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4 place Jussieu, 75005 Paris, France, Email: griso@ann.jussieu.fr

Abstract

In this paper we investigate the homogenization problem with a non-homogeneous
Dirichlet condition. Our aim is to give error estimates with boundary data in
H'2(99). The tools used are those of the unfolding method in periodic homoge-
nization.

1 Introduction

We consider the following homogenization problem:
¢ € H' (), —div(A.V¢©) = f in Q, O on 02

where A, is a periodic matrix satisfying the usual condition of uniform ellipticity and
where f € L2(Q) and g € H'/2(9Q). We know (see e.g. []) that the function ¢° weakly
converges in H'(Q) towards the solution ® of the homogenized problem

dc H'(Q), —div(AV®) = f in €, d=g on 0f)

where A is the homogenized matrix (see (4.4]) and (£5])). Using the results of [9] we can
give an approximation of ¢° belonging to H'(£2) and we easily obtain

¢o°— P — Ei Q. (2—;1)))(,<g) — 0 strongly in H'(Q)
i=1 v

where Q. is the scale-splitting operator (see also Subsection 2.4)) and where the x; are
the correctors (see (4.2)).

The aim of this paper is to give error estimates. Obviously, if we have g € H3/2(0Q)
and the appropriate assumptions on the boundary of the domain then we can apply the

!The homogenization problem with a L? boundary data is investigated in [3].



results obtained in [4], [12], [13], [14], [15] and [20] to deduce error estimates. All of
them require that the function ® belongs at least to H*(§2). Here, the solution ® of the
homogenized problem is only in H'(Q) N H2 (). In this paper we must work with this
lack of regularity; this is the main difficulty.
Our method to obtain error estimates (see [13], [14] and [I5]) is mainly based on
projection theorems. This is why we prove here two new projection theorems. In the
second one, for a function ¢ € HJ () satisfying 1/pV¢ € L?(2;R") -where p(z) is the
distance between x and the boundary of €2- we obtain an upper bound for the distance
between T:(V¢) and the space VH'(Q2) & V,L*(Q; HL,,(Y)) for an appropriate norm

(see Section [3)). Then, due to the result recalled in Su?bsection [71] of the Appendix we
introduce a lifting in H'(Q2) for the function ¢ € H'Y?(09) and we show estimates in
H'(Q) and in H},.(2) using ||gl]g1/200) and [|g|[g-1/2a0). Afterwards, all the tools of
the unfolding method (see [9]) and the results obtained in the first sections allow to
derive the main results of the paper (Theorems .1l and 5.3). In both theorems we give
L? error estimates and H,.  error estimates. It is worth noting that the error estimates
are only of order £'/2 while in [I5] the obtained error was of order . We end the paper by
investigating the case where the boundary data are strongly oscillating. A forthcoming
paper we will be devoted to the homogenization problem with other strongly oscillating

boundary data.

In Section 2 we introduce a few general notations, we also give some recalls on
lemmas, definitions and results about the unfolding method in periodic homogenization;
this complements the paper which presents the unfolding method (see [9]). Section 3 is
devoted to the proofs of two new projection theorems which supplement the ones given
in [14] and [15]. In Section 4, we recall the main results on the classical homogenization
problem. In Section 5 we derive the error estimate results (Theorems [5.1] and [£.3]) with
a non-homogenous Dirichlet condition and in the last section we investigate a first case
of a strongly oscillating boundary data (Theorem [6.1]). In the Appendix we introduce
an operator from H~1/2(9Q) into L?().

As general references on the homogenization theory we refer to [I], [4] and [I2]. The
reader is referred to [9], [1I] and [12] for an introduction of the unfolding method in
periodic homogenization. The following papers [5], [6], [7], [10] give various applications
of the unfolding method in periodic homogenization. As far as the error estimates are
concerned, we refer to [2], [4], [13], [14], [15], [18], [20] and [21].

Keywords: periodic homogenization, error estimate, non-homogeneous Dirichlet con-
dition, unfolding method.

Mathematics Subject Classification (2000): 35B27, 656M15, 74Q15.



2 Preliminaries

2.1 Notations

e We denote by 2 a bounded domain in R™ with a Lipschitz boundary. Let p(z) be
the distance between x € R" and the boundary of 2, we set

0, ={rea|pm <~} 67:{:C€Rn‘p(x)<’y} v € R,

e There exist constants a, A and ~q strictly positive and M > 1, a finite number N of
local euclidian coordinate systems (O,; ey, . .., €,,) and mappings f, : [—a,a]" ! — R,
Lipschitz continuous with ratio M, 1 <r < N, such that (see e.g. [16] or [17])

N
o0 = U{w:x;Jra:nrenr €R" | z, €A, and xnr:fr(x;“)}’

r=1

where :)5; =2yt ...+ Tpn_rlp1r, ANy = {z; | zi €] —ayal, i €{1,...,n— 1}}

N
QVO C U Q.cQ Q= {x €R" | z; € A, and f,,(x;) < Ty < f,,(x;) + A}
r=1

{z eR"|z. €A, and fo(z,) — A <z < fo(x,) + A}

N
1=

vre{l,...,N}, VxeQ, wehave ﬁ(wm — fo(z)) < pl) < 2y — frl)).
(2.1)

o We set

=0,1[",  E.={¢€Z"[e((+Y) CQ},

= interior( U e(& +7)>, A =0\ Q.

§€E.

Y
Q

where ¢ is a strictly positive real.
o We define
* Hl(ﬂ) ={oe () | pvo € R},
13,(2) = {o € L*() | o/p € LA},
HY,(9) = {6 € HY() | Vo/p e LR |
We endow Hl( ) (resp. H} ( )) with the norm
Vo e H)(Q), |9l =192 + 1oVl L2@irn
(resp. Y6 € Hy(@, 16lhsp = [96/0] o)

2In Section [.1] and those which follow, we will assume that 2 is a bounded domain of class C!:! or
an open bounded convex polygon (n = 2) or polyhedral (n = 3).




Remark 2.1. If ¢ belongs to H)(Q2) then the function 1 = p¢ is in Hy(?) and vice
versa if the function ¢ belongs to Hg(Q) then ¢ = /p is in H)(Q) since we have (see

[8] or [19])

The space R* (k > 1) is endowed wiuth the standard basis (el, . ek); the euclidian
norm is denoted | - |.

