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Abstract

We propose a stochastic approach for the description of the time evolution of the magnetization of nano-
magnets, that interpolates between the Landau–Lifshitz–Gilbert and the Landau–Lifshitz–Bloch approxi-
mations, by varying the strength of the noise. In addition, we take into account the autocorrelation time of
the noise and explore the consequences, when it is finite, on the scale of the response of the magnetization,
i.e. when it may be described as colored, rather than white, noise and non-Markovian features become
relevant. We close the hierarchy for the moments of the magnetization, by introducing a suitable truncation
scheme, whose validity is tested by direct numerical solution of the moment equations and compared to
the average deduced from a numerical solution of the corresponding stochastic Langevin equation. In this
way we establish a general framework, that allows both coarse-graining simulations and faster calculations
beyond the truncation approximation used here.

1. Introduction

At atomistic length-scales, relaxation processes
towards equilibrium of the magnetization in mag-
netic systems rely on complex interactions between
spin, electron and lattice subsystems [1, 2, 3]. The
time-scales for these processes are extremely short
(τ ≈ 100 ± 80ps for a ferromagnetic gadolinium
system [4]), so a first approach for their description
was to perform stochastic simulations of interacting
spins while neglecting the memory effects for the
noise (Markov’s hypothesis) [5, 6]. However, recent
experimental breakthroughs are pushing the time-
scales that can be probed for the magnetization dy-
namics to pico- and even femtosecond resolution[7].
Furthermore, a self–consistent approach for the
short-range exchange interaction, that is responsi-
ble for local spin alignment, indicates that it would
be equivalent to a very high value of the local mag-
netic field (more than 80 MAm−1). To take into ac-
count this contribution in simulations, it seems to
impose time-steps at least one order of magnitude
shorter than all the physical time scales (dynamics,
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relaxation, etc.) of the system. Under these condi-
tions, numerical simulations of the stochastic effects
in such magnetic systems are raising the question
of the validity of the Markovian assumption that is
commonly used, that is to have short memory in
the sense that the correlation time is very short [8].
In order to test this assumption, by taking mem-
ory effects explicitly into account, a colored-form
for the noise has to be considered. In spin systems,
the noise is represented by ~̃ω as a random vector
whose the components, ω̃i, are Gaussian random
variables with zero mean and a the finite correla-
tion time, which is encoded in its two-point function
as follows:

〈ω̃i(t)ω̃j(t
′)〉 =

D

τ
δij exp

(

−
|t− t′|

τ

)

(1)

where D is the amplitude of the noise, and
τ is the correlation time. We remark that
lim
τ→0

1
τ
exp

(

− |t−t′|
τ

)

= δ(t − t′) which allows the

white-noise expression for the correlator to be re-
covered in this limit.
To compute the moments of the magnetization,

subject to such noise, we adapt the formalism de-
veloped by Shapiro and Loginov [9] to the magneti-
zation dynamics. A new hierarchy of equations for
the moments is then deduced and appropriate clo-
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sure relations allow us to solve them directly. The
solution is compared to numerical simulations of
the corresponding stochastic Langevin equations,
that are performed in the vicinity of the white noise
limit.

2. Moment equations and closure of the hi-

erarchy

The Einstein summation convention is adopted,
with Latin indices standing for vector components,
ǫijk is the anti-symmetric Levi-Civita pseudo-
tensor and si are the components of the normal-
ized magnetization vector (|~s| = 1). The stochas-
tic Landau-Lifshitz-Gilbert (sLLG) equation can be
written as follows:

∂si
∂t

=
1

1 + λ2
ǫijksk [ωj + ω̃j

− λ (ǫjlm(ωl + ω̃l)sm)] (2)

Here ~ω is the effective precession frequency of the
magnetization, that is assumed to be constant, λ
is the damping coefficient, and ~̃ω represents the
stochastic noise contribution, whose components
are drawn from a Gaussian distribution with zero
mean and a colored form for the second order corre-
lator eq. (1). This is the fundamental equation for
the dynamics of a small magnet in contact with a
stochastic bath, which we shall take to be thermal
henceforth. It has the form of a Langevin equation,
with multiplicative noise [10].
It can be simplified by keeping only one random

torque on the right-hand side:

∂si
∂t

=
1

1 + λ2
ǫijksk [ωj + ω̃j − λǫjlmωlsm] (3)

