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Abstract. We propose a new reconstruction algorithm for fluorescence diffuse optical

tomography, which is designed for highly heterogeneous objects, such as biological

tissues. It is a two-step algorithm that exploits continuous-wave measurements

acquired at both excitation and fluorescence wavelengths. First, an optical

inhomogeneity map, which depends on both absorption and diffusion coefficients,

is obtained from excitation measurements. Second, the fluorescence distribution is

reconstructed considering the recovered optical inhomogeneity map. The algorithm

includes dimensionality reduction techniques, namely measurement compression and

structured illumination, which significantly reduce acquisition and reconstruction

times. The algorithm has been tested on experimental data acquired from tissue-

mimicking phantoms considering sparsity priors. We demonstrate the feasibility and

effectiveness of this new approach that allows the fluorescence reconstruction quality to

be improved with respect to that provided by the standard normalized Born method.

Keywords: fluorescence imaging, optical tomography, image reconstruction, heterogene-

ous objects

1. Introduction

Fluorescence diffuse optical tomography (FDOT), also known as fluorescence molecular

tomography (FMT), is an optical technique that allows the 3D reconstruction of the

distribution of exogenous fluorescent markers. It has been mainly adopted for in vivo

preclinical imaging in small animals [1–3]. FDOT consists in illuminating a sample with
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light patterns (e.g. points or more complex shapes) and detecting the fluorescence light

exiting the sample [4; 5]. Multiple illumination-detection combinations are generally

considered for different angles of view of the sample, which improves the spatial

resolution of the reconstruction[6–8].

As discussed in [9], tomographic reconstruction of the fluorescent marker

distribution generally consists in i) solving the forward problem that describes light

propagation through the sample and ii) solving the inverse problem given a forward

model. The inverse problem is very ill-posed and thus fluorescence reconstruction highly

depends on the accuracy of the forward model itself [10].

The diffusion approximation is generally adopted to solve the forward problem. This

partial differential equation, which may be solved by means of the finite element method

[11; 12] or the boundary element method [13; 14], requires the knowledge of several

optical parameters, principally the absorption coefficient µa and reduced scattering

coefficient µ′s at each optical wavelength being measured, as well as the refractive index

of the medium, insofar as it affects the determination of correct boundary conditions.

One of the major difficulties of FDOT is to estimate the distribution of these optical

parameters, which is even more critical when highly heterogeneous objects such as

biological samples (e.g. mouse) are considered.

One practical solution has been to assume the sample to be optically homogeneous

and consider the ratio between measurements at fluorescence and excitation wavelength.

The so-called normalized Born (nBorn) method was originally proposed by Ntziachritos

et. al. [15] to correct for experimental factors such as detector gains and coupling losses.

Interestingly, it also proved efficient to minimize the fluorescence reconstruction artifacts

that appear in the presence of optical heterogeneities [16]. Although the state-of-the-art

nBorn approach is effective in the case of absorbing heterogeneities, it presents severe

limitations when scattering heterogeneities are present [17; 18].

In the last years, FDOT research has focused on multi-modality approaches such

as X-ray computed tomography-FDOT (CT-FDOT) [19–21], X-ray phase-contrast CT-

FDOT [22], magnetic resonance imaging-FDOT (MRI) [23; 24], single photon emission

computed tomography-CT-FDOT [25], or positron emission tomography-FDOT [26].

Traditionally, the volume obtained from the concurrent modality (e.g. CT or MRI) is

segmented into different anatomical segments (e.g. organs or tissue types) that can be

used to constrain the resolution of the FDOT problem [19–22; 27; 28]. Semi-automatic

approaches eliminating the need for prior image segmentation have also been proposed

[29]. More recently, the knowledge of the anatomical segments has been exploited to

improve the accuracy of the forward model, which results in an improved reconstruction

quality. This is usually done by a segment-and-assign strategy, which consists in

assigning a couple of optical properties to each of the anatomical segments prior to

FDOT reconstruction. In [22], segmentation is performed from a phase-contrast CT

scan of the mouse ex-vivo, while conventional CT [25; 30] or MRI [23; 31] acquired in

vivo can be also considered. Segmentation is usually limited to four to six segments.

However, choosing the right optical parameters for each segment is very challenging.
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Despite many studies, the optical properties of the tissues have not yet been fully

established, due to inter-subject variability and measurements being predominantly

performed using ex vivo tissues. Moreover, anatomical information provided by a

non-optical concurrent imaging modality is only partially correlated with the optical

parameters.

Therefore, it is highly desirable to recover the optical properties of the

heterogeneities from optical measurements, which can be done by performing a

diffuse optical tomography (DOT) reconstruction at the excitation wavelength [32–38].