2.2 A characterization of the functions belonging to H; / ()

Observe first that if a function ¢ satisfies ¢/p € Hy(Q) then ¢ belongs to H,, ().
The reverse is true.

Lemma 2.2. Let 2 be a bounded open set with a Lipschitz boundary, we have
¢ € H)\y(Q) <= ¢/pe Hy().
Furthermore there exists a constant which depends only on 0S) such that

Vo € Hip(Q)  |0/0%| oy + 1970l 1) < Cllollyp. (2.3)

Proof. Step 1. Let ¢ be in H'(] — a,a[""*x]0, A[) (a, A > 0) satisfying %V(b(x) €
L*(] —a,a["*x]0, A]) and ¢(z) = 0 for a.e. = in]—a,a[""'x{0}U] —a, a[“‘lg{A}. We

have ) . v )
[ SE L | Vo), o
J—a,a~1x]0,A] Tn 2 l—aar-1x0,4]  Tn
. ()]
To prove (2.4]), we choose n > 0 and we integrate by parts / ————dr,
|—a,an-1x]0,4] (M + Tn)

then thanks to the identity relation 2bc < b? + ¢® we obtain

[ e, g L2
—aan-txjo,af M+ 2n)* 7 2 Ji_gap-1x0,a (0 + 20)? | Oy

1 \V4 2
L Tol
2 l_aar-ixjoa] X

n

2

dx

Passing to the limit (n — 0) it leads to (2.4]).
Step 2. Let h be in W1>(Q) such that

h(z) € 0,1] if z €,
hz)=1 if plz) >,
h(z) =0 if p(x) < 79/2.



Let ¢ be in H{, (). The function ¢h/p* belongs to Hy (), therefore as a consequence
of the Poincaré’s inequality we obtain

[ <o [ o(MD) o < o [ (Do) + 1060 o
§C’/§2|V¢(z)|2dm§0/ﬂ%d1’

Then, due to the covering (21]) of 6270, the inequality (2.4)) and thanks to a simple
change of variables we get

() (1 — h(x))de <O IV (6(x)(1 - h($))|2dx <c IVo(@)* + |o(2)?
Q, p(z)* —Ja, p(z)? - Ja, p(z)?

(2.5)

dzx.

Since ¢ € H () the function ¢/p belongs to L*(2) and we have (2.2)). Hence, adding
these inequalities (r = 1,..., N) we obtain

/|¢ J(1=h ))|2d <0/|V¢ |2dx. (2.6)

Finally ¢/p? € L?(Q2) and ([2.3)-(2.06)) lead to Hqﬁ/p2HL2(Q) < C|9||1/, and then [23). O

2.3 Three lemmas

In the below lemma we give sharp estimates of a function on the boundary and in a
neighborhood of the boundary.

Lemma 2.3. Let ) be a bounded open set with a Lipschitz boundary, there exists vy > 0
(see Subsection[22) such that for any v €]0,70] and for any ¢ € H'(Q) we have

C
1¢]]22(00) < m(wum@ + Vol 2@, )

19]l 2@ < COM26l 200 + VBl o )

(2.7)

The constants do not depend on 7.

Proof. Let ¢ be in H'(] — a,a[""'x]0, A[). For any n €]0, A[ we have

||¢||L2 —a,a["~1x{0}) _||77D||L2 —a,a["~1x]0,n[) +Cn||vw||L2( ]—a,a["=1x]0,n[;R")>
HwHLZ(]—a@[”*lX}Om[) < Can/}HLQ(]—a,a["*lX{O}) +Cn? ||V7vb||L2(]—a7a[”*1x}07n[;R”)'

The constants do not depend on 7. Now, let ¢ be in H!(€). We use the above estimates,
the covering of 2, given by (ZI)) and a simple change of variables to obtain ([27). O



Below we recall a classical extension lemma which is proved for example in [14] or
which can be proved using the covering (2.1]).

Lemma 2.4. Let 2 be a bounded open set with a Lipschitz boundary, there exist cq >

1 (which depends only on the boundary of 1) and a linear and continuous extension
operator P from L?(Q) into L*(R™) which also maps H*(Q) into H*(R™) such that

Vo € L(Q), P@)n=0, |POll@ < Cliéllraw),

2.8
PO, < Clllag, ) (28)

and moreover we have

o€ HNQ),  [IVPO)lz@nan < ClIV6l o).

From now on, if need be, a function ¢ belonging to L*(Q) (resp. HY(Y)) will be
extended to a function belonging to L*(R™) (resp. H*(R™)) using the above lemma. The
extension will be still denoted ¢.

In the third lemma we show that a function in H{(£2) can be approached by functions
vanishing outside of € /..

Lemma 2.5. Let ¢ be in HE(SY), there exists ¢. € HY(R™) satisfying

¢e(x) =0 for a.e. x ¢ 56\/55,

(2.9)
| — @cll2() < Cel|VP||L2rny, |0/ 1) < Cl|D]| 1)
Moreover, if ¢ € H}, () then we have
16— 0 follyay < ClV0llsm N6 < Clldllp (2.10)

The constant C' is independent of €.

Proof. Let ¢ be in H}(Q). We define ¢. by

(p(x) — 6v/ne)™
(bs(x) = p(l’)
0 fora. e. z€R"\Q.

o(x) fora. e. x €,

where 67 = max{0,d}. The above function ¢. belongs to H'(R") and satisfies ¢. =
0 outside of g sne- Then, due to the fact that ¢/p belongs to L*(Q2) and verifies
|o/pll 2@ £ Cl|V||L2@rny We obtain the estimates in (2.9). If ¢ € Hll/p(Q) we
use the estimate (2.3]) to obtain (2.10]). O



2.4 Recalls and complements on the unfolding operators

In the sequel, we will make use of some definitions and results from [9] concerning the
periodic unfolding method. For almost every x € R”, there exists an unique element in
Z™ denoted [z] such that

x = [z] + {z}, {z} €Y.

e The unfolding operator T..
For any ¢ € L'(Q), the function T:(¢) € L' (2 x Y) is given by

x .
T(6)(z.y) = { gb(e [E} + 5y> for a.e. (z,y) € Q. XY, (2.11)
0 for a.e. (z,y) € A xY.

