the perception of an ideal cartoon image: Figure
A.11 (left image, “Snow White”) provides an example of an ideal cartoon image:
there is no visible texture on this image whereas the image presents many sin-
gularities in terms of sharp edges and contours. A cartoon image can thus be a
non-continuous (non-smooth) 2D field.

“Snow White” ideal cartoon image “Snow White” with texture (hairs)

Figure A.11: [Left] painted cartoon image without texture surface (edges and contours are the
sole singularities for this image). [Right] cartoon-textured image where a realistic hair texture
has been added to the left image (edges and hair texture are the singularities of the latter image).
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We might think that a piecewise smooth/constant field model is more ap-
propriate than a smooth one (smoothness assumes at least continuity every-
where). Indeed, an ideal edge/contour model is that of a surface step function:
this function is not continuous at all and thus, cannot be smooth everywhere.
Note that “Snow White” image is made from a dozen of colors associated with
image partition in about thirty regions. This reinforces our feeling on the rele-
vancy of a piecewise constant field model with small number of gray levels for
defining ideal cartoon model.

Some 2D fields are universally accepted as textured elements: natural hairs
for instance. In order to derive a test image with identified cartoon and texture
parts, we have removed the painted cartoon hairs of “Snow White” image and
replaced them by natural hairs. The result is given in Figure A.11 (right side).

If one models the cartoon part of Figure A.11 (right) as a smooth, differen-
tiable field, then iterative optimization procedures based on this smoothness
assumption will always find smooth solutions. Different TV methods involv-
ing this smoothness assumption have been applied to the decompose “Snow
White” (the one with textured hairs) image in cartoon and texture parts and
the results are given in Figure A.12. Comparison is provided with ℵp -values in
the same figure. Note that certain TV based algorithms find texture over some
constant fields of ‘Snow White” image.

From the results, we suggest that forcing a “piecewise constant” or a “piece-
wise smooth” behavior is essential for accurate cartoon definition. When rea-
soning in R2 instead of a discrete field, such a cartoon image is a piecewise
smooth field associated with two types of singularities: countable union of sin-
gletons (Type-1 singularities) and curved R2 singularities (Type-2).

Type-1 singularities are cartoon-negligible whereas Type 2 singularities are
not cartoon-negligible since they are associated with cartoon frontiers. Type-
2 singularities (curves of R2) play an important role in visual perception: they
cannot be considered as negligible sets since they represent edges of cartoon
objects. Note that the latter singularities are negligible in standard integra-
tion theory and in TV decomposition functionals C and T (as a consequence)
whereas the contrary is suggested by the above remark. This opens some new
prospects regarding TV image decomposition: building cartoon functionals that
involves a mixture of regular and curvi-singular functionals.
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Cartoon “Snow White” ℵ0.75-Value Texture “Snow White” ℵ0.75-Value

Cartoon “Snow White” TV-G Texture “Snow White” TV-G

Cartoon “Snow White” TV-H−1 Texture “Snow White” TV-H−1

Cartoon “Snow White” TV-`2 Texture “Snow White” TV-`2

Figure A.12: Cartoon-versus-Texture decompositions of ‘Snow White” image of Figure A.11
(right). Decomposition associated with ℵ0.75-value find zeros over constant cartoon fields
whereas certain TV based algorithms find texture over some of these constant cartoon fields.
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