However, continuous wave (CW) measurements at a single wavelength cannot resolve

both absorption and scattering coefficients [39]. Although it is possible to reconstruct

only the absorption coefficient while assigning prior values to the scattering coefficient

[38], effective unmixing of absorption and scattering requires time-resolved/frequency

domain or multispectral measurements. Unfortunately, these two approaches show

various drawbacks, such as the complexity of the experimental set-up, a lower signal-

to-noise ratio, and huge data sets that are difficult to be managed by the inversion

algorithms. In practice, FDOT measurements are often performed in CW mode,

especially in the case of a multi-modality instrumentation for which technical constraints

push towards the use of simple experimental systems

The authors recently proposed the idea to reconstruct the so-called optical

inhomogeneity map from CW DOT measurements and then to solve the FDOT problem

[40]. The inhomogeneity map, which depends on both the absorption and scatting of

the optical heterogeneities, allows the inaccuracies in the homogeneous FDOT forward

problem to be corrected. Capitalizing on this work, we propose a new reconstruction

method for FDOT, namely the inhomogeneous nBorn (i-nBorn) method, that generalizes

the nBorn method. This new method is based on the joint solution of two inverse

problems, which are both ill-posed and require the use of regularization schemes to

recover an acceptable solution.

In this contribution, we describe a two-step reconstruction algorithm for the i-

nBorn method. The first step implements a projected Gauss-Newton algorithm,

which can accommodate different types of penalty terms, to reconstruct the sample

inhomogeneities. The second step, which includes the inhomogeneity map recovered at

the first step in the forward model, consists in the fluorescence image reconstruction

using anisotropic diffusion (AD) regularization. To the best of our knowledge, this is

the first implementation of the i-nBorn method to be fed up with experimental data.

The algorithm we propose easily integrates the use of structured light illumination

and measurement compression, which are dimension reduction approaches that greatly

reduce the acquisition and reconstruction times. Structured light is based on the

illumination of the object by a small number of light patterns. Patterns can be

chosen among natural basis such as Fourier [41] or wavelet [42], using singular value

decomposition [43; 44] or applying the compressed sensing paradigm [45]. Different

reconstructions schemes have been designed to handle large data sets, e.g. analytic

method [46] or matrix free methods [28; 47]. Another approach is measurement
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compression, which can be considered as a preprocessing step where the measured

images are (wavelet) compressed and the most significant basis function are retained

to build the forward model with reduced dimensionality [5; 48].

The paper is organized as follows. In Section 2, we introduce the i-nBorn approach

that is designed for fluorescence reconstruction in the presence of optical heterogeneities.

In Section 3, we present an overview of our reconstruction method, which is based on

the resolution of two inverse problems. First, we introduce dimensionality reduction

through measurement compression. Then, we formalize the two inverse problems and

explain how we solve them. Next, we describe how to build the forward problems.

Finally, we provide a detailed description of our algorithm. In Section 4, we discuss the

phantom experiments and the figures of merit of the reconstructions. We present our

results in Section 5, discuss them in Section 6, and conclude in Section 7.

2. Fluorescence diffuse optical tomography in the presence of

heterogeneities

We consider an object domain Ω with absorption coefficient µa(r), r ∈ Ω, and reduced

scattering coefficient µ′s(r), r ∈ Ω, that has embedded within it a fluorescent dye. Let

h(r), r ∈ Ω, be the unknown fluorescence yield, which is related to the concentration of

the fluorescent dye. The FDOT image reconstruction problem consists in solving the

following inverse problem

Γf = Afh, (1)

where Γf is the fluorescence signal measured at the emission wavelength λf and Af is

the forward operator.

2.1. nBorn method

The forward operator Af strongly depends on the optical properties of the object,

which are unknown. If the operator Af is built from estimated optical properties, the

resulting model error dramatically degrades the reconstruction quality. A practical way

of alleviating this problem has been to normalize data, which leads to the normalized

FDOT problem

Γn = Anh, with Γn =
Γf

Γx
, (2)

where Γx is the signal measured at the excitation wavelength λx and An is the normalized

forward operator computed assuming homogeneous optical properties. Despite the

very good results obtained in many configurations, it has been shown that the nBorn

method does not compensate for the effect of unknown optical heterogeneities, especially

scattering [17; 18].
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2.2. Full DOT-FDOT approach

One possibility to improve the nBorn method is to address the full DOT-FDOT problem

for which µa, µ′s and h are all recovered and refractive index is assumed known [32–36].

It consists in jointly (either sequentially or simultaneously) solving a pair of inverse

problems. When the optical properties of the object are assumed to be the same at λx

and λf we have

Γx = F (µa, µ
′
s) and (3a)

Γn = An(µa, µ
′
s)h. (3b)

where F is the (non-linear) excitation forward model. The pair of maps (µa, µ
′
s) may

be recovered from the DOT problem of (3a) and then used to build An in the FDOT

problem of (3b). However, when CW measurements are considered, the DOT problem

has no unique solution [39]. Different pairs of maps (µa, µ
′
s) may satisfy (3a) while

resulting into a fluorescence forward model An that is subject to model error.