Since A, C ﬁﬁe, using Proposition 2.5 in [9] we get

| [owir— [ T < [ o <ol 1)

For ¢ € L*(Q2) we have
T2(D)|r2) < |19l|r20)- (2.13)
We also have (see Proposition 2.5 in [9]) for ¢ € H'(Q) (resp. ¥ € H}(Q))

[ 7(¢) — ¢HL2(SA25><Y) < Ce[|Vol|r2omn)

(2.14)
(resp.  [|Te(¥) — ¥llrzaxy) < Cel|VY[|L2@rny )
e The local average operator M.
For ¢ € L*(R™), the function M_(¢) € L=(R") is defined by
M (¢)(x) = / ¢<5 [q + 5y)dy for a.e. x € R™. (2.15)
v 5

The value of M.(¢) in the cell (£ +Y) (£ € Z™) will be denoted M.(¢)(£€). In [9] we
proved the following results:

For ¢ € L*(2) we have
IMc(D)lz2@) < Cllollza@),  [Me() = dllm-1@) < Cel|9l] 2y (2.16)
and for 1) € Hj(Q) (resp. ¢ € H'(Q)) we have

[[Me(p) = || 20 < Cel|VY||r20irm)

2.17
(resp.  |[M:(9) — ¢HL2(§E) < CE||V¢HL2(Q;R") )- ( )



Lemma 2.6. For ¢ € H () we have

1p(Me(8) = 8)llL20) < Cellgll,,
Vie {17"'7n}7 ||p(¢('+5ei) _¢>||L2(Q) < C€||¢||p7 (2'18)
1p(M(0)(- + gei) = M.(6))ll12() < Cell8],.

For ¢ € L?, (Q) we have

1/p
IM=() = Dl )y < Cellé/pllr2o).- (2.19)
The constants do not depend on €.

Proof. Step 1. We prove (ZI8),. Let ¢ be in H)(2) and let (£ +Y') be a cell included
in €.
Case 1: p(e€) > 24/ne. In this case, observing that

< MmaX;ce(e4Y) {p(z)}

< — <3
Hnnzqu+Y){P(Z)}

and thanks to the Poincaré-Wirtinger’s inequality we obtain

/ () 2IM()(£€) — o) P < [ max {p()}]? / M. (6)(c€) — o) Pde
e(E+Y) e(€+Y)

z€e(§+Y)

< [ max_{p(z)}]C? / V() Pdz

<cz [ p@)IVo) s
e({+Y)
Case 2: p(e€) < 2y/ne. In this case we have

/ [p(2)2IM:(¢)(£€) — p(x)Pda < 052/ |¢(z)[*d.
e(£+Y) c(&+Y)
The cases 1 and 2 lead to

[ P()PIML(6) () — pla)Pd < CE2 / (@) P |V(@) + [o(x)P)dr.  (2.20)

Qe

Then, since A, C € Jne and thanks to (2.8) we get

€ Qco V/ne

/ P(@PIM.(6)(x) — d(x)Pde < C / 6(2)Pde

which due to ([2.20) gives (2.18));. Proceeding in the same way we obtain (2.18]), and
R.I8);.



Step 2. We prove (2.IJ). Let ¢ be in L}, () and ¢ € H,(Q2). We have

Consequently we obtain
\/ﬂ(m(@—@w / — )0 < / [ (M ¢)w\+/AE\(M€<w>—w)¢\
< C(llellzzean + M) r2an) 1120

The inclusion A, C Q\fs, the fact that ¢ € Ll/p( ) and (2.8),-(2.18), lead to

| 0 = 0)u < Cello/lliso vl

Hence we get (2.19). O

e The scale-splitting operator Q..
x For ¢ € L'(R"), the function Q.(¢) € WH(R") is given by

=3 M(§)()Hoplz)  forae. xR,

gezn

where

H.e(z) = H(m ;55) with

B (1 — \zl\)(l — \zg\) . (1 — \zn\) if zel[-1,1]",
H(z)= { 0 if 2 e R\ [-1,1]"

Below we recall some results about Q. proved in [9] and [15].
x For ¢ € L?(R") we have

C
1Q:(D) 2@ < CllSllramn), IV Qe(O)lz2@niny < ISl 2m) (2.21)
and
Q.(¢) — ¢ strongly in ~ L*(R").
x For ¢ € H'(R") we have

IV Qe(@)l|2@nimny < ClIVEl|L2nimn),

(2.22)
¢ — Qc(P)[| 2@y < Cel|VO||L2@nrny

and
Q.(p) — ¢ strongly in ~ H'(R™). (2.23)



x For ¢ € L*(R") and x € L*(Y') we have Qa(¢)X<{é}> € L*(R"), VQ»:(@X({?}) c
L*(R™) and
120 ({2} liaqary < ClBlacaes Il zaer,

|2 ({2}l < Clloll o, IXllzzer 2
Moreover, if ¢ € H'(R") then we have
(e CONX({ ) agary < CelVOllzzmngn Ixllzzr,
vae OX({2}) sy < CIVOl 2z lIx L2, (2.25)
19X ({2 }) iamy < CNV9l o, g X200

Lemma 2.7. For ¢ € H () we have

1(Qe(¢) = &)lIL20) < Cellgll, (2.26)
For ¢ € Hy,,(Q) and ¢. given by Lemma 23 we have

19:@0) 1o < Cllélle 116 = Qe(62)) /ol 2y < Cell@llm

Vi= ilel +. +inen, (11,...,1,) € {0,1}" (2.27)
| (Melo)(-+ i) = Me(80)) /0] 2y < Celldlo
For ¢ € L*(R") and x € L*(Y)
| (M) = pMAONX ({2 }) ioqery < Collolzn Xz (228)

For ¢ € H)(Q) and x € L*(Y)

(Q-6) = Me@)X({ = }) 200y < ColBlolixlzze
109 Q-@x ({2 }) L2y < CllEl Il oery

The constants do not depend on €.