Indeed, up to a renormalization of the noise, it can
be shown that this equation generates a stochastic
dynamics that is equivalent to that of eq. (2)[11].
These microscopic degrees of freedom give rise

to average quantities, that probe statistical ensem-
ble behavior. These can be operationally defined
by taking statistical averages over the noise [10] of
eq. (3). Denoting by 〈.〉 this average, we have:

∂〈si〉

∂t
=

1

1 + λ2
[ǫijkωj〈sk〉+ ǫijk〈ω̃jsk〉

−λǫijkǫjlmωl〈sksm〉] (4)

This average magnetization dynamics relies on
higher order correlation functions of noise and spin

that have to be derived. By applying the Shapiro-
Loginov method [9, 12] to the nine components of
the 〈ω̃isj〉 matrix at the same time, we obtain the
equation:

∂〈ω̃isj〉

∂t
=

〈

ω̃i

∂sj
∂t

〉

−
1

τ
〈ω̃isj〉 (5)

Injecting the right-hand side of Eq.(3) in Eq.(5),
equations for the second-order moments 〈ω̃isj〉 are
obtained.

The equations for the moments 〈sisj〉 are now
required. Assuming that the following identity

∂〈sisj〉

∂t
=

〈

∂si
∂t

sj

〉

+

〈

si
∂sj
∂t

〉

(6)

holds, the time derivatives of ∂si/∂t are replaced
by the right-hand side of Eq. (3) and so forth.

This leads to an additional set of nine equations
for the second-order moments of the microscopic
spin degrees of freedom, that are closely related to
those written by Garanin et al. (see Eq.(6) in ref.
[13]) and Gracia-Palacios et al. (see Eq.(2.10) in
ref. [14]).

The complete system of equations, therefore,
takes the following form:

∂〈si〉

∂t
=

1

1 + λ2
[ǫijkωj〈sk〉+ ǫijk〈ω̃jsk〉

+λǫijkǫjlmωl〈sksm〉] (7)

∂〈ω̃isj〉

∂t
= −

1

τ
〈ω̃isj〉+

1

1 + λ2
[ǫjklωk〈ω̃isl〉

+ǫjkl〈ω̃iω̃ksl〉

+ λǫjklǫlmnωm〈ω̃isksn〉] (8)

∂〈sisj〉

∂t
=

1

1 + λ2
ǫjkl (ωk〈sisl〉+ 〈ω̃ksisl〉

−λǫlmnωm〈sislsn〉) + (i ↔ j)(9)

Due to the non-linearity of the sLLG equation, an
infinite hierarchy arises [15, 16]: these equations for
the second-order moments depend on third-order
moments, and so on. In order to solve the system,
closure relations need to be found, that express the
third-order moments in terms of the second order
and first order moments. These relations can be
deduced from the definition of the corresponding
cumulant moments.

The double bracket notation 〈〈.〉〉 stands for the
cumulant of the stochastic variables [17], and for

2



any stochastic vector ~x, one has:

〈〈xixjxk〉〉 = 〈xixjxk〉 − 〈xi〉〈xjxk〉

−〈xj〉〈xixk〉 − 〈xk〉〈xixj〉

+2〈xi〉〈xj〉〈xk〉 (10)

Assuming that the third-order cumulants vanish for
each stochastic variable (meaning that the corre-
sponding distribution is assumed Gaussian), and
applying the relation (10), the following closure re-
lations are deduced:

〈ω̃isjsk〉 = 〈sj〉〈ω̃isk〉+ 〈sk〉〈ω̃isj〉 (11)

〈ω̃iω̃ksl〉 =
D

τ
δik〈sl〉 (12)

〈sisjsk〉 = 〈si〉〈sjsk〉+ 〈sj〉〈sisk〉

+〈sk〉〈sisj〉 − 2〈si〉〈sj〉〈sk〉 (13)

The second closure relation arises from the prop-
erties of the noise for the same time: indeed, one
has 〈ω̃i〉 = 0 and 〈ω̃iω̃j〉 = D

τ
δij when ω̃i and ω̃j

are considered at the same time. Introducing those
relations in the system (9), we finally have:

∂〈si〉

∂t
=

1

1 + λ2
[ǫijkωj〈sk〉+ ǫijk〈ω̃jsk〉

− λǫijkǫjlmωl〈sksm〉] (14)

∂〈ω̃isj〉

∂t
= −

1

τ
〈ω̃isj〉+

1

1 + λ2
[ǫjklωk〈ω̃isl〉

+
D

τ
ǫjil〈sl〉

−λǫjklǫkmnωm (〈sl〉〈ω̃isn〉

+ 〈sn〉〈ω̃isl〉)] (15)