2.3. Inhomogeneous nBorn approach

In a previous work [40], we suggested an approach that allows DOT-FDOT

reconstruction to be performed from CW data. The key idea is to recast the forward

problem from a solution to a diffusion equation into a solution of the equivalent

Helmholtz equation (
∇2 + η

)
Ψ = s (4)

where η is a scalar optical property with units of reciprocal squared length, defined as

η = ∇2(κ
1
2 )/κ

1
2 + µa/κ, κ = 1

3
(µ′s + µa)−1 is the diffusion coefficient inside Ω and Ψ and

s are the transformed fluence and source terms. The system of equations (3a)–(3b) may

now be rewritten as

Γx = G(η), (5a)

Γn = B(η)Υ, (5b)

where Υ is a modified fluorescence yield that is given by

Υ =
h

κ
. (6)

The strategy to recover h is the following. First, the nonlinear problem of (5a) is

solved and an optical inhomogeneity map η, which depends on the optical heterogeneities

of the medium, is obtained. Second, the η map is used to build the forward model B

and the linear problem of (5b) is solved, providing the Υ map. Finally, the unknown

fluorescence yield is given by

h = κ̂Υ, (7)
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where κ̂ is chosen, in practice, as an estimate for κ. In this manuscript, we assume κ is

slowly varying. Hence, we have the following approximation:

κ̂ ' µ̂a

η
, (8)

where µ̂a is an estimate for the absorption coefficient, chosen as a constant.

3. Reconstruction overview

3.1. Data Acquisition and Compression

The object Ω is illuminated at I view angles. At each angle, a set of J source patterns

is projected onto the object. Such an acquisition results in a set of IJ excitation images

and IJ fluorescence images. Let mx
i,j and mf

i,j be the excitation and fluorescence images,

respectively, measured at the ith view after illumination with the jth source pattern.

In the following sections, we use a vector representation for the images, i.e. mx
i,j ∈ RP

and mf
i,j ∈ RP , where P is the number of pixels. The normalized fluorescence image is

defined by

mn
i,j =

mf
i,j

mx
i,j

, (9)

where the division is component-wise (pixel-wise). Each of the IJ excitation images,

as well as each of the IJ normalized fluorescence images, are compressed by applying

a wavelet transform D and retaining their K most relevant wavelet components. The

data for each forward problem then consists of the IJK retained components stacked

into a vector with components

Γi,j,k = 〈di,j,k,mi,j〉 , (10)

where df
i,j,k ∈ RP is the wavelet vector associated with the kth component of the image

acquired from the jth illumination pattern at the ith angle.

3.2. Inverse problems

We consider the reconstruction of the unknown quantities η ∈ RN and h ∈ RN , where

N is the number of voxels, from the measured data Γx ∈ RIJK and Γn ∈ RIJK given

the discrete forward models G and B. The unknown quantities are obtained minimizing

the cost functions

Ldot(η) =
1

2
‖Γx − G(η)‖2 + αRdot(η) and (11a)

Lfdot(Υ) =
1

2
‖Γn −BΥ‖2 + βRfdot(Υ), (11b)

where α (resp. β) is a regularization parameter that sets the trade-off between the data

fidelity 1
2
‖Γx−G(η)‖2 (resp. 1

2
‖Γn−BΥ‖2) and the penalty function Rdot (resp. Rfdot).
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Penalty functions have long been confined to `2-norm regularization that promotes

the smoothness of the solution [19–22; 49]. More recently, penalty functions based

on `1-norm have received a lot of attention, since they promote sparse solutions

[26; 35; 36; 50; 51]. The DOT problem has also been formulated as a joint sparse

recovery problem with a `0-norm penalty, which assumes that optical heterogeneities

have a small support [52].

In the following we present our minimization framework for both Ldot and Lfdot. Remind

that η is required to build B, hence, (11a) has to be solved before (11b).

3.2.1. Solution of the DOT problem The DOT cost function given at (11a) is minimized

using a Gauss-Newton algorithm with an inequality constrain of the form ηmin ≤ η.

The Gauss-Newton method is a traditional tool for non linear minimization, which

iteratively solves minη L(η) starting with an initial guess η0 and building new estimates

η`+1 = η` + τ `∆η`, where ∆η` is the Gauss-Newton step and τ ` is the step length.

(J`>J` + αC`)∆η` = −g`, (12)

where J` is the Jacobian matrix of G about η` and C` is the Hessian matrix of Rdot

about η`. The vector g`, which denotes the gradient of L at η`, is given by

g` = −J`>(Γn − G`) + α∇R`
dot, (13)

where G` = G(η`) is the forward estimate and ∇R`
dot is the gradient of Rdot at η`.

Assuming the optical inhomogeneity map to be piecewise constant, we choose

Rdot(η) = TV(η), (14)

where TV is the total variation semi-norm. To ensure the global convergence of the al-

gorithm, a line search along the direction ∆η` is performed, the best step length being

retained. The inequality constrain has been implemented considering the fixed-variable

method described in [53].