(2.29)

Proof. Step 1. Let ¢ be in H)(€2). We first prove

1(Q:(6) — Me())llr20) < Cellgll,. (2.30)

To do that, we proceed as in the proof of (2I8]),. Let £({ +Y') be a cell included in €.
Case 1: p(e€) > 3y/ne. In this case we have

maxXee(e+2v) {0(2) } < S

maxzee(ngY){P( z)} <4 and : <
mlnz€€(5+Y){p(Z)} 2

o minz€€(5+2Y){p( )} N

10



By definition of Q.(¢) we deduce that

/ P(@)21Q.(6) () — Mo(6)(c6)Pd < [ max_{p(=)}]? / 10.(6)(x) — M. (6)(c6) P
e(€4Y) e(€4Y)

z€e(€+Y)

<[ max {p(x)}PC> / LCCLE

z€e(€4Y)

<ce [ p)f Vo)
e(£+2Y)
Case 2: p(e€) < 3y/ne. Then again by definition of Q.(¢) we get

/ ()21 Qu(6) (x) — Mo()(26)|2dx < C=2 / 16(x) dz.
e(£+Y)

e(£+2Y)

As a consequence of the cases 1 and 2 we get

[ [p(2)]*|Q:(9)(2) — M.(¢)(x)[Pd < 082/ ([o(@)PIVe(@)]® + o(x)[*)dz. (2.31)

e Q

Furthermore we have

[ barie@pis < o [ |0 @Fdr < ¢ [ lota)da

€

which with (231) lead to (2.30). Then as a consequence of (2.I8)), and ([2:30) we get
2.26).
Step 2. We prove (227),. Let ¢ be in Hll/p(Q) and ¢. given by Lemma 2.5 Due to the

fact that ¢.(x) = 0 for a.e. x € R™\ §6ﬁ6, hence Q.(¢.)(z) = 0 for all = € 2 such that
p(x) < 4y/ne. Again we take a cell (£ +Y) included in € such that p(e§) > 3y/ne. The
values taken by Q.(¢.) in the cell €({ +Y") depend only on the values of ¢. in £(£+2Y).
Then we have

1 20 C A
o I 0P i G L v o2

[maX,ec(e+av){p(x)}]? < 'y
< mecscon (N oy GO OF S [ GplvociFs

[p(x)]

Adding all these inequalities gives

| comlveewbi <c [ vk

/e

Since Q.(¢:)(x) = 0 for every x € € such that p(z) < 4y/ne, we get ||Q:(¢e)||1/, <
C||e|]1/,. We conclude using (ZI0),.

11



Step 3. Now we prove (227),. Again we consider a cell ¢({ +Y) included in Q such
that p(¢£) > 3y/ne. We have

1 “d ¢ z) — ¢ (x)|2dx
oy Q00 — et < o [ 10460(0) el
C . i
B [minx66(5+Y){P(f’3)}]2 ie{0,1}» /e(£+i+Y) IMe(9:)(et + i) = o.(x)l"d
2[maxzea(£+2y){0(z)}]2 1 2 ) 1 N
= it ()} /e(5+2y> P VOl < e /g(m o V@l de.
Hence we get
: ? 2 [ L z)|[*dx
[ prplewe —smpi<cs [ Cipivs @

The above estimate and the fact that OQ.(¢.)(x) — ¢-(z) = 0 for a.e. =z € Q such
that p(x) < 4y/ne yield |[(¢: — Qc(¢:))/pll12@) < Cell@e||1/,- We conclude using both

estimates in (ZI0).
Proceeding as in the Steps 2 and 3 we obtain (2.27),, (2.28) and (2.29). O

3 Two new projection theorems

(Y; L?(Q)) such that

per

Theorem 3.1. Let ¢ be in Hy, (). There exists V. € H!
{ el movorz @) < CLII9l|2@) + €l Vol 2@ }
Te(@) = el i vy < Ce(|lo/pll Lz + €llolliyp)-

The constants depend only on n and Of).

Proof. Here, we proceed as in the proof of the Proposition 3.3 of [5]. We first reintroduce
the open sets (1. ; and the unfolding operators 7. ;. We set

(AZE,Z- =Q.n ((AZE — ce;), K; = interior (Y U (e; +Y)), i€ {l,...,n}.

The unfolding operator 7;; from L*(Q) into L*(Q2 x K;) is defined by

q + 5y> for x € ﬁa,i and for a.e. y € Kj,
Y

Yle
Ve L2(Q),  Toi)(z,y) = < [5 _
0 for x € Q\ €. ; and for a.e. y € K.

The restriction of 7 ;(¢) to (Alm- x Y is equal to T(v).

12



Step 1. Let us first take ¢ € Ll/p(
Tei(9) (i) = Tea(6) in L2(Y; (H)(Q))). For any ¥ € H}() a change of variables

p

1
). We set ¢ = —¢ and we evaluate the difference
p

gives for a. e. y €Y
[ T+ v t/ Te(6)(x + cer,y) ¥ (2)da
0
~ [ T - ce)ds
Qe i+ee;

Then we obtain for a. e. y € Y

‘/{7;1'( sy te) = Ta(9) )y — / T(0)(y)p{ ¥(. — eey) —qf}‘
Q
S‘ /ﬁs T ) (T(p) = p) {9(. — ce;) — \If}’ + T 2@, o V]2 @, -

From (2.I8)), we obtain
Ip(U(. —cei) = U)o, < Cell¥ll,  Vie{l,....,n}.

We have
| 7=(p) = pllLeo(e) < Ce. (3.2)

The above inequalities lead to
<T@ y+e) —Tud)(y), ¥ 2 (HY(Q)) ,HL(Q)

/{T (0)(y + e) — Toa(d) (s y) )0
<= IT() (1) 22 + Cel [Pl | T () () 22
+sz<x,>mp%ﬁgwumm2ﬁ

Therefore, for a.e. y € Y we have
[Tei(0) (- y +ei) = Toi(@)(. y)”(H,}(Q))' < Cel| T (¥) ()l o) + CllIT(D) (W 2gar, -

which leads to the following estimate of the difference between 7. ;(¢) and one of its

translated :

NTei(@)(, -+ €) = Tl 2v ) < Cello/pllze) + ClIOl 2, .
< Cel|o/pl|r2 @)

The constant depends only on the boundary of €.