∂〈sisj〉

∂t
=

1

1 + λ2
[ǫjklωk〈sisl〉

+ǫjkl (〈si〉〈ω̃ksl〉+ 〈sl〉〈ω̃ksi〉)

−λǫjklǫkmnωm (〈si〉〈slsn〉

+〈sl〉〈sisn〉+ 〈sn〉〈sisl〉

− 2〈si〉〈sl〉〈sn〉)] + (i ↔ j) (16)

This set of twenty-one differential equations is now
closed and can be integrated simultaneously to de-
scribe the averaged dynamics of the effective mag-
netic system connected to a bath. It should be
noted that the last two equations involve both, lon-
gitudinal and transverse, forms of damping. In con-
sequence thereof, the first equation, that describes
the evolution of the averaged magnetization, has a
Landau-Lifshitz-Bloch form, with both, transverse
and longitudinal, damping terms.
In the following sections, this model will

be called the dynamical-Landau-Lifshitz-Bloch
(dLLB) model.

3. Numerical experiments

Numerical experiments are performed in order to
test the consistency of our closure hypothesis.
We first focus on the limiting case of small cor-

relation time, i.e. the vicinity of the white-noise
limit. Indeed, if τ is very short (the same order
of magnitude as our integration time), the associ-
ated relaxation can no longer be resolved, and loses
its physical meaning. Under those conditions, the
dynamics is Markovian, and our dLLB model is ex-
pected to match the results obtained from an aver-
aged Markovian stochastic magnetization dynam-
ics.
In order to realize these comparisons, a reference

model is built from the sLLG (Eq. (3)) with a white-
noise random vector. One thousand realizations of
this stochastic equation with the same initial con-
ditions are generated, and a statistical average is
taken over them. The dLLG system is solved by us-
ing an eight-order Runge-Kutta integration scheme
with adaptive steps constructed by the Jacobian of
the whole system.
Fig. (1) shows the average, obtained from the

sLLG equation, and the dLLB model for the same
value of the noise amplitude D. It appears that the
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Figure 1: Relaxation of the averaged magnetization dy-
namics about an external field in the z-direction and in
the case of small correlation time for the noise. The solid
lines plot the stochastic case (1000 averaged repetitions),
dots are for the dLLB model. Simulations parameters:
{D = 1.6.10−2; λ = 0.1; τ = 10−3; ~ω = (0, 0, π/5) }. Initial
conditions:~s(0) = (1, 0, 0).

magnetization dynamics obtained with our dLLB
model fits very well the averaged sLLG results in
the case of small correlation time for the noise.
Moreover, an essential feature of the Fig. (1) is
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that our model does behave like an LLB equation
and can describe the variation of the magnetiza-
tion norm, that does not remain constant. This is
due to the longitudinal damping component that is
generated by the average effects in presence of the
noise.
The second order moments, also, play a major

role in the evolution of the averaged magnetization
dynamic equations, and the diagonal components
of the tensor 〈sisj〉 are plotted in Fig. (2).
Good agreement is also found between the two
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Figure 2: Relaxation of the diagonal components of the cor-
relation tensor 〈sisj〉. Again,the solid lines plot the stochas-
tic case (1000 averaged repetitions) and the dots are for
the dLLB model. Initial conditions: 〈s1(0)2〉 = 1, and
〈si(0)sj(0)〉 = 0 ∀(i, j) 6= (1, 1) .

models for the diagonal components of the correla-
tion tensor 〈sisj〉. Those results allows us to test
the validity of the equality Eq. (6), and the closure
relations Eqs. (11,12,13).

4. Conclusion

Statistical average and the application of the
Shapiro-Loginov method allow us to derive a new
formalism for the magnetization dynamics when
a colored form for the noise is appropriate. Our
model has proven to be effective for the description
of an average magnetization dynamics when small
values of the time-correlation τ are considered.
In this particular case, the results of Markovian
dynamics are recovered and very good agreement
was found between our dLLB set of equation and
an averaged set of LLG equation with a white-noise
process. Moreover, this work demonstrates that
the application of statistical average to a magnetic

system in contact with a thermal bath leads to
the direct appearance of a longitudinal form of
damping, and to equations consistent with the
Landau-Lifshitz-Gilbert model. In future work,
the effect of longer correlation times for the noise
will be studied in detail, and comparison between
our dLLB models and atomistic magnetization
dynamics in more complex situations (exchange
interaction, anisotropy, superparamagnetism, etc.)
will be presented.

JT acknowledges financial support through a
joint doctoral fellowship “Région Centre-CEA”.
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