In the following, we denote η̂ the solution obtained after convergence of the iterative

process.

3.2.2. Solution of the FDOT problem The FDOT cost function (11b) is minimized

considering the split operator method introduced in [54], considering a regularization

penalty of the form

Rfdot(Υ) =

∫
Ω

p(|∇h|) dΩ, (15)

where p is an edge-preserving potential function. The minimizer of (11b) is the solution

of

B>(BΥ− Γn) = −βD(Υ)Υ, (16)
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where the right-hand side term is the nonlinear anisotropic diffusion with D(Υ) =

−∇·
[
exp

[
−
(
|∇Υ|
T

)2
]
∇
]
, where the parameter T is the threshold [54–56]. The solution

is obtained using the two-step iterative method described in [54].

3.3. Forward problems

In this section, we discuss the calculation of the Jacobian matrix J`, forward estimate

G`, and weight matrix B required in (12), (13), and (16), respectively. All the three

quantities require an appropriate model for the propagation of light within the object

Ω.

Assuming κ is known on the boundary ∂Ω, we have the following discrete

formulation for (4) using a finite element method (FEM) implementation [11]:

H(η)Ψ = s (17)

where H(η) ∈ RN×N is the Helmholtz operator that only depends on η, Ψ ∈ RN×1 is

the pseudo photon density vector (which is related to the measured data as detailed in

appendix A), and s ∈ RN×1 is the source vector. The propagation operator has been

computed using the Matlab TOAST package [57].

The forward estimate G` is of size IJK × 1. The (i, j, k)th entry of G` is denoted

G`i,j,k ∈ R. By definition, it can be computed as

G`i,j,k =
〈
dx
i,j,k,ψ

`
i,j

〉
(18)

where ψ`
i,j is obtained solving (17) with s = si,j at iteration `.

The Jacobian matrix J` is of size IJK × N . The (i, j, k)th row of J` is denoted

j`i,j,k ∈ RN . It may be shown that [9]

j`i,j,k = ψ`
i,j ◦ψ`

i,j,k, (19)

where ψ`
i,j,k is the adjoint solution of (17) for s = dx

i,j,k at iteration `. The symbol ◦
denotes the Hadamard product.

The weight matrix B is of size IJK × N . The (i, j, k)th row of B is denoted

bi,j,k ∈ RN . As shown in appendix Appendix A, it can be computed as

bi,j,k = ψi,j ◦ψi,j,k, (20)

where ψi,j is the solution of (17) with s = si,j at the final iteration of step 1 while ψi,j,k

is the adjoint solution of (17) with s = dn
i,j,k/ψi,j (element-wise division).

4. Material and methods

4.1. Experimental set-up

In the following paragraph a brief description of the experimental set-up is reported.

A more detailed description can be found in [42; 58]. The light emitted by a diode
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Figure 1. Bottom view of the epoxy resin phantoms used in the experiments.

Phantom 1 is depicted on the left and phantom 2 on the right. Both phantoms are

cylinders of diameter 20 mm and height 80 mm. Red full line (—) indicates absorbing

inclusions, green dashed line (– –) fluorescence inclusions, and orange dotted line (· · · )
scattering inclusions. The diameter and length of inclusions 1 to 5 are reported in

Table 1 and 2. The paths P1 and P2 are used to plot profiles in Fig. 6.

inclusion 1 2 3 4

∅ (mm) 4 2 2 2

L (mm) 30 21 21 30

µa (mm−1) 0.20 0.02 0.20 0.02

µ′s (mm−1) 1.00 1.00 1.00 1.00

η (mm−2) 0.72 0.06 0.72 0.06

dye no yes no yes

Table 1. Inclusions in phantom 1. The diameter (∅), length (L), and optical

properties of the heterogeneities are reported.

inclusion 1 2 3 4 5

∅ (mm) 4 2 2 2 2

L (mm) 30 21 21 30 21

µa (mm−1) 0.02 0.02 0.20 0.20 0.02

µ′s (mm−1) 5.00 1.00 1.00 1.00 1.00

η (mm−2) 0.30 0.06 0.72 0.72 0.06

dye no yes no no yes

Table 2. Inclusions in phantom 2. The diameter (∅), length (L), and optical

properties of the heterogeneities are reported.
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laser (wavelength of 630 nm, power ≈10 mW) is spatially modulated by means of

a digital micromirror device (DMD) (Discovery 1100 - ALP1, Vialux), which creates

different patterns that are projected onto the sample surface through an objective

lens. The sample is placed on a motorized rotational stage in order to acquire multiple

views. In particular, measurements have been carried out on biological tissue mimicking

phantoms. The light exiting the sample surface is collected by an objective lens (f

= 50 mm, f#= 2.8, Nikon Co.) and projected on a low noise 16-bit cooled (-40
◦C) CCD camera (Versarray 512, Princeton Instruments). In order to discriminate

fluorescence from excitation light, a high-pass filter (RG-695, Schott) in conjunction

with an interference filter (XF 3076, Omega) have been inserted in front of the objective

lens.