‘QXY

(3.3)
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Step 2. Let ¢ € H

derivatives give

1/p(§2). The above estimate (B3)) applied to ¢ and its partial

NTei(@) (s -+ €i) = Teil O vy < Celld/pllr2
Ti(VO)(., - + &) = Tea( VOl oy iy my < Celldlliyp.
which in turn lead to (we recall that V,(7::(¢)) = eT-:(V9)).
172:(0) (- + ) = Tea( Ol vz ey < Ce 10/ ol + elllly,)-

From these inequalities, for any i € {1,...,n}, we deduce the estimate of the difference
of the traces of y — T2(¢)(., y) on the faces Y; and e; +Y;
1T2(8)(., - + &) = To(D) | mpvamy) < Ce(lld/plliz) +ellllyp). (3.4)

It measures the periodic defect of y — T2(¢)(.,y). We decompose T-(¢) into the sum of
an element belonging to H),.(Y; L*(2)) and an element belonging to (H'(Y; L2(§2)))l
(the orthogonal of H! (V;L*(Q)) in H'(Y; L*(2)), see [5])

per

~ = — 1
T(¢) =ve+0., . € HY (YiLA(Q), 6. € (H'(Y;LA(Q)) (3.5)
The function y — 7:(¢)(., y) takes its values in a finite dimensional space,
)= belxel)
§€Ee
where xe(.) is the characteristic function of the cell (¢ +Y) and where ¢_(..) €
(HI(Y))L (the orthogonal of H! (V) in H'(Y), see [5]). The decomposing (B.5) is

per

the same in H'(Y; (H}(€2))') and we have

~ — 2
||¢s||12r{1(y;L2(Q)) + H¢a||12r{1(y;L2(Q)) = ||7;(¢)H%11(Y;L2(Q)) < C{ll¢ll 2 + el Vol iz }

which is the first inequality in (B.I)) and the estimate of ¢, in H*(Y;L?*()). From

Theorem 2.2 of [5] and ([B.4]) we obtain a finer estimate of ¢, in H'(Y; (H}(Q))’)

||$e||H1(Y;(H/}( ) < 05(||¢/P||L2 ‘|’5||¢||1/p)
It is the second inequality in (B1]). O

Theorem 3.2. For any ¢ € Hl/p(Q), there exists ¢. € H

per

(Y; L?(Q)) such that

P/ (vi2)) < ClIVO|l 20y

" (3.6)
TV ) = Vb = Vydellipaw ey < Celldlly,

The constants depend only on OS).
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Proof. Let ¢ be in Hj, (Q) and ¢ = ¢/p € Hy(Q2). The function ¢ is extended by 0
outside of 2. We decompose ¢ as

¢=d+cp, where d=Q.(¢.) and ¢ = §(¢ - Q.(0.))

where ¢, is given by Lemma 23 We have ® and ¢ € H;(2) and due to ([Z27) we get
the following estimates:

1@l]1/p + €lllryo + 110/ pll2) < Cll¢l]1/p- (3.7)

The projection Theorem B.Tlapplied to ¢ € H| () gives an element o in H,,.(Y; L*(Q))
such that R
el ovizz ) < CllSllyp,

= (3.8)
T2(@) = el vmryyy < Celldllyp.
Now we evaluate ||T2(V®) — V<I>||[Lz(y;(H;(Q))/)]n.
From (2.19), (2.27), and B.1)we get
V@ = MV 1130y < Celldll1yp- (3.9)
We set
HO () = (1= ]2))@=|zs]) ... (1= |zal) if 2= (21,20,...,20) € [-1,1]",
0 if zeR"\[-1,1]"

I:{i\i:z’2e2—|—...+inen, (i2,...,in)e{0,1}”‘1}

For £ € Z™ and for every (x,y) € (€ +Y) x Y we have

7; (g_jj) (SL’, y) _ Z Ma(¢a) (5(5 +e + 1)8) - Ma(¢a) (5(6 + 1)) H(l)(y . 1)
0P 1 Me(¢s) 5(5 +e; + i) - M€(¢€) 5(5 + i)
M () 00 = iy 3o MO R

il
Now, let us take ¢ € H)(Q2). We recall that ¢.(x) = 0 for a.e. x € R” \56\/55, hence

= )
®(x) =0 for all x € R\ Q3 /.. As a first consequence M€<§—) in A..

£
For y € Y we have

ﬁ(g—i)(ay) - M. <§—;D1>’¢ 2 (HY(Q)) HY(Q) = A{ﬁ(%)(ay) - ME(S—E) }¢

= [ {7 () e - M (5 ) ).

15



We have
| MG )M == Y m. (g(b)(ai) (0)(c0)

Lezn

=) s Mele e et )2 MO EETD) vy ) (et
cegn i€l
- 3o 3 o) = O et + )
EezZn iel
and
A 7;(32)<.,yw5<¢>
=" [ (e re b )6) Me(de) (e(6 +1) } HY (y — i) M (¢)(e€)
cezm i€l
—er 3 3 MAEEZ ) ZMEED o, o) e+ )
cezn el

Due to the fact that ¢.(x) = 0 for a.e. z € R” \66\/657 in the above summations we
only need to take £ € =, satisfying p(e€) > 3/ne. Hence

< ﬁ(?—i)(&) - Ma(g—i)w Z(HY(Q) HA(Q)

oy MANEE ) = M) $ [y — ) - L] aon)(ete + i),

ez icl

1
. (1) . _ .
Since g [HP(y —1) — 2n_1} = 0 we obtain that

iel

‘ Z [H(l)(y - 1) - 2n1_1]Ma(¢a)(5(§ + 1))‘ < Z }Ma(qba)(g(g + 1)) - Me(¢a)(5€)}

iel iel
Taking into account the above equality and inequality we deduce that

< ﬁ(?—i)(-,y) - Me(g—z»@b = (HL(Q) HA Q)

_on Z Z ‘Ms(w) (5(5 - el)) - Ma(w) (55)) “Mg(ée)(é‘(ﬁ + i)) . M5<¢5)(€£)‘

g
Eezm iel

=23 [ M0 = ze1) = Mo} ML+ 2D — Mo(6)

1€I

ST M)~ cer) — M) Hm\)%we@sx. T i) — M.(6))

iel

L(Q)’
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Thanks to (218, and (227), we finally get

0P 0P
< 72(8—x1)(’y> - Ms<a—x1>a¢ >(H;(Q))’,H;(Q)§ CgH¢s||l/p||¢Hp

which leads to

() - Ma(g—i) HLOO(YWQD,) < Cellgely (3.10)

Besides we have

¢ < <
&El( D) = = [ 9()5" @)z < Cllg/ollzalvly < Cllolalvll,

Hence

< Cel|¢|]1/,- This last estimate with (2.10),, (3.9) and (310)

H 8x1

(HA(R™))
yield

05||¢5||1/p'

Proceeding in the same way we obtain the same estimates for the partial derivatives with
respect to ;, i € {2,...,n}. Hence we get | To(V®) = V|00 vy < Celldelliyp-
Then, thanks to (3.8) the second estimate in ([B.6)) is proved. O

0
5(0—;3)1) Or1 HLOO(Y (HE()")

4 Recalls about the classical periodic homogeniza-
tion problem

We consider the homogenization problem

¢ € Hy(9), /QAe(x)Wﬁa(ﬂﬁ)Vw(x)dx = /Qf(if)@b(x)d% Vi € Hy(Q), (4.1)

where
x
o A (x) = A({g}> for a.e. x € (), here A is a square matrix belonging to

L>®(Y; R™ "), satisfying the condition of uniform ellipticity c[£|* < A(y)¢- € < C|€]? for
a.e. y € Y, with ¢ and C strictly positive constants,
o f € L*N).

We showed in [9] that
To(Vo°) — VO + VyngS strongly in  L*(Q x Y;R")

where (®,¢) € HE(Q) x L2(; H},.(Y)) is the solution of the problem of unfolding
homogenization

)€ Hy () x L*(Q; HY, (Y))

per

// ){vcb(:c)+vy¢(:c,y)}{W(:c)JrvyzZ(x,y)}dxdy:/f(x)\lf(x)dx.

Q
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The correctors x;, i € {1,...,n}, are the solutions of the following variational problems:

i€ HL(Y), / i =0,
Y

(4.2)
[ AW, 06) + 0) Vool =0, € ().
Y
They allow to express ngS in terms of the partial derivatives of ®
~ 00
= — i 4.3
¢ Z . X (4.3)

i=1

and to give the homogenized problem verified by ®
d € HY(Q), / AV (2)VV (x)dx = / f(x)¥(x)dx, YU € Hg(Q) (4.4)
Q Q

where (see [9])

5 Error estimates with a Dirichlet condition

Theorem 5.1. Let (¢5)€>0 be a sequence of functions belonging to H*(Q) such that
div(A:V¢T) =0 in Q. (5.1)

Setting g. = ¢jpq and ¢y, = T(g:) € HY(Q), there exists g > 0 such that for every
e < gq we have

") < Cllgellmirz o0y, 167 = bg.llr2@) < C2(1gell vz 00):
~ (09, . (5.2)
Hp(nga ~ Vs =) QE( o, )Vyx’(E)) g = O lgellzn 2(00)-
i=1 ! ’
Moreover we have
16°]15 < C (2 11g:llr1200) + 19l 1172002 - (5.3)
Proof. Step 1. We prove the first estimate in (5.2). From Section [Z.1] we get
gl ) < Cllgell 1200 dgllp < Cllgella-172(00)- (5.4)
We write (5.1)) in the following weak form:
o :5a+¢gs’ 55 S H&(Q)
(5.5)

/ ANVG.Vv = — / A V¢, Vv Vv € Hy(Q).
Q Q
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The solution ¢, of the above variational problem satisfies

16:Ilm ) < ClIVég.l2@mn)-

Hence, from (5.4]), and the above estimate we get the first inequality in (5.2]).

Step 2. We prove the second estimate in (5.2)). For every test function v € Hg () we
have

/ AV Vo = 0. (5.6)
Q

Now, in order to obtain the L? error estimate we proceed as in the proof of the Theorem
3.2 in [15]. We first recall that for any ¢ € H'(Q2) we have (see Lemma 2.3) for every

e < €o :’}/0/3\/5

16l 2,. oy < Ce2 10 lmiey

Let U be a test function belonging to H(Q) N H*(). The above estimate yields

VUl 2qq,, < Ce"?||U| 2o (5.7)

Oﬁs;Rn)

which in turn with (Z12)-(2I3)-(214), and (E.2),-(E6) lead to
[ AT ) VU @ss] < C Bl Ul 69

The Theorem 2.3 in [15] gives an element ¢, € L2(€; H- (Y)) such that

per

||T(V¢E) - V¢€ - VyQSEH[LQ(Y;(Hl(Q))/)]n S 051/2||V¢8| |L2(Q;Rn)

(5.9)
< 051/2||Q€HH1/2(3Q)'

The above inequality and (5.8)) yield
| /Q AV + V,5:) VU] < C gl omy Uy (5.10)
X

We set (2)
n . plx
Vr € R", pe(z) —1nf{1, . }

Now, we take ¥ € H,,(Y) and we consider the test function u. € Hy(Q) defined for
a.e. r € () by

wla) = 200 (5 ) x (2).
Due to (Z24), and (5.7) we get

Jo-(5) v (2)

< C"2|U N 2o | X 2 o) (5.11)

L2(Q /. 5R™)
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Then by a straightforward calculation and thanks to (2:24),-(2:25), and (5.7)-(E11) we

obtain Hvu€ Q€<3U>vyx< )

which in turn with again (B.I1) give

< Ce'2 U 2o (X vy

L2(Q;R™)

IVl o,y < C2NU e IX] a1 (5.12)
and then with (2.25)), that yields

7o =2 (57) v ()

In (5.6) we replace Vu. with M. (2U>Vyx< ); we continue using (ZI2)-(ZI3) and
T

(5.2),-(E12) to obtain

< CeY?||U |2y | X 2 ov)-

L2(QR™)

ou _ _
[ AT )M (G,) @) dady] < C2 gl o | K
QxY L

which with (ZI7), and then (5.9) give

< CeY|gell o Ul 2K 1y (5.13)

|| A V.60 VX

As in [15] we introduce the correctors X; € H!, (Y), 1 € {1,...,n}, defined by

per

/Y AV UV, (X £ ) =0 Wb e HL (V). (5.14)

From (5.13)) we get

“~ OU
)| < CM211g.l 2o 1V 2

]/Q YA(V¢€+vy¢?E)vy( X
. s

and from the definition (£.2]) of the correctors x; we have

/QXY A(vy+ ; %WM)%( = S—ZYJ) =0.