The phantom is an epoxy resin cylinder of diameter 20 mm and height 80 mm.

Appropriate concentrations of toner powder and Ti02 particles have been added to the

resin so as to simulate the absorption and scattering parameters of biological tissues.

The optical properties of the phantom have been measured by means of a time-resolved

diffused optical spectroscopy system [59]. The following values have been obtained at

630 nm: µa = 0.02 mm−1 and µ′s = 1 mm−1. In order to simulate inclusions, cylindrical

holes have been drilled into the phantom at different positions (see Fig. 1). The diameter

and length of the inclusions are reported in Table 1 and 2. Each of the inclusions can

be independently filled with a liquid solution whose optical properties differ from the

background. In the case of absorbing/scattering inclusions, the solution is made of

ink and intralipid R© and by changing their concentrations it is possible to modify the

absorption and scattering coefficients, respectively. Fluorescent inclusions have been

obtained filling the holes with a fluorescent dye (Nile Blue dye concentration of 30 µM).

In particular, two phantoms of increasing complexity have been prepared, as shown

in Fig. 1. The optical properties of the inclusions for both phantoms are reported in

Table 1 and 2. In the first phantom, two absorbing cylindrical inclusions (labels 1 and 3

according to Fig. 1) and two fluorescent inclusions (labels 2 and 4) have been inserted. In

the second phantom, two absorbing inclusions (labels 3 and 4), one scattering inclusion

(label 1), and two fluorescent inclusions (labels 2 and 5) have been inserted.

Measurements at both excitation and fluorescence wavelengths have been carried

out in transmission every 18̊ , resulting in I = 20 views. For simplicity, only J = 1

uniform source pattern has been considered at each view angle.

4.2. Practicalities

Mesh The mesh used to solve the Helmholtz-like equation consists of 42886 tetrahedral

elements connected by 7468 vertices and is displayed in Fig. 2a. It was obtained

considering the DMD-CCD-based method proposed in [42], which can handle any convex

sample without requiring any extra device. The main steps are the following. First,

uniform illumination patterns were projected onto the sample and the resulting shadow

images were recorded rotating the sample with a step angle of 1̊ . Then, the obtained
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stack of shadow images was filtered backprojected, which results in a 3D volume that

was thresholded to get a binary volume indicating the volume occupied by the sample.

Finally, the iso2mesh mesh generator was employed [60] to compute the mesh from the

binary volume.

Illumination/detection areas The illumination and detection areas (see Fig. 2 c and d)

are determined from the shadow images. For each measurement angle, the detection area

is chosen as a rectangle that fits within the sample. To avoid camera saturation during

excitation measurements, the detection area is narrower than the phantom diameter.

The retained size was 34 mm × 17 mm. For each view, the illumination area is obtained

by symmetry on the opposite side of the object (see Fig. 2b). Illumination and detection

areas all start 2 mm away from the top of the phantom.

Image preprocessing The recorded excitation and fluorescence images are of size

256 × 256 (see Fig. 2c and 2d). All of them are cropped to the detection area and

resampled so as to get 128 × 64 rectangular images. Then, the fluorescence images

are wavelet transformed (Daubechies 4 wavelet basis) using the wavelab software [61].

Finally, for each image, the K = 64 most significant wavelet basis are retained to build

the detection patterns di,j,k introduced in (10).

Reconstruction The grid we consider to reconstruct both the inhomogeneity and the

fluorescence maps is regular and consists of N = 30× 29× 59 voxels of size (0.75 mm)3.

Note that this grid differ from the grid where the binary volume used to create the mesh

is defined. We chose µa = 0.02 mm−1 and µ′s = 1 mm−1 to build the weight matrix of

the nBorn method. The initial guess for η required by the i-nBorn method was obtained

considering the same values, i.e. choosing η0 = 3µa(µa + µ′s) ≈ 6 × 10−2 mm−2. The

estimate of the absorption coefficient µ̂a was set to 0.02 mm−1 while the optimization

bound ηmin was set to 1
2
η0.

4.3. Performance metrics

The reconstruction quality has been assessed by means of three main objective

performance metrics. First, the Pearson correlation has been considered as a global

metric that indicates how well two volumes are linearly correlated. Given the ground-

truth htrue and reconstructed fluorescence distribution hrec, the Pearson correlation ρ is

defined by

ρ =
cov (hrec, htrue)

σ(hrec)σ(htrue)
, (21)

where cov is the covariance and σ the standard deviation. A large ρ indicates a high

correlation between the images.