Thus

" 9¢F " oU
A ; x| < Cel/? el g2 Ul| g2
’/QXY V i=1 Ox 'X>Vy(j:1 al'j ]) = ||g||H/(aQ)|| ||H(Q)
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and thanks to (5.I4) we obtain
49,(3. -3 27 Yvu] < e U
y( e O, e 1gell e ooy 1U] | 20
Qxy
The above estimate, (B.10) and the expression (£H) of the matrix A yield

| [ AV VU] < €l llvsan 1V et
Finally, since we have / AV ¢, Vv =0 for any v € Hj (), we deduce that
Q

e B@NH@), | [ AV - 0,)V0] < C g llson 1V et
Now, let U. € H}(2) be the solution of the following variational problem:

/AVuVUe = / V(¢° — @), Vv e HYQ).
Q Q

Under the assumption on the boundary of Q, we know that U, belongs to H} ()N H?(2)
and satisfies ||Ue||p2(0) < C|¢° — ¢q.||12(0). Therefore, the second estimate in (5.2)) is
proved.

0
Step 3. We prove the third estimate in (5.2) and (5.3)). The partial derivative %

T
satisfies ” 0
Jge . . YUPge 9
le(*AV( oz, )) =0 in &, e, € L*(Q).
Thus, from Remark [.7 and estimate (5.4, we get
8¢gs 0¢gg
HpV( ox; ) L2(QR?) — CH o 12 = C||9€HH1/2(39)- (5.15)

Now, let U be in Hj((), the function pU belongs to H{, (). Applying the Theorem
with the function pU, there exists . € L*(Q; H,,(Y)) such that

per

1TV (V) = V(oU) = Vel gy gy < ClloUllay oy < CellUllmay- (5.16)

The above estimates (5.15]) and (5.16) lead to

< Cel|Ul| @19l mr1r200)

) /Q . V%ﬁz ‘%%vaZ)( T(V(pU)) - V(pU)—Vyﬂ€>

By definition of the correctors y; we have

/QXY (v¢gs+z %v \i) Vit = 0.
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Besides, from the definitions of the function ¢, and the homogenized matrix A we have

0= /Q.AVqﬁgEV(,OU) = /QxY <v¢gs + Z 00s. Vsz> (pU).

The above inequality and equalities yield

0
|, AT+ 3 T ) 60 | < CoIT e olony 517

We have U
V(pU) = p<VU + vp—)

and (3:2), therefore, since U/p € L*(Q) and ||U/p||120) < C||VU||20rn) We get

-(V(pU)) = pT: (VU + Vp%)

From (5.17) and the above inequalities we deduce that

<CEHVU+Vp—H < Ce[|U] 0.
L2(Q;R™) 2(Q;R")

[ (oo + Zp%i V) To(VU + Vo )| < Cell VUl zaauno ol

We recall that pV¢,. € Hj(€2;R™), hence from (2.14)),, 2I7), and (5.15) we get

. chbgngZp ) T (VU + V)

_/QXY ( (V) +ZM ( Qfg>vai>7;<VU+Vp%>’ SCE||VU||L2(Q;R”)||ga||H1/2(8Q)'

7

Then, transforming by inverse unfolding we obtain

[ (oo Z M (o2 ) V(D)) (VU + Vo )| < CEIVUllinan o lvson
Now, thanks to (2.28) and (5.15]) we get
|/ Ap(Vo,+ 3 M (29,0 (5)) (VU+907)| < CelTUlzaann ol

i=1 !

Then using ([2:29), it leads to

(2

| [ 460+ 30 (52 9 () V0| < CelITUlln oo
i=1
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We recall that / ANV ¢V (pU) = 0. We choose U = /)<¢€ Gg. — 52 Q€<a¢gj>xl(;)>

£

which belongs to HJ(£2). Due to the second estimate in (5.2), the third one in (&.2))
follows immediately. The estimates (5.3) are the consequences of (5.2),, (5.2]), and

63),. O

Corollary 5.2. Let (¢€)5>0 be a sequence of functions belonging to H(Q) and satisfying
[EBI). We set g = ¢fq, if we have

g. — g weakly in Hl/Q(GQ)

then we obtain

¢ — ¢, weakly in  H'(Q),

- %) : , 5.18
¢ —dg—c) Qs<%)xi<g) — 0 strongly in H,(). (5.18)
i=1 v

Moreover, if
g- —> g strongly in  HY?(9Q) (5.19)

then we have
¢°— ¢y — 5Zn: Q. <%)Xi<;> — 0 strongly in ~ H'(). (5.20)

g i—1 81’7, g

Proof. Thanks to (5.2)), the sequence (¢E)€>O is uniformly bounded in H'(f2). Then,
due to Lemma [7.]] and Remark [7.7] we get

|[eg — ¢gs||p <Cllg - 9&||H*1/2(8Q)

which with (5.2), (resp. (5.2),) give the convergence (5.I8]); (resp. (5.18),).

Under the assumption (5.19), we use (.I]) and we proceed as in the proof of Theorem
6.1 of [9] to obtain the strong convergence (5.20). O

Theorem 5.3. Let ¢° be the solution of the following homogenization problem:
—div(A.V¢") = f in Q, =g on 00
where f € L*(Q) and g € HY2(0Q). We have

167 = @llz2@) < Cellfllzz@ + 2l rzom }
Jo(ver = vo -3 (57) ()

where ® is the solution of the homogenized problem

1/2
L2(Q;R™) = C{ngHLz(Q t+e ||9||H1/2 20) }

—div(AV®) =f in Q,  ®=g on O
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Moreover we have
¢°— O — 5i Q€<a—®>xi<i> — 0 strongly in ~ H*(Q). (5.21)
— o0x; €

Proof. Let ;;;5 be the solution of the homogenization problem

¢ € H}(Q),  —div(A.Ve)=f i Q
and @ the solution of the homogenized problem

®eHy(Q), —div(AV®)=f in Q.
The Theorem 3.2 in [I5] gives the following estimate:

16 = Bl 120y + ||p¥ (5 - @ —aZ Qe(ax)X@('))

< Cel|fllr2@) (5.22)

L2(QR™)
while the Theorem 4.1 in [14] gives
|5 - 3 Qe(@)xi(i) | <O gy, (5.23)
— or; e/ llmQ) —

Then ¢° — 5‘3 satisfies
div(A.V(¢° — 55)) =0 in Q, [ — on 0N

Thanks to the inequalities (5.2)) and (5.22]) we deduce the estimates of the theorem. The
strong convergence (5.2]]) is a consequence of (5.23) and the strong convergence (5.20)
after having observed that ® — ® = ¢,. O

Remark 5.4. In Theorem 53, if g € H*?(09) then in the estimates therein, we can
replace 2| g|| 200y with €|g]|gs/2(00).  Moreover we have the following H*-global
error estimate:

’ - _5296((99;2) (‘)’

6 A first result with strongly oscillating boundary
data

1/2
iy < O {11220 + 1lgllson)

Now, we consider the solution ¢° of the following homogenization problem:
div(A.V¢T) =0 in Q

1
O =g, on 0f) (6.1)

where g. € H'/2(09). As a consequence of the Theorem [5.1] we first obtain the following
theorem:
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Theorem 6.1. Let ¢° be the solution of the Problem (6.1)). If we have
ge =g weakly in  H™Y?*(0Q)

and
eY2g. — 0 strongly in  HY?*(0Q) (6.2)

then
¢° — ¢y weakly in  H(S). (6.3)

Furthermore, if we have
ge — g strongly in  H™Y2(0Q)

then

— g — 52 Qa<%§ig:) (E) — 0 strongly in H;(Q). (6.4)

Proof. Due to (5.3) the sequence (¢%).s¢ is strictly bounded in H (). From the esti-
mates (5.2), and (5.4), we get

o~ =30 (52)u ()

Then, using the variational problem (7.4 and (5.4), we obtain

< Ce'? ||95||H1/2 (89)"

HA(Q)

¢g. — ¢, weakly in H;(Q).

Oy
o0x;

Besides we have ¢ Z Q€<

([63) is proved.
In the case g. — g strongly in H~Y/2(0Q), (73) and (Z.7) lead to

>X-(é) — 0 weakly in H)(£2). The weak convergence

||¢gs - ¢g||H,}(Q) < CHga - 9||H*1/2(8Q)-
Hence with ([2.29), they yield the strong convergence (6.4]). O

In a forthcoming paper we will show that in both cases (weak or strong convergence of
g- towards g in H~/2(0Q)) the assumption (6.2) is essential in order to obtain at least

©3).
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7 Appendix

7.1 An operator from H 1/2(9Q) into L?*(Q2)

In this section 2 is an open bounded set with a C*! boundary or an open bounded
convex polygon (n = 2) or polyhedral (n = 3). Let A be a n x n definite positive
constant matrix (e.g. the matrix A given by ([@5))). For every couple (¢, ¥) € [C=(Q)]?,
integrating by parts over ) gives

/ AV (2)V I (1) / Y(z)div(ATVI) (2)dr + Qw(x)(ATv\If)(x)-u(x)da.

The space C*(Q2) being dense in H(Q2) and H?(£), hence the above equality holds true
for any ¢ € H'(Q2) and any ¥ € H?(Q). Now, let g be in H'/2(99), there exists one
¢, € H(Q) such that

div(AVe,) =0 in €, g =9 on 0N

and we have

gl (@) < Cllglla/zon)- (7.1)
Besides, for any function ¥ € H}(Q) N H?(Q) we get
/ by (2)div(AT V) (z)dx = / g(x) (ATVU)(z) - v(z)do. (7.2)
Q o0

Under the assumption on 2 the function ¥(g) defined by
U(g) € Hy(R),  div(ATVY(g9)=¢, in Q
also belongs to H?(Q) and satisfies
1 (9)llr2) < CllggllL2@)-

Taking U = ¥(g) in the above equality (7.2)) we obtain

JQk%ﬂwfd$:1égg@»cATv¢«gxx»-u@»mfs|mHH1m@QﬂKATv¢«m>-WMpm@m
< Cllgll 17200 |1 (9) | 20

This leads to
[gllz2) < Cllgll p-1/2(90)- (7.3)

We denote by T the operator from H'Y?(0f) into H'()) which associates to g €
HY2(99) the function ¢, € H(2). Due to (Z.3), this operator admits an extension
(still denoted T) from H~/2(99) into L?*(Q2) and we have

Vg€ H2(09),  |IT(0)llw < Ollglli /200

26



Hence, for g € H=Y/2(99), we also denote ¢, = T(g). This function is the "very weak”
solution of the problem

by € L*(12), div(AVe,) =0 in Q, b=y on 0
or the solution of the following:
g € L*(Q),
/chg(f’f) div(ATV(z))de =< g, (ATVY) - v > 51200 51/2(00) (7.4)
Vip € Hy(Q) N H?*(Q).
Lemma 7.1. The operator T is a bicontinuous linear operator from H~'/2(0Q) onto
H= {¢ € LX(Q) | di(AVS) =0 in Q}

There exists a constant C > 1 such that

_ 1
Vg e HO200),  Zlollnon < IT@lew < Cllglla-veen.  (75)

Proof. Let ¢ be in H we are going to prove that there exists an element g € H~/2(9%)
such that T(g) = ¢. To do that, we consider a continuous linear lifting operator R from
H'Y2(09) into H} (Q) N H?(Q) satisfying for any h € HY?(08)

R(h) € Hy(Q) N H*(Q),
ATVR(W)jpo-v="h  on 0L,
IR r2(0) < CllAl17200)-

The map h — / ¢ div(ATVR(h)) is a continuous linear form defined over H'/2(9).
0
Thus, there exists g € H~/2(99) such that

/Q & div(ATTR(R)) =< g, h 51172000 1172002 - (7.6)

Since ¢ € H, we deduce that for any ¢ € C3°(Q2) we have / ¢ div(ATVip) = 0. There-
Q

fore, for any ¢ € H3(Q2) we have /¢diV(ATV¢) = 0. Taking into account (7.6) we
get .
/ G div(ATVY) =< g, (ATVY) - v > i o0 mzea), V€ Hy(Q) N H?(Q).
0

It yields ¢ = ¢, and then (ZH). O

Remark 7.2. It is well known (see e.g. [17]) that every function ¢ € H also belongs to
H) () and verifies
1611, < Cll¢l] @) (7.7)
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