Second, the contrast-to-noise ratio (CNR) has been considered. It is defined by

Croi,back =
µroi − µback

(wroiσ2
roi + wbackσ2

back)1/2
, (22)
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(a) (b) (c) (d)

Figure 2. a) Mesh of the object b) Detection and illumination areas for the first view

angle c) image at excitation wavelength d) image at fluorescence wavelength. The

rectangles in (c) and (d) indicate the detection area.

where µroi (µback) and σroi (σback) are the average and standard deviation of hrec in the

region-of-interest Ωroi (background Ωback) and wfluo (wback) is the ratio of the volume

occupied by the two fluorescent inclusions (the rest of the volume).

We define the global CNR C by choosing

Ωroi = ΩA ∪ ΩB and Ωback = Ω \ Ωroi, (23)

where ΩA (resp. ΩB) is the support of the the first (resp. second) fluorescent inclusion.

The larger the CNR, the better.

Last, the relative quantification factor Q is introduced as a measure of the

quantitativeness of the reconstruction. We define

Q = min

(
CA

CB

,
CB

CA

)
, (24)

where CA (resp. CB) is the CNR of inclusion A (resp. B), which is obtained choosing

Ωroi = ΩA (resp. Ωroi = ΩB) and Ωback = Ω \ (ΩA ∪ ΩB). The closer the relative

quantification is to 1, the better.

4.4. Choice of the regularization parameters

The reconstruction quality dramatically depends on the choice of the regularization

parameters α and β given in (11a) and (11b), respectively. While the best α has been

chosen from visual inspection, β has been chosen by optimizing an objective performance

metric, which enables fair comparisons of the reconstructions. The retained performance

metric is the global CNR.

5. Results

The fluorescence distribution h was reconstructed from the same data sets considering

both the i-nBorn method and the state-of-the-art nBorn method. The nBorn method
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(a) (b) (c) (d)

Figure 3. Optical inhomogeneity maps (in mm−2). a) ground truth in phantom 1,

b) reconstruction in phantom 1, c) ground truth in phantom 2, b) reconstruction in

phantom 2. Slices at increasing z are displayed from top left to bottom right. Sparcity

priors (14) and (15) were considered.

requires to solve (2), which is an ill-posed inverse problem that requires regularization.

To ensure fair comparison between the nBorn and the proposed i-nBorn method, we

solve (2) and (5b) the same way, i.e., minimizing a cost function of the form (11b). To

show the universality of our approach, not only the sparsity priors promoted by the

regularizers given by (14) and (15) were considered, but also more classical regularity

priors of the form Rdot(η) = ‖∆η‖2
2 and Rfdot(Υ) = ‖Υ‖2

2 [19–22; 49].

Slices of the inhomogeneity maps reconstructed in both phantoms are shown in

Fig. 3. Three-dimensional rendering (Volume Viewer ImageJ plugin) of the fluorescence

reconstructions in phantom 1 and phantom 2 are reported in Fig. 4 and 5, respectively.

For both phantom reconstructions, the fluorescence profiles obtained along paths P1 and

P2 (refer to Fig. 1 to localize the paths) are depicted in Fig. 6 considering sparsity priors

as well as regularity priors. Finally, the performance metrics introduced in section 4.3

were used to evaluate reconstructions in both phantoms considering the two approaches.

The metrics are reported in Table 3 for reconstructions performed with sparsity priors

and in Table 4 for reconstructions performed with regularity priors.

In phantom 1, we observe a clear advantage of the proposed approach over the

standard nBorn method as can be observed visually in the 3D rendering of Fig. 4 and

in the profiles of the top row of Fig. 6. In particular, the nBorn reconstruction is

unable to resolve separately the two inclusions as our proposed approach does. This

is quantitatively confirmed with the increase of the global CNR of the reconstructed

volume C and its correlation with the ground truth ρ (see Table 3 and Table 4).

Specifically, we observe a 36 % increase (resp. 23 %) of ρ and a 42 % increase (resp.
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(a) (b) (c)

Figure 4. Fluorescence reconstructions in phantom 1. a) ground truth, b) standard

nBorn reconstruction, c) reconstruction obtained with the proposed i-nBorn algorithm.

Sparcity priors (14) and (15) were considered.

Table 3. Performance metrics of the fluorescence reconstructions considering sparsity

priors, i.e., Rdot(η) = TV(η) and Rfdot(Υ) given by (15)

Phantom method ρ C Q

– perfect 1 ∞ 1

1 nBorn 0.305 2.28 0.85

1 proposed 0.416 3.25 0.72

2 nBorn 0.197 1.96 0.17

2 proposed 0.274 2.79 0.79

28 %) of C for the sparsity (resp. smooth) priors. Improvements are obtained for both

prior types, which suggests the i-nBorn method outperforms the standard nBorn method

regardless the penalty functional chosen for regularization. A small decrease of 15 %

(resp. 1 %) of the relative quantification Q is observed in phantom 1 with sparsity (resp.

smooth) priors.

In phantom 2, similar results are obtained. As shown in Fig. 5 and in the bottom

row of Fig. 6, the two fluorescent inclusions cannot be separated considering nBorn-

based reconstruction while they can be well discriminated and localized by means of

the proposed method. Specifically, we observe a 39 % increase (resp. 11 %) of ρ
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(a) (b) (c)

Figure 5. Fluorescence reconstructions in phantom 2. a) ground truth, b) standard

nBorn reconstruction, c) reconstruction obtained with the proposed i-nBorn algorithm.

Sparcity priors (14) and (15) were considered.

Table 4. Performance metrics of the fluorescence reconstructions considering

regularity priors, i.e., Rdot(η) = ‖∆η‖22 and Rfdot(Υ) = ‖Υ‖22
Phantom method ρ C Q

– perfect 1 ∞ 1

1 nBorn 0.343 2.58 0.96

1 proposed 0.424 3.31 0.95

2 nBorn 0.211 2.11 0.37

2 proposed 0.235 2.36 0.87

and a 42 % increase (resp. 12 %) of C for the sparsity (resp. smooth) priors. The

advantage of the proposed method is even more evident due to the higher complexity

of the absorbing/scattering heterogeneities distribution. Beyond the higher number

of heterogeneities and their variability –both absorbing and scattering inclusions are

present, the distance between the two fluorescent inclusions is smaller in phantom 2

than in phantom 1 (see Fig. 1). For this phantom, we observe a dramatic increase of the

relative quantification Q, which is increased by a factor of 3.7 for sparsity priors and by

a factor of 1.37 for smooth priors.

Finally, we remark that the relative quantification is much better in phantom 1 than
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(a) (b) (c) (d)

Figure 6. Reconstructed fluorescence profiles considering the nBorn approach (green

line marked with B) and our method (red line marked with ×). The phantom profiles

are provided for comparison (blue solid line marked with ◦). In (a) and (b), the

sparsity priors Rdot(η) = TV(η) and Rfdot given in (15) are considered. In (c) and

(d), the smooth priors Rdot(η) = ‖∆η‖22 and Rfdot(Υ) = ‖Υ‖22 are chosen. Profiles

are plotted along path P1 (see (a) and (c)) and path P2 (see (b) and (d)). For each of

the four cases, the reconstructed fluorescence distributions have been normalized to a

unit marker quantity such that
∫
h(r) dΩ = 1 µmol.

in phantom 2 when the standard nBorn method is considered while the proposed i-nBorn

algorithm tends to provide similar quantification capabilities whatever the complexity

of the phantom and the priors used in the reconstruction algorithm.

6. Discussion

Our approach represents a simple and effective way to experimentally capture the

optical inhomogeneities needed to accurately model light propagation within biological

tissues. We demonstrated that an optical inhomogeneity map can be recovered from CW

measurements in tissue mimicking phantoms. Even without discriminating absorbing

from scattering inclusions, the proposed method proved efficient to improve the quality

of the fluorescence reconstructions. In particular, an increase of the CNR and correlation

of the reconstruction with the ground truth is observed in all our measurements. The

dramatic loss of quantification capabilities, which has already been reported elsewhere

for the nBorn approach in the presence of complex phantoms [17], can be alleviated

considering our approach. This could be a fundamental step towards applications such

as follow-up studies in oncology.

It is worth noting that, in this study, only one illumination pattern was considered

per view angle, which allowed the acquisition time to be drastically reduced compared

to standard illumination schemes based on point source scanning. While the nBorn

approach failed to provide satisfactory reconstruction with such an illumination scheme,

the i-nBorn provided improved resolution, which could contribute to the emergence of

fast acquisition schemes.
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Theses results confirm the importance to incorporate the optical heterogeneities

into the forward model involved in FDOT reconstructions [30; 31; 37; 38; 62]. They

are consistent with those showing that the nBorn method only partially compensate

the fluorescence reconstruction errors due to the presence of optical heterogeneities,

especially in the presence of scattering inclusions [17; 18]. The advantage of the proposed

i-nBorn algorithm is particularly evident in the case of phantom 2 that contains both

absorbing and scattering heterogeneities as well as close fluorescent inclusions. It is

worth noting that also in the simpler phantom 1, the nBorn method is outperformed

by our approach. We anticipate that the advantage of the proposed approach over the

standard nBorn method would be even stronger if an anatomical prior obtained by a

concurrent anatomical modality is available.

The i-nBorn method can be understood as a generalisation of the standard

nBorn method. Indeed, the i-nBorn method is equivalent to the nBorn method

for homogeneous samples. The nBorn method provides a preliminary fluorescence

reconstruction that can be improved by reconstructing the optical inhomogeneity map

of the sample. It is worth reminding that the two advantages offered by the nBorn

normalization, namely independence to experimental gains and optical inhomogeneity

compensation, are preserved by the i-nBorn method.

As commonly assumed (see for instance [2–8]), the optical properties of the sample

were considered to be the same at both excitation and fluorescence wavelengths.

For applications where strong variations of optical properties are encountered, the

inhomogeneity map can be reconstructed at both wavelengths. However, this comes

at the cost of an extra acquisition that consists in illuminating the sample at the

fluorescence wavelength. In our phantoms, µa is constant while µ′s shows as decrease of

about 10% between 633 nm and 700 nm [63]. Although the decrease of µ′s is neglected,

our results show that the recovered fluorescence distribution is in very good agreement

with the ground truth distribution, which suggests that our method is robust to optical

properties variations.

It is important to note that our method is not primarily designed to output an

optical map. The inhomogeneity map we recover aims at correcting for the artefacts

that occur in the fluorescence images due to inaccuracies of the homogeneous forward

model. Demonstrating such a model correction effect is beyond the scope of this paper

but it one of the future works that we would like to carry out. Other ideas to correct

for inaccuracies are to use approximation error model or marginalize out errors [64; 65].

Finally, it is worth mentioning that the possibility to localize optical heterogeneities

by means of CW measurements, even without discriminating between absorbing and

scattering inclusions, can be of interest for different applications based on optical

contrast, e.g. optical oxymetry [66] and mammography [67].
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7. Conclusion

In this paper, we demonstrated the feasibility and advantage of a novel FDOT

reconstruction algorithm, which is designed for highly heterogeneous samples. We

showed that the inaccuracies of the homogeneous forward model affect the fluorescence

images, unless they are corrected for. By reconstructing an optical inhomogeneity

map from CW measurements, it is possible to fit the inaccuracies and improve the

florescence reconstruction quality. Further studies would help to establish the limits of

use of the i-nBorn method and provide in vivo validations. In particular, we believe

that the i-nBorn method together with the proposed algorithm can be of particular

interest in combination with non-optical techniques, such as MRI and CT. In such a

multimodal scheme, the non-optical modality would provide high resolution a priori

about the localization of the optical heterogeneities, while DOT measurements could

provide an in situ optical characterization of the inhomogeneities. The combination of

both types of optical information could be a fundamental step towards improved 3D

resolution and quantification of fluorescence markers in vivo.
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Appendix A. Proof of the weight matrix formula

The pseudo photon density ψ obeys the following coupled equations [40]:

Hψx = s in Ω (A.1a)

Hψf = ψxΥ in Ω. (A.1b)

where H is the Helmholtz operator with Robin boundary conditions on ∂Ω. The optical

properties are assumed to be the same at both excitation and fluorescence wavelengths.

Let Σ be the portion of object surface viewed by the camera. Measurements are

obtained from the photon density by means of the R(Ω)→ R(Σ) measurement operator

M. We have

m =Mψ. (A.2)

Any compressed measurement Γn is the projection of the uncompressed

measurement mn onto some detection pattern d. We have:

Γn = 〈mn, d〉Σ (A.3)
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where 〈·, ·〉Σ denotes the L2-inner product, i.e. 〈f, g〉Σ =
∫

Σ
f(x)g(x) dx. By definition

of mn, we have

m =

〈
mf

mx
, d

〉
Σ

(A.4)

Using (A.2), we have

m =

〈
Mψf

Mψx
, d

〉
Σ

(A.5)

=

〈
Mψf ,

d

Mψx

〉
Σ

. (A.6)

Introducing the Green’s operator of the Helmholtz Eqs. (A.1) leads to

m =

〈
MGf [ψxΥ],

d

Mψx

〉
Σ

. (A.7)

By definition of the adjoint operator Gf∗, we have:

=

〈
ψxΥ,Gf∗M∗

[
d

Mψx

]〉
Ω

(A.8)

Isolating Υ that is the quantity of interest, we obtain

m =

〈
ψxGf∗M∗

[
d

Mψx

]
,Υ

〉
Ω

(A.9)

The operator Gf being self adjoint, we obtain

m =

〈
ψxGfM∗

[
d

Mψx

]
,Υ

〉
Ω

(A.10)

In practice, a measurement may be modelled as

Mψ = f(r)ψ(r), ∀r ∈ Σ (A.11)

where f ∈ R(Σ) depends on the optical properties, the geometry of acquisition and

some gain factors. By definition of the adjoint operator that satisfies 〈Mψ,m〉Σ =

〈ψ,M∗m〉Ω , ∀ψ ∈ R(Ω), m ∈ R(Σ), we have

M∗m =

{
f(r)m(r), ∀r ∈ Σ

0 ∀r ∈ Ω \ Σ
(A.12)

Inserting (A.11) and (A.12) into (A.10) leads to :

m =

〈
ψxGf

[
d|Ω
ψx

]
,Υ

〉
Ω

(A.13)

where d|Ω = d for r ∈ Σ and 0 for r ∈ Ω \ Σ. Discretizing the previous equation

completes the proof